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Abstract: A systematic study concerning the discretization of the angle of incidence in surrogate
models obtained with support vector regression (SVR) is presented. The problem addressed in this
work arises from the dependence of the reflection coefficients on the angle of incidence. While the
direct coefficients are usually stable with the angle of incidence, this is not the case with the
cross-coefficients, which translates this behavior to the crosspolar component of the radiation pattern.
Then, correctly assessing this influence and minimizing radiation pattern distortion allow training
SVR surrogate models per angle of incidence without penalizing accuracy in the prediction of the
far field. The results shown in this work are directly relevant to improving the computational
performance of SVRs applied to reflectarray design since they allow reducing the dimensionality of
the models by generating surrogate models per angle of incidence instead of including the angles of
incidence as input variables. In addition, it highlights the importance of a proper discretization of the
angles of incidence for a correct prediction of the crosspolar pattern for its subsequent optimization,
especially for advanced space applications with tight crosspolar requirements.

Keywords: machine learning; surrogate model; support vector regression (SVR); angle of incidence;
reflectarray antenna

1. Introduction

A recent approach to accelerate the design of reflectarray antennas is the use of machine learning
techniques, such as artificial neural networks (ANN) [1–3], kriging [4] or support vector machines
applied to regression (SVR) [5,6]. These algorithms are employed to obtain surrogate models of
the electromagnetic behavior of the reflectarray unit cell, which is characterized by the matrix of
reflection coefficients. They are obtained by analyzing the cell with a full-wave technique assuming
local periodicity (FW-LP), typically a method of moments (MoM-LP) [7,8]. Then, the FW-LP tool is
employed to generate a number of samples of the reflection coefficients, which are then used to train
the surrogate models. In this way, the FW-LP tool is subsequently substituted by the surrogate model
based on a machine learning algorithm to accelerate computations.

The reflection coefficients depend on several parameters, such as geometry of the unit
cell, substrate characteristics, frequency and angle of incidence of the impinging plane wave.
The reflectarray layout (e.g., element geometry, substrate height or lattice characteristics) can then
be optimized accounting for these parameters. For instance, in [3], the substrate height is an input
variable of the ANN and, in [9], a grating reflector is designed optimizing the length of the dipoles
and thickness of the substrate. In practise, some layout parameters are commonly fixed at the outset,
such as the substrate characteristics, after carrying out preliminary studies of their performance. Then,
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the surrogate model is obtained using the rest of the parameters as input variables to the model. As an
example, in [1,2,4], the frequency and angles of incidence are considered input variables along with
several geometrical features of the unit cell (patch, cross or ring dimensions), while the periodicity and
substrate are fixed.

The number of training samples grows exponentially with the number of input space dimensions
such that a constant sampling density is maintained. As a consequence, the higher is the dimensionality
of the input space, the greater is the workload to obtain the surrogate model. This phenomenon is
known as the curse of dimensionality. It can be ameliorated to a certain extent by employing low
discrepancy sequences instead of randomly generated samples [10]. In any case, it is interesting to
reduce the dimensionality of the model to improve its computational efficiency. An approach to reduce
the dimensionality is to consider the reflection characteristics of the unit cells upon normal incidence
only, such that the angles of incidence are not taken into account in the surrogate model. This approach
works well for the copolar pattern when the design curve presents good angular stability [11–13],
but it may result in a wrong characterization of the crosspolar pattern. Another approach is to obtain
one surrogate model per incidence angle. In this way, the dimensionality is reduced, potentially
obtaining more accurate results for a given angle of incidence and faster trainings at the expense
of handling several models. However, each reflectarray element experiences a different angle of
incidence, and having one model per reflectarray element may deem ineffective the time savings from
the reduced dimensionality. Instead, the number of models may be reduced by grouping a number
of reflectarray elements under the same angle of incidence. This was the strategy followed in [5,14],
showing a high degree of accuracy with regard to the FW-LP simulation at the radiation pattern level
using the real angles of incidence. In fact, it has been shown that reducing the SVR surrogate model
dimensionality following that methodology is more competitive than to include the angle of incidence
as input variables to the model [15].

However, there are no systematic studies that assess the effect of the discretization of the angles
of incidence on the radiation patterns. Indeed, the aforementioned reduction in dimensionality is
based on approximating the real angle of incidence experienced by each reflectarray element with
a set of Ma angles of incidence pairs such that Ma is considerably lower than the total number of
reflectarray elements. Thus, depending on the granularity of the discretization, the radiation pattern
may present distortions that invalidate the analysis with this technique. This may be important for
large reflectarrays for space applications with stringent cross-polarization requirements [14].

In this work, a systematic study of the influence of the angle of incidence discretization in
reflectarray analysis with SVR is presented. Several strategies for the discretization of the angles
of incidence are assessed and a proper metric is devised to select the best discretizations. To this
end, two geometrical features of a reflectarray unit cell are used as input variables of the SVR such
that dual-linear polarized designs may be obtained. In all cases, the training process is based on
cross-validation and an efficient grid search to find the optimum model. In all instances, the errors are
computed with regard to the reference simulations provided by a FW-LP tool employed to generate the
electromagnetic samples and analyze the reflectarray. The results obtained in this work are valuable
for the practical design of reflectarray antennas.

2. Problem Statement

For the purposes of this work, we consider the reflectarray single-offset configuration shown
in Figure 1. The antenna is comprised of a flat panel with an array of K reflecting elements whose
electromagnetic behavior is characterized by the general complex matrix of reflection coefficients:

Rk =

(
ρxx,k ρxy,k

ρyx,k ρyy,k

)
(1)
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with k = 1, 2, . . . , K. This matrix relates the tangential incident and reflected fields in Cartesian
basis. Thus, if the feed generates an incident field ~Einc(xk, yk) = Einc,x(xk, yk)x̂ + Einc,y(xk, yk)ŷ at
each reflectarray element with coordinates (xk, yk) (see Figure 1), the reflected field ~Eref(xk, yk) =

Eref,x(xk, yk)x̂ + Eref,y(xk, yk)ŷ is related to the incident field through the equality ~Eref(xk, yk) =

Rk~Einc(xk, yk). In (1), ρxx and ρyy are known as the direct coefficients and control the shape of the
copolar pattern. ρxy and ρyx are the cross-coefficients and they represent an important contribution
to the crosspolar pattern. The computation of (1) for each individual element allows to obtain the
reflection characteristic of the entire reflectarray panel. By also knowing the incident field generated by
the feed (~Einc(xk, yk)), it allows calculating the reflected field on the reflectarray surface (~Eref(xk, yk)),
from which the radiation pattern may be readily computed [16]. Thus, a correct characterization of the
complete radiation pattern requires modeling the full reflection coefficient matrix.

θk

ϕ
k

Feed phase center

𝑑𝑘

®𝑟 𝑓

𝑘-th element
at (𝑥𝑘 , 𝑦𝑘 )

x̂

ŷ

ẑ

Figure 1. Sketch of a single-offset reflectarray configuration showing the definition of the angle of
incidence (θ, ϕ) experienced by the kth element. The angle of incidence depends on the feed phase
center position~r f and the element coordinates (xk, yy). For the kth element shown in this example,
the value of ϕk is negative since yk < 0.

The reflection coefficients are complex numbers and they are computed with a FW-LP tool [8,17].
A correct computation takes into account the geometrical features of the cell, substrate characteristics,
periodicity, frequency and angles of incidence. The angle of incidence for the kth element (θk, ϕk)

is defined in Figure 1 and depends on the feed phase center position~r f and the coordinates of the
element (xk, yk). As a reference, Figure 2 shows the angle of incidence of a rectangular reflectarray for
space applications [18] comprised of 86× 82 elements, a periodicity of 12 mm in both dimensions and
with the feed at coordinates~r f = (−358, 0, 1070)mm. In general, the range of variation of the angle
of incidence is θ ∈ (0°, 90°) and ϕ ∈ (−180°, 180°). However, θ is usually quite smaller than 90° and
would only attain that value for the case of an infinitely large antenna, which is not a realistic case.
For example, the maximum value of θ in [1] is θmax = 65°, while for the example shown in Figure 2 is
θmax = 43°. Furthermore, if the employed unit cell presents some symmetry, it can also be exploited to
reduce the range of ϕ according to that symmetry.
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Figure 2. Angle of incidence in degrees seen from each reflectarray element of an impinging wave
coming from the feed: (a) θ; and (b) ϕ.

The importance of using the real angle of incidence at each element for reflectarray analysis has
been known for many years and used in the design of reflectarray antennas [7,19–21]. However,
some works in the literature employ normal incidence for the design of reflectarray antennas
(e.g., [11–13]). This approach works adequately for the copolar pattern when the phase-shift provided
by the cell (i.e., the phase of the direct coefficients ρxx and/or ρyy) has a good angular stability.
Other works [22] also employ discretization of the angles of incidence for the direct coefficients.
However, the discretized angular range is very limited and no details on its influence are provided.
Moreover, the cross-coefficients present a highly non-linear behavior with the angle of incidence,
and thus the crosspolar pattern would be significantly affected by a poor discretization of the angle of
incidence. This general behavior is expected for common reflectarray unit cells in the literature.

This effect is shown for a few typical reflectarray unit cells at different frequencies and for different
angles of incidence. The description of the unit cells as well as the results are shown in Figure 3.
The electromagnetic characteristics of the unit cells are gathered in Table 1. The results include the
response of a direct coefficient (ρyy) and a cross-coefficient (ρyx) for oblique incidence (for normal
incidence (θ = 0°), the magnitude of the cross-coefficient would be almost zero in linear scale for the
cells with parallel dipoles). The differences between the behavior of the direct and cross-coefficients
can be clearly seen. On the one hand, the phase response of the direct coefficient is stable for different
angles of incidence, while its magnitude is very stable up to θ ≈ 25°, when the losses significantly
increase at the resonant points for larger angles. On the other hand, the angle of incidence affects more
the cross-coefficient, with more variation in the phase and specially in the magnitude, which varies
several orders of magnitude. The exact behavior of the reflection coefficients varies from one unit
cell to another. However, the general expected behavior is for the phase of the direct coefficients to
have good angular stability and for the losses to be as small as possible. This means that using only
normal incidence-based curves for reflectarray design might achieve success in predicting the copolar
pattern, although slight distortions may appear. Nevertheless, the cross-coefficients are still highly
non-linear and strongly vary with the angle of incidence, as shown in Figure 3. As a consequence,
the correct characterization of the crosspolar pattern is affected due to the highly variation of the
cross-coefficients with the angle of incidence. This also means that simulations of reflectarray unit cells
for the optimization of the crosspolar pattern must include the angle of incidence in the analysis [16,23].
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Figure 3. Electromagnetic response of several unit cells for the direct coefficient ρyy and the
cross-coefficient ρyx: (a) single patch; (b) two stacked patches; (c) three parallel dipoles orientated in the
ŷ axis; and (d) two sets of four parallel dipoles shifted half a period from each other (Sa = Sb = 3.9 mm
and dipole widths of 0.5 mm). The results are for oblique incidence at (θ = 1°, ϕ = 1°) (blue solid
line), (θ = 10°, ϕ = 15°) (red dashed line), (θ = 25°, ϕ = 40°) (black dashed-dotted line) and
(θ = 40°, ϕ = 50°) (green dotted line). Shared characteristics of the unit cells for the electromagnetic
response shown here are described in Table 1. Some of these unit cells have been employed in other
works for the design of reflectarray antennas. For instance, (b) is taken from [24], (c) from [25] and
(d) from [26]. The results for a design using unit cell (a) are unpublished.
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In light of the previous results, it is clear that a correct characterization of the full matrix of
reflection coefficients needs to consider the effect of the angles of incidence, which specially affects the
cross-coefficients. Thus, we analyze a number of different discretizations of the angles of incidence
to assess their effect in the prediction of the radiation pattern. To that end, we choose the unit cell
comprised of two sets of parallel dipoles shifted half a period from one another, depicted and described
in Figure 3d. The reflectarray configuration is the same used to generate Figure 2, i.e., a planar
rectangular reflectarray comprised of 86× 82 elements, with a periodicity of 12 mm in both dimensions
and the feed placed in~r f = (−358, 0, 1070)mm. The discretization study is carried out in Section 4,
while, in Section 3, we review the surrogate modeling with SVR.

Table 1. Characteristics of the unit cells shown in Figure 3.

Unit Cell Frequency
Periodicity
(px = py)

Substrate Characteristics

Relative Permittivity Loss Tangent Thickness

Figure 3a 28 GHz
4.29 mm

εr = 2.3 tan δ = 0.005 h = 0.762 mm(0.4λ0)

Figure 3b 17 GHz
8.82 mm εr1 = 3 tan δ1 = 0.001 h1 = 0.762 mm
(0.5λ0) εr2 = 3 tan δ2 = 0.001 h2 = 1.524 mm

Figure 3c 29 GHz
5.0 mm

εr = 2.3 tan δ = 0.005 h = 0.762 mm(0.48λ0)

Figure 3d 11.85 GHz
12.0 mm εr1 = 2.55 tan δ1 = 0.0009 h1 = 2.363 mm
(0.47λ0) εr2 = 2.17 tan δ2 = 0.0009 h2 = 1.500 mm

3. Surrogate Modeling Based on SVR

In this Section, we address the SVR modeling of the unit cell and provide figures of merit for an
optimal training process. We also address the sources of error in the reflectarray analysis related to the
surrogate modeling. In this work, we use the LibSVM library [27] to generate the surrogate models.

3.1. Model Definition

SVR consists in the application of support vector machines (SVMs) to a regression problem.
In this case, the regression consists in obtaining models (or functions) that estimate the value of the
reflection coefficients in (1) depending on the value of a given set of input features, noted in general as
~x. The vector ~x depends on the considered input space. In the present work, we consider a 2D input
space with two geometrical features of the unit cell, Tx and Ty (see Figure 3d), which allow performing
dual-linear polarized reflectarray designs. Thus, we have ~x =

(
Tx, Ty

)
.

Since the reflection coefficients are complex numbers and SVR was conceived to estimate
real-valued functions, at least eight SVR models are necessary to characterize (1). Here we produce
ten SVR models to characterize each matrix of reflection coefficients: one model for the real part of
each ρ coefficient, another model for the imaginary part of each ρ coefficient, and two extra models
for the magnitude of the direct coefficients (|ρxx| and

∣∣ρyy
∣∣). This increases the accuracy of the direct

coefficients magnitude models [5]. In the rest of this subsection, we use the symbol ρ to briefly note a
reflection coefficient in (1), or its real or imaginary part, or its magnitude.

In the problem at hand, the SVR uses a training set comprised of Nr inputs (~xi ∈ χ ⊆ R2) and
outputs (ρi ∈ R), T = {~xi, ρi}i=1, 2, ..., Nr

. The training set is obtained with a MoM-LP tool [28] to
randomly generate samples of the reflection coefficients of (1). Then, the SVR training allows obtaining
a function f that estimates the value of ρ, ρ̃, corresponding to any new input ~x ∈ χ:

ρ̃ = f (~x) =
Ns

∑
n=1

[(
α−n − α+n

)
K(~xn,~x)

]
+ b, (2)
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where Ns is the number of support vectors; α−n and α+n are the optimal Lagrange multipliers; ~xn are
the support vectors; K(· , ·) is the kernel function; and b is the offset. In this work, we use a Gaussian
kernel due to its interesting properties, among which it is remarkable that it assures, when it is possible,
a smooth and simple regression function [29]. The Gaussian kernel follows the equation:

K(~x,~x ′) = exp
(
−γ ‖~x−~x ′‖2

)
, (3)

where γ is a tunable parameter and ‖ · ‖ denotes the `2-norm. The employed LibSVM library performs
a sequential minimal optimization [30] to obtain, for a given value of tunable parameters C and
γ, the regression parameters from equation (2), i.e., Ns, α−n , α+n , ~xn and b, which then can be used
along a new input vector ~x to obtain the estimated output predicted by the surrogate model. Thus,
each surrogate model estimates the value of the reflection coefficient ρ according to its corresponding
regression function f . The values of tunable parameters C and γ are found using a grid search on the
(C, γ) space in order to minimize the validation error [5].

The function f of the SVR model is chosen to minimize a regularized risk functional that
considers the empirical errors (weighted by a tunable parameter C) and the flatness of f (related
to the generalization properties of the model). The empirical errors may be accounted by different
types of loss functions. In this work, we use the ε-insensitive loss function since it requires a smaller
value of support vectors than other loss functions [29]. The ε-insensitive loss function does not penalize
regression errors below a given ε ≥ 0. Further details on the regularized risk functional and its relation
to parameters C and ε for the present regression problem may be consulted in [5]. The parameters
C, ε and γ determine the shape of the regression function f and they must be selected carefully to
achieve an accurate estimation of new outputs. In this work, the selection of the optimal parameters C
and γ follows an efficient grid search, in the (C, γ) space, in addition to a cross-validation procedure,
as detailed in [5]. To implement the cross-validation procedure, we divide the whole dataset, composed
by N samples, into three disjoint subsets: training (Nr samples), validation (Nv samples) and test
(Nt samples), such that Nr + Nv + Nt = N. This process implies that the sets employed to compute the
error during the selection of C and γ (validation) and check the accuracy of the produced model (test)
are not used to train the SVR. Thus, better generalization properties of the regression are achieved.
In addition, we use the following relative error to measure the accuracy of the model:

RESVR = 20 log10

(
‖~e‖
‖~ρ‖

)
(dB), (4)

where ~ρ = (ρ1, ρ2, . . . , ρM) is a vector of M samples of the actual output of the MoM-LP and
~e = (e1, e2, . . . , eM) is a vector of M samples of the difference between the predicted output and
the real MoM-LP output, i.e., ei = ρi − f (~xi), i = 1, 2, . . . , M, where f is defined in (2). Note that the
relative error of the model will decrease (i.e., its accuracy increases) as the number of training samples
Nr increases.

In addition, ε is dynamically calculated as a function of the desired error, as detailed in [5]. For this
work, the desired error is set to −40 dB for the real and imaginary parts of the reflection coefficients
and −80 dB for the magnitude of the direct coefficients.

3.2. Sources of Error in the Reflectarray Analysis Due to the SVR Modeling

When employing the SVR-based models to analyze a reflectarray antenna there are two sources of
error when compared to FW-LP simulations. First, we have the inherent error of the SVR models which
directly affects the accuracy in the predicted reflection coefficients and it can be measured by means of
(4). In addition, this error eventually affects the accuracy of the radiation pattern prediction. Second,
if the reflectarray elements are analyzed considering a limited set of angles of incidence, then this
angle discretization (discussed in Section 4) affects the accuracy of the radiation pattern prediction.
Therefore, to analyze how the angle discretization affects the prediction of the radiation patterns when
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using SVR surrogate models, it is necessary to achieve a negligible model error which requires the use
of a large enough number of training samples. In this way, the discrepancies between the reference
patterns and the patterns predicted by the SVR will be mostly due to the discretization of the angles of
incidence. As a consequence, the error over the radiation pattern may be considered as a proper metric
to select the most accurate angle discretization.

4. Systematic Study of the Influence of the Discretization of the Angles of Incidence

In this Section, we assess several strategies for the discretization of the angles of incidence. A study
is carried out using the same large antenna described in Section 2, with a contoured beam for space
applications [18].

4.1. Discretization of the Angles of Incidence

The angle of incidence at each reflectarray element is shown in Figure 2. The range of variation of
the angle of incidence for this example is θ ∈ (0°, 43°) and ϕ ∈ (−180°, 180°). Note that they are open
intervals due the discretization of the reflectarray surface in unit cells. In addition, it can be observed
that, for a given reflectarray geometry, not all possible combinations of (θ, ϕ) exist. For small values of
θ the whole ϕ range is attained, while for values of θ close to the maximum the range of ϕ is reduced
to angles close to 0°. This is true for single-offset configurations such as the one treated in this work.
Please note that centered configurations have the full ϕ range for all possible θ values.

Table 2 gathers the 21 discretizations that are studied in this work. These discretizations might
be classified into three different types: normal incidence (denoted by NI), uniform discretizations
in θ (U type) and non-uniform discretizations in θ (NU type). There is a special case of NU type in
which all the reflectarray elements have their own models with the real angle of incidence. For the
rest of the cases, ϕ is discretized uniformly in steps of 10°, 20° or 30° in order to assess the effect of
the discretization of ϕ. In addition, some of the non-uniform discretizations of θ present a very coarse
discretization, having only one range for the first 25° (Discretizations #7–#12 in Table 2). This is done
since the response of the magnitude of the direct coefficients is stable in that range (see Figure 3).
Furthermore, the number of (θ, ϕ) pairs only include the combinations that exist for the geometry
described in Section 2 and have been obtained without considering symmetries.

The discretizations are generated as follows. The initial angle of the first interval is 0°, both in
θ and ϕ. Then, for the uniform discretizations, the intervals are generated in steps of ∆θ and ±∆ϕ.
For each interval generated in this way, the selected training angle for θ is given in the column “θ set”
and for ϕ is the midpoint of the corresponding interval. In the case of non-uniform discretizations in
θ, each interval is defined by the midpoints shown in the column “θ set”. As an example, consider
Discretization #1, with ∆θ = 5° and ∆ϕ = 10°. For the interval θ × ϕ = (0°, 5°)× (0°, 10°), the trained
angle would be (θ, ϕ) = (2°, 5°). Any pair of angles that lie in that interval uses the models trained
for (2°, 5°) to predict the matrix of reflection coefficients. Figure 4 shows an example of uniform and
non-uniform discretizations in θ. The uniform discretization corresponds to Discretizations #4–#6 in
Table 2, while the non-uniform discretization corresponds to Discretizations #7–#9 in Table 2.

Finally, it is worth mentioning that some geometries used in previous works are considered in
this study as well. In particular, the discretization corresponding to [14,15,31] is Discretization #19,
and for [32] is Discretization #5.
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Table 2. Data regarding the discretization of the angles of incidence. Type refers to the discretization of
θ (N, normal incidence; U, uniform; NU, non-uniform).

# Type ∆θ (°) θ Set (°) ∆ϕ (°) (θ,ϕ) Pairs

0 NI - {0} - 1
1 U 5 {2, 7, 12, 17, 22, 27, 32, 37} 10 190
2 U 5 {2, 7, 12, 17, 22, 27, 32, 37} 20 98
3 U 5 {2, 7, 12, 17, 22, 27, 32, 37} 30 68
4 U 10 {5, 15, 25, 35} 10 102
5 U 10 {5, 15, 25, 35} 20 52
6 U 10 {5, 15, 25, 35} 30 34
7 NU - {12, 29, 36} 10 64
8 NU - {12, 29, 36} 20 34
9 NU - {12, 29, 36} 30 24

10 NU - {12, 27, 32, 37} 10 74
11 NU - {12, 27, 32, 37} 20 38
12 NU - {12, 27, 32, 37} 30 28
13 NU - {7, 20, 29, 36} 10 90
14 NU - {7, 20, 29, 36} 20 52
15 NU - {7, 20, 29, 36} 30 34
16 NU - {7, 20, 27, 32, 37} 10 100
17 NU - {7, 20, 27, 32, 37} 20 52
18 NU - {7, 20, 27, 32, 37} 30 38
19 NU - {5, 10, 17, 23, 29, 35, 40} 10 152
20 NU Surrogate models for all reflectarray elements 7052
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Figure 4. Examples of: (a) uniform discretization in θ (Discretizations #4-#6 in Table 2); and
(b) non-uniform discretization (Discretizations #7-#9 in Table 2).

4.2. Testing Conditions for the Accuracy of the Discretizations

With the aim of obtaining reliable results, the discretizations shown in Table 2 are tested with a
very large, contoured-beam reflectarray for space applications, where the correct prediction of both
the copolar and crosspolar patterns is important. This type of radiation pattern is more sensitive to
errors than pencil beams, and this is the main reason for choosing it. The same reflectarray described
in Section 2 is employed here. The feed is modeled with a cosq θ function, generating an illumination
taper of −20.9 dB at the working frequency (11.85 GHz). A unit cell consisting of two sets of four
dipoles shifted half a period from one another is chosen for this study. This unit cell is shown and
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described in Figure 3d. In addition, since the feed is placed in the XZ plane, the number of (θ, ϕ)

pairs that are trained is halved with regard to the number shown in the last column of Table 2 by
applying a symmetry in ϕ. For the radiation pattern, the same European coverage as in [18] is selected.
It corresponds to an antenna placed on a satellite in geostationary orbit at 10° E longitude.

The radiation pattern us computed in dual-linear polarization following Prado et al [16] and using
a grid of 512× 512 points in the UV spectral domain. With this methodology and the periodicity of the
reflectarray, it gives a total of 185,269 points in the visible region where the copolar and crosspolar
patterns are computed in dual-linear polarization. The results obtained with the SVRs are compared
with simulations using a full-wave analysis based on the MoM-LP of [28] and considering the real
angles of incidence, calculating the relative error in the far field as:

REFF = 100 · ‖GMoM-LP − GSVR‖
‖GMoM-LP‖

(%), (5)

where G is either the copolar or the crosspolar gain pattern. Please note that by using the `2-norm
in (5) all the points at which the far field is computed are taken into account for the calculation of the
relative error.

The surrogate models using SVR are trained following the guidelines detailed in [5] to obtain the
optimum C, γ and ε parameters using an efficient cross-validation procedure. The training was carried
out with N = 2500 samples per angle of incidence, which are divided in Nr = 1750 training samples
and Nv = Nt = 375 samples for validation and test. Once the SVR models are obtained, the relative
error over the test set as defined in (4) is smaller than −35 dB for the real and imaginary parts of the
reflection coefficients and smaller than −80 dB for the magnitude of the direct coefficients for all the
considered discretizations (see Table 2). As a consequence, the effect of the SVR model error over the
radiation pattern is negligible and the radiation pattern accuracy, given by (5), is itself an adequate
measurement of the reliability of the angle discretization (see Section 3.2).

4.3. Analysis of the Results

Figure 5 shows the relative error for the copolar and crosspolar patterns calculated with (5) for
the 21 discretizations of Table 2. The abscissa represents the total number of support vectors taking
into account all the pairs of angles of incidence. In addition, only Figure 5b is tagged in order not
to overload the figure, but clusters of points are grouped in colored ellipses for easy identifications.
As can be seen, the error for the copolar pattern is very low, always below 1% with the exception
of the normal incidence discretization, whose error is close to 1.6%. In addition, the error when all
reflectarray elements have their own models is 0.2%. In this case, since the SVR models consider
the real angle of incidence, the error is exclusively produced by the inherent SVR modeling and
serves as benchmark for the rest. Attending to the copolar pattern error, we can distinguish between
three groups of discretizations. First, the normal incidence, with the highest error of 1.6%. Then,
six discretizations with an error around 0.7%, corresponding to Discretizations #7–#12. This group
presents a coarse discretization of θ, with a first range grouping all elements with θ ∈ (0°, 25°). The rest
of the discretizations show an error for the copolar pattern around 0.3%. This demonstrates that the
copolar pattern is robust against the discretization of the angle of incidence, even when only employing
normal incidence curves for reflectarray design. Finally, note the small sensitivity of the error to the
discretization in ϕ.

The crosspolar pattern is more sensitive to the discretization and provides more relevant
information. As can be seen, the crosspolar pattern is greatly affected by the coarse discretization of
θ for normal incidence and the group of Discretizations #7–#12. In the latter case, the step in ϕ does
not significantly alter the relative error. Once θ is properly discretized, the error drops significantly.
There is another group comprised of discretizations with ∆ϕ = 30°, with a relative error around 20%.
For finer discretizations of ϕ, the relative error only diminishes slightly while considerably increasing
the total number of (θ, ϕ) pairs, as in Discretizations #1, #19 and #20. The lowest error is achieved
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when all reflectarray elements have their own model (#20), with a relative error of 0.97%. A good
trade-off between the number of pairs and the relative error is given by Discretizations #5, #14 and
#17, with 52 pairs in the three cases. Meanwhile, Discretization #19 is the most accurate among the
eligible discretizations. Note that Discretization #20 (indeed, the most accurate) is only considered for
reference, but it is not an eligible discretization since it presents too many angles of incidence.
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Figure 5. Relative error for the discretizations of the angles of incidence shown in Table 2 for the
(a) copolar and (b) crosspolar patterns. There is a direct correspondence between the samples in both
subfigures in the abscissa axis. Clusters of points are grouped in colored ellipses for easy identifications
that share some common characteristics: dashed blue are coarse discretizations with a first θ range of 25°;
dotted orange are finer discretizations in θ with a step of ∆ϕ = 30° in ϕ; solid green are discretizations
with a trade-off between relative error and low number of support vectors per coefficients; and dashed
dotted pink are discretizations with low error and a moderate number of support vectors per coefficient.

Figure 6a shows the relative error versus the training time plus the time it takes to generate the
training patterns. The time was measured in a workstation with two Intel Xeon E5-2650v3 CPU at
2.3 GHz and 256 GB of RAM. The sets with bad performance and with an unacceptable number of angle
pairs are not shown. The arrangement between sets is similar to that shown in Figure 5. The sets of
Discretizations #5 and #14 are slightly faster to train than Discretization #17, but they are still clustered
together. The speed-up in reflectarray analysis (Sa) vs. the relative error for the crosspolar pattern is
shown in Figure 6b. This acceleration factor is calculated as:

Sa =
tan. MoM-LP

tan. SVR
, (6)
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where tan. MoM-LP is the mean time that takes the MoM-LP to analyze a number of unit cells and tan. SVR

is the mean time that takes the SVR-based model to analyze the same number of unit cells. All SVR
present a similar speed-up. This happens due to the fact that, when analyzing the reflectarray, for each
element only one (θ, ϕ) pair is used, and it turns out that the number of support vectors per coefficient
and angle of incidence is approximately the same for all 2D SVR shown in Table 2.
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Figure 6. Relative error of the crosspolar pattern for the discretizations of the angles of incidence shown
in Table 2 versus: (a) the training time, ttrain, with the time it takes to generate the training patterns,
tgen. pat; and (b) the analysis speed-up. Times were measured in parallel mode. The same cluster of
points as in Figure 5 are kept here for easy identification.

In light of these results, Discretization #19 is the best since it presents the lowest error in the
prediction of the crosspolar pattern while having an acceptable number of (θ, ϕ) pairs. In addition,
Discretization #14 presents a good trade-off between computational efficiency and the achieved error.
These two discretizations are selected for a comparison with MoM-LP simulations in the following
section to visually assess their effect in the radiation pattern.

4.4. Further Discussion

From the results shown in Figures 5 and 6, a few conclusions may be drawn. First, the copolar
pattern is very robust against coarse discretizations of the angles of incidence, as shown in Figure 5a,
where all the relative errors are below 1.7%. This is one of the reasons normal incidence-based designs
usually work for the copolar pattern. The reason behind lies in the stability of the phase-shift curve
of the direct reflection coefficients (see Figure 3), which is mainly responsible for the shape of the
copolar pattern. However, this is not true for the crosspolar pattern, as shown in Figure 5b. In this case,
the cross-coefficients present more variation with the angle of incidence (as shown in Figure 3), and,
by not capturing this behavior with a finer discretization of θ, the crosspolar pattern will present a
higher relative error. Thus, the second conclusion is that, to have a low relative error in the crosspolar
pattern, a proper discretization of θ is necessary (as well as of ϕ).
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Finally, and as a rule of thumb, a uniform discretization in θ with steps ∆θ between 5° and 10°
and in ϕ with steps ∆ϕ between 10° and 20° is enough, choosing the smaller values if more accuracy
is necessary. Attending to Figure 5 and Table 2, choosing ∆θ = 5° and ∆ϕ = 10° is equivalent
to Discretization #19, while choosing ∆θ = 10° and ∆ϕ = 20° is equivalent to Discretization #14.
These values guarantee acceptable errors in the prediction of the radiation patterns, as shown in
Section 5.

5. Effect of the Discretization on Several Radiation Patterns

According to the study carried out in Section 4, Discretization #19 (see Table 2) was selected
because it presented the lowest error with an acceptable number of (θ, ϕ) pairs. In addition,
Discretization #14 was also selected as a trade-off between computational efficiency and the
achieved error. Table 3 summarizes the results of the achieved test error and training time for both
discretizations. The average test error takes into account the error for all the angle of incidence pairs.
As can be seen, both discretizations present similar test errors for the prediction of the reflection
coefficients. This means that the differences in errors in the prediction of the radiation patterns are due
to the discretