Optimal Selection and Location of BESS Systems in Medium-Voltage Rural Distribution Networks for Minimizing Greenhouse Gas Emissions
Abstract
:1. Introduction
2. Mathematical Formulation
2.1. Objective Function
2.2. Set of Constraints
3. Solution Strategy
- I.
- Definition of the sets where variables are defined, i.e., nodes, batteries, and periods.
- II.
- Definition of matrices, vectors, and tables, i.e., grid configuration, renewable energy information, or greenhouse emissions’ rate, among others.
- III.
- Definition of variables and their natures, i.e., binaries, continuous, or discrete.
- IV.
- V.
- Solution of the optimization model using an adequate optimization tool. The solver’s selection depends on the nature of the optimization problem; in this paper, an MINLP method is selected.
4. Electric Distribution Network
4.1. Demand and Renewable Energy Information
- ✓
- The PV source is located at node 13 with a nominal generation of 450 kW, and the PV source is located at node 25 with a nominal generation rate of 1500 kW.
- ✓
- The WT source is located at node 13 with a nominal generation of 825 kW, and the PV is located at node 30 with a nominal generation of 1200 kW.
4.2. Battery Technologies
- ✓
- A battery-type A with an energy rate of 1000 kWh with a charging/discharging times of 4 h. The nominal peak injection/consumption of 250 kW.
- ✓
- A battery-type B with an energy rate of 1500 kWh with a charging/discharging times of 4 h. The nominal peak injection/consumption of 375 kW.
- ✓
- A battery-type C with an energy rate of 2000 kWh with a charging/discharging times of 5 h. The nominal peak injection/consumption of 500 kW.
4.3. Greenhouse Gas Emissions
5. Numerical Analysis and Discussion
5.1. Simulation Cases
- Scenario 1 (S): The operation of the 33-node test feeder considering renewable energy availability without batteries.
- Scenario 2 (S): The operation of the 33-node test feeder considering renewable energy availability and the batteries optimal located with the proposed approach.
5.2. Computational Evaluation
- ✓
- The behavior of the states of charge between periods from 1 to 28 for all the batteries show that these constant charges and discharges to take advantage of the renewable generation availability to provide power to the grid as well as to end this period with a full charge, i.e., 90%.
- ✓
- Between the periods interval 28 to 36, all the batteries remain in a rest state, i.e., they do not provide or absorb energy to (from) the grid. During this period, these periods occur since renewable generation is enough to support all the demand guaranteeing voltage profiles in all the nodes.
- ✓
- After 36 period, the batteries start to provide power to the electrical network in order to help to reduce the amount of diesel generation require to attend the load under the peak load condition. Finally, in the last periods, these batteries take some energy from the grid to end the day with 50% of the charge as defined in the operative conditions for these devices.
5.3. Additional Simulation Results
6. Conclusions and Future Works
- ✓
- The reformulation of the MINLP model into a mixed-integer convex model via second-order programming to ensure the global optimum finding via branch and bound methods.
- ✓
- To study the simultaneous location of batteries and renewable sources to identify the best possible combination of these distributed energy resources regarding greenhouse gas emissions minimization.
- ✓
- To include hard constraints in the proposed optimization model thermal characteristics of the batteries including aging features and the effect of the power electronic converter regarding the efficiency of the complete system to improve the quality of the model in relation with real behaviors in BESS.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Strunz, K.; Abbasi, E.; Huu, D.N. DC microgrid for wind and solar power integration. IEEE Trans. Emerg. Sel. Top. Power Electron. 2013, 2, 115–126. [Google Scholar] [CrossRef]
- Arshad, M.; O’Kelly, B. Global status of wind power generation: Theory, practice, and challenges. Int. J. Green Energy 2019, 16, 1073–1090. [Google Scholar] [CrossRef]
- Ruiz-Rodriguez, F.; Hernández, J.; Jurado, F. Probabilistic load flow for photovoltaic distributed generation using the Cornish–Fisher expansion. Electr. Power Syst. Res. 2012, 89, 129–138. [Google Scholar] [CrossRef]
- Ruiz-Rodriguez, F.J.; Hernandez, J.; Jurado, F. Probabilistic load flow for radial distribution networks with photovoltaic generators. IET Renew. Power Gener. 2012, 6, 110–121. [Google Scholar] [CrossRef]
- Mahabir, R.; Shrestha, R.M. Climate change and forest management: Adaptation of geospatial technologies. In Proceedings of the 2015 Fourth International Conference on Agro-Geoinformatics (Agro-geoinformatics), Istanbul, Turkey, 20–24 July 2015; pp. 209–214. [Google Scholar]
- Nematollahi, O.; Hoghooghi, H.; Rasti, M.; Sedaghat, A. Energy demands and renewable energy resources in the Middle East. Renew. Sustain. Energy Rev. 2016, 54, 1172–1181. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.; Montoya, O.D.; Gil-González, W. Integration of energy storage systems in AC distribution networks: Optimal location, selecting, and operation approach based on genetic algorithms. J. Energy Storage 2019, 25, 100891. [Google Scholar] [CrossRef]
- Zimmermann, A.W.; Sharkh, S.M. Design of a 1 MJ/100 kW high temperature superconducting magnet for energy storage. Energy Rep. 2020, 6, 180–188. [Google Scholar] [CrossRef]
- de Carvalho, W.C.; Bataglioli, R.P.; Fernandes, R.A.; Coury, D.V. Fuzzy-based approach for power smoothing of a full-converter wind turbine generator using a supercapacitor energy storage. Electr. Power Syst. Res. 2020, 184, 106287. [Google Scholar] [CrossRef]
- Mansour, M.; Mansouri, M.; Bendoukha, S.; Mimouni, M. A grid-connected variable-speed wind generator driving a fuzzy-controlled PMSG and associated to a flywheel energy storage system. Electr. Power Syst. Res. 2020, 180, 106137. [Google Scholar] [CrossRef]
- Fan, J.; Xie, H.; Chen, J.; Jiang, D.; Li, C.; Tiedeu, W.N.; Ambre, J. Preliminary feasibility analysis of a hybrid pumped-hydro energy storage system using abandoned coal mine goafs. Appl. Energy 2020, 258, 114007. [Google Scholar] [CrossRef]
- Soltani, M.; Nabat, M.H.; Razmi, A.R.; Dusseault, M.; Nathwani, J. A comparative study between ORC and Kalina based waste heat recovery cycles applied to a green compressed air energy storage (CAES) system. Energy Convers. Manag. 2020, 222, 113203. [Google Scholar] [CrossRef]
- Hernandez, J.C.; Bueno, P.G.; Sanchez-Sutil, F. Enhanced utility-scale photovoltaic units with frequency support functions and dynamic grid support for transmission systems. IET Renew. Power Gener. 2017, 11, 361–372. [Google Scholar] [CrossRef]
- Hernández, J.C.; Sanchez-Sutil, F.; Vidal, P.; Rus-Casas, C. Primary frequency control and dynamic grid support for vehicle-to-grid in transmission systems. Int. J. Electr. Power Energy Syst. 2018, 100, 152–166. [Google Scholar] [CrossRef]
- Divya, K.; Stergaard, J. Battery energy storage technology for power systems—An overview. Electr. Power Syst. Res. 2009, 79, 511–520. [Google Scholar] [CrossRef]
- Go, S.I.; Choi, J.H. Design and Dynamic Modelling of PV-Battery Hybrid Systems for Custom Electromagnetic Transient Simulation. Electronics 2020, 9, 1651. [Google Scholar] [CrossRef]
- LIU, W.; NIU, S.; XU, H. Optimal planning of battery energy storage considering reliability benefit and operation strategy in active distribution system. J. Mod Power Syst. Clean Energy 2016, 5, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Hui, D.; Lai, X. Battery energy storage station (BESS)-based smoothing control of photovoltaic (PV) and wind power generation fluctuations. IEEE Trans. Sustain. Energy 2013, 4, 464–473. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, Q.; Hu, S.; Xu, H.; Rasmussen, C.N. Review of energy storage system for wind power integration support. Appl. Energy 2015, 137, 545–553. [Google Scholar] [CrossRef]
- Poullikkas, A. A comparative overview of large-scale battery systems for electricity storage. Renew. Sustain. Energy Rev. 2013, 27, 778–788. [Google Scholar] [CrossRef]
- Celli, G.; Mocci, S.; Pilo, F.; Loddo, M. Optimal integration of energy storage in distribution networks. In Proceedings of the 2009 IEEE Bucharest PowerTech, Bucharest, Romania, 28 June–2 July 2009; pp. 1–7. [Google Scholar]
- Capizzi, G.; Bonanno, F.; Napoli, C. Recurrent neural network-based control strategy for battery energy storage in generation systems with intermittent renewable energy sources. In Proceedings of the 2011 International Conference on Clean Electrical Power (ICCEP), Puglia, Italy, 2–4 July 2011; pp. 336–340. [Google Scholar]
- Barnes, A.K.; Balda, J.C.; Escobar-Mejía, A.; Geurin, S.O. Placement of energy storage coordinated with smart PV inverters. In Proceedings of the 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 16–20 January 2012; pp. 1–7. [Google Scholar]
- Karanki, S.B.; Xu, D.; Venkatesh, B.; Singh, B.N. Optimal location of battery energy storage systems in power distribution network for integrating renewable energy sources. In Proceedings of the 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 15–19 September 2013; pp. 4553–4558. [Google Scholar]
- Wei, C.; Fadlullah, Z.M.; Kato, N.; Stojmenovic, I. On optimally reducing power loss in micro-grids with power storage devices. IEEE J. Sel. Areas Commun. 2014, 32, 1361–1370. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, Z.; Bai, L.; Liang, H. Determination of the optimal installation site and capacity of battery energy storage system in distribution network integrated with distributed generation. IET Gener. Transm. Distrib. 2016, 10, 601–607. [Google Scholar] [CrossRef]
- Di Somma, M.; Graditi, G.; Heydarian-Forushani, E.; Shafie-khah, M.; Siano, P. Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects. Renew. Energy 2018, 116, 272–287. [Google Scholar] [CrossRef]
- Liu, K.; Zou, C.; Li, K.; Wik, T. Charging Pattern Optimization for Lithium-Ion Batteries With an Electrothermal-Aging Model. IEEE Trans. Ind. Inform. 2018, 14, 5463–5474. [Google Scholar] [CrossRef]
- Ouyang, Q.; Wang, Z.; Liu, K.; Xu, G.; Li, Y. Optimal Charging Control for Lithium-Ion Battery Packs: A Distributed Average Tracking Approach. IEEE Trans. Ind. Inform. 2020, 16, 3430–3438. [Google Scholar] [CrossRef]
- Liu, K.; Hu, X.; Yang, Z.; Xie, Y.; Feng, S. Lithium-ion battery charging management considering economic costs of electrical energy loss and battery degradation. Energy Convers. Manag. 2019, 195, 167–179. [Google Scholar] [CrossRef]
- Soroudi, A. Power System Optimization Modeling in GAMS, 1st ed.; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Montoya, O.D.; Serra, F.M.; Angelo, C.H.D. On the Efficiency in Electrical Networks with AC and DC Operation Technologies: A Comparative Study at the Distribution Stage. Electronics 2020, 9, 1352. [Google Scholar] [CrossRef]
- Simiyu, P.; Xin, A.; Wang, K.; Adwek, G.; Salman, S. Multiterminal Medium Voltage DC Distribution Network Hierarchical Control. Electronics 2020, 9, 506. [Google Scholar] [CrossRef] [Green Version]
- Andrei, N. Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Chung, C.P.; Lee, C.F. Parameters Decision on the Product Characteristics of a Bike Frame. Procedia Soc. Behav. Sci. 2012, 40, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Bocanegra, S.Y.; Montoya, O.D.; Molina-Cabrera, A. Estimación de parámetros en transformadores monofásicos empleando medidas de tensión y corriente. Rev. Uis Ing. 2020, 19, 63–75. [Google Scholar] [CrossRef]
- Porkar, S.; Abbaspour-Tehrani-fard, A.; Poure, P.; Saadate, S. Distribution system planning considering integration of distributed generation and load curtailment options in a competitive electricity market. Electr. Eng. 2010, 93, 23–32. [Google Scholar] [CrossRef]
- Montoya, O.D.; Gil-González, W.; Grisales-Noreña, L. An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach. Ain Shams Eng. J. 2019. [Google Scholar] [CrossRef]
- Krone, D.; Esche, E.; Asprion, N.; Skiborowski, M.; Repke, J.U. Conceptual Design Based on Superstructure Optimization in GAMS with Accurate Thermodynamic Models. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2020; pp. 15–20. [Google Scholar]
- Montoya, O.D.; Gil-González, W.; Rivas-Trujillo, E. Optimal Location-Reallocation of Battery Energy Storage Systems in DC Microgrids. Energies 2020, 13, 2289. [Google Scholar] [CrossRef]
- Naghiloo, A.; Abbaspour, M.; Mohammadi-Ivatloo, B.; Bakhtari, K. GAMS based approach for optimal design and sizing of a pressure retarded osmosis power plant in Bahmanshir river of Iran. Renew. Sustain. Energy Rev. 2015, 52, 1559–1565. [Google Scholar] [CrossRef]
- TIN-LOI, F. Plastic limit analysis problems, mathematical programming and GAMS. Eng. Optim. 1993, 20, 273–286. [Google Scholar] [CrossRef]
- Liu, K.; Hu, X.; Wei, Z.; Li, Y.; Jiang, Y. Modified Gaussian Process Regression Models for Cyclic Capacity Prediction of Lithium-Ion Batteries. IEEE Trans. Transp. Electrif. 2019, 5, 1225–1236. [Google Scholar] [CrossRef]
- Liu, K.; Shang, Y.; Ouyang, Q.; Widanage, W.D. A Data-driven Approach with Uncertainty Quantification for Predicting Future Capacities and Remaining Useful Life of Lithium-ion Battery. IEEE Trans. Ind. Electron. 2020, 1. [Google Scholar] [CrossRef]
- Montoya, O.D.; Gil-González, W. Dynamic active and reactive power compensation in distribution networks with batteries: A day-ahead economic dispatch approach. Comput. Electr. Eng. 2020, 85, 106710. [Google Scholar] [CrossRef]
- Montoya, O.D.; Gil-González, W.; Serra, F.M.; Hernández, J.C.; Molina-Cabrera, A. A Second-Order Cone Programming Reformulation of the Economic Dispatch Problem of BESS for Apparent Power Compensation in AC Distribution Networks. Electronics 2020, 9, 1677. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.; Montoya, O.D.; Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. J. Energy Storage 2020, 29, 101488. [Google Scholar] [CrossRef]
- Gil-González, W.; Montoya, O.D.; Holguín, E.; Garces, A.; Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. J. Energy Storage 2019, 21, 1–8. [Google Scholar] [CrossRef]
- Alzahrani, A.; Shamsi, P.; Dagli, C.; Ferdowsi, M. Solar Irradiance Forecasting Using Deep Neural Networks. Procedia Comput. Sci. 2017, 114, 304–313. [Google Scholar] [CrossRef]
Node i | Node j | () | () | (kW) | (kW) |
---|---|---|---|---|---|
1 | 2 | 0.0922 | 0.0477 | 100 | 60 |
2 | 3 | 0.4930 | 0.2511 | 90 | 40 |
3 | 4 | 0.3660 | 0.1864 | 120 | 80 |
4 | 5 | 0.3811 | 0.1941 | 60 | 30 |
5 | 6 | 0.8190 | 0.7070 | 60 | 20 |
6 | 7 | 0.1872 | 0.6188 | 200 | 100 |
7 | 8 | 1.7114 | 1.2351 | 200 | 100 |
8 | 9 | 1.0300 | 0.7400 | 60 | 20 |
9 | 10 | 1.0400 | 0.7400 | 60 | 20 |
10 | 11 | 0.1966 | 0.0650 | 45 | 30 |
11 | 12 | 0.3744 | 0.1238 | 60 | 35 |
12 | 13 | 1.4680 | 1.1550 | 60 | 35 |
13 | 14 | 0.5416 | 0.7129 | 120 | 80 |
14 | 15 | 0.5910 | 0.5260 | 60 | 10 |
15 | 16 | 0.7463 | 0.5450 | 60 | 20 |
16 | 17 | 1.2890 | 1.7210 | 60 | 20 |
17 | 18 | 0.7320 | 0.5740 | 90 | 40 |
2 | 19 | 0.1640 | 0.1565 | 90 | 40 |
19 | 20 | 1.5042 | 1.3554 | 90 | 40 |
20 | 21 | 0.4095 | 0.4784 | 90 | 40 |
21 | 22 | 0.7089 | 0.9373 | 90 | 40 |
3 | 23 | 0.4512 | 0.3083 | 90 | 50 |
23 | 24 | 0.8980 | 0.7091 | 420 | 200 |
24 | 25 | 0.8960 | 0.7011 | 420 | 200 |
6 | 26 | 0.2030 | 0.1034 | 60 | 25 |
26 | 27 | 0.2842 | 0.1447 | 60 | 25 |
27 | 28 | 1.0590 | 0.9337 | 60 | 20 |
28 | 29 | 0.8042 | 0.7006 | 120 | 70 |
29 | 30 | 0.5075 | 0.2585 | 200 | 600 |
30 | 31 | 0.9744 | 0.9630 | 150 | 70 |
31 | 32 | 0.3105 | 0.3619 | 210 | 100 |
32 | 33 | 0.3410 | 0.5302 | 60 | 40 |
Time (s) | PV (p.u) | PV (p.u) | WT (p.u) | WT (p.u) | Demand (p.u) |
---|---|---|---|---|---|
0.0 | 0 | 0 | 0.633118295 | 0.489955551 | 0.34 |
0.5 | 0 | 0 | 0.629764678 | 0.467954207 | 0.28 |
1.0 | 0 | 0 | 0.607259323 | 0.449443905 | 0.22 |
1.5 | 0 | 0 | 0.609254545 | 0.435019277 | 0.22 |
2.0 | 0 | 0 | 0.605557422 | 0.437220792 | 0.22 |
2.5 | 0 | 0 | 0.630055346 | 0.437621534 | 0.20 |
3.0 | 0 | 0 | 0.684246423 | 0.450949300 | 0.18 |
3.5 | 0 | 0 | 0.758357805 | 0.453259348 | 0.18 |
4.0 | 0 | 0 | 0.783719339 | 0.469610539 | 0.18 |
4.5 | 0 | 0 | 0.815243582 | 0.480546213 | 0.20 |
5.0 | 0 | 0 | 0.790557706 | 0.501783479 | 0.22 |
5.5 | 0 | 0 | 0.738679217 | 0.527600299 | 0.26 |
6.0 | 0 | 0 | 0.744958950 | 0.586555316 | 0.28 |
6.5 | 0 | 0 | 0.718989730 | 0.652552760 | 0.34 |
7.0 | 0.039123365 | 0.026135642 | 0.769603567 | 0.697699990 | 0.40 |
7.5 | 0.045414292 | 0.051715061 | 0.822376817 | 0.774442755 | 0.50 |
8.0 | 0.065587179 | 0.110148398 | 0.826492212 | 0.820205405 | 0.62 |
8.5 | 0.132615282 | 0.263094042 | 0.848620129 | 0.871057775 | 0.68 |
9.0 | 0.236870796 | 0.431175761 | 0.876523598 | 0.876973635 | 0.72 |
9.5 | 0.410356256 | 0.594273035 | 0.904128455 | 0.877065236 | 0.78 |
10.0 | 0.455017818 | 0.730402039 | 0.931213527 | 0.897955131 | 0.84 |
10.5 | 0.542364455 | 0.830347309 | 0.955557477 | 0.903245007 | 0.86 |
11.0 | 0.726440265 | 0.875407050 | 0.965504834 | 0.916903429 | 0.90 |
11.5 | 0.885104984 | 0.898815348 | 0.971037333 | 0.924757605 | 0.92 |
12.0 | 0.924486326 | 0.975683083 | 0.972218577 | 0.942224932 | 0.94 |
12.5 | 1 | 1 | 0.980049847 | 0.949956724 | 0.94 |
13.0 | 0.982041153 | 0.978264398 | 0.981135531 | 0.963773634 | 0.90 |
13.5 | 0.913674689 | 0.790055240 | 0.988644844 | 0.974977461 | 0.84 |
14.0 | 0.829407079 | 0.882557147 | 0.991393173 | 0.986750539 | 0.86 |
14.5 | 0.691912077 | 0.603658738 | 0.998815517 | 0.995058133 | 0.90 |
15.0 | 0.733063295 | 0.606324907 | 1 | 1 | 0.90 |
15.5 | 0.598435064 | 0.357393267 | 0.996070963 | 0.998107341 | 0.90 |
16.0 | 0.501133849 | 0.328035635 | 0.987258076 | 0.997690423 | 0.90 |
16.5 | 0.299821403 | 0.142423488 | 0.976519817 | 0.993076899 | 0.90 |
17.0 | 0.177117518 | 0.142023463 | 0.929542167 | 0.982629597 | 0.90 |
17.5 | 0.062736095 | 0.072956701 | 0.876413965 | 0.972084487 | 0.90 |
18.0 | 0 | 0.019081590 | 0.791155379 | 0.930225756 | 0.86 |
18.5 | 0 | 0.008339287 | 0.691292162 | 0.891253999 | 0.84 |
19.0 | 0.000333920 | 0 | 0.708839248 | 0.781950905 | 0.92 |
19.5 | 0 | 0 | 0.724074349 | 0.660094138 | 1.00 |
20.0 | 0 | 0 | 0.712881960 | 0.682715246 | 0.98 |
20.5 | 0 | 0 | 0.733954043 | 0.686617947 | 0.94 |
21.0 | 0 | 0 | 0.719897641 | 0.681865563 | 0.90 |
21.5 | 0 | 0 | 0.705502389 | 0.717315757 | 0.84 |
22.0 | 0 | 0 | 0.703007456 | 0.718080346 | 0.76 |
22.5 | 0 | 0 | 0.686551618 | 0.726890145 | 0.68 |
23.0 | 0 | 0 | 0.687238555 | 0.734452193 | 0.58 |
23.5 | 0 | 0 | 0.682569771 | 0.739699146 | 0.50 |
Gas Emitted | Chemical Symbol | Amount (lb/MWh) |
---|---|---|
Carbon dioxide | CO | 1000–1700 |
Sulfur dioxide | SO | 0.4–3.0 |
Nitrogen oxides | NO | 10–41 |
Carbon monoxide | CO | 0.4–9.0 |
Method | Nodes (Types) | CO Emissions (lb/Day) |
---|---|---|
Heuristic [32] | 14,559.045 | |
Multiple nodes | 14,541.066 | |
Unique node | 14,544.322 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoya, O.D.; Gil-González, W.; Hernández, J.C. Optimal Selection and Location of BESS Systems in Medium-Voltage Rural Distribution Networks for Minimizing Greenhouse Gas Emissions. Electronics 2020, 9, 2097. https://doi.org/10.3390/electronics9122097
Montoya OD, Gil-González W, Hernández JC. Optimal Selection and Location of BESS Systems in Medium-Voltage Rural Distribution Networks for Minimizing Greenhouse Gas Emissions. Electronics. 2020; 9(12):2097. https://doi.org/10.3390/electronics9122097
Chicago/Turabian StyleMontoya, Oscar Danilo, Walter Gil-González, and Jesus C. Hernández. 2020. "Optimal Selection and Location of BESS Systems in Medium-Voltage Rural Distribution Networks for Minimizing Greenhouse Gas Emissions" Electronics 9, no. 12: 2097. https://doi.org/10.3390/electronics9122097
APA StyleMontoya, O. D., Gil-González, W., & Hernández, J. C. (2020). Optimal Selection and Location of BESS Systems in Medium-Voltage Rural Distribution Networks for Minimizing Greenhouse Gas Emissions. Electronics, 9(12), 2097. https://doi.org/10.3390/electronics9122097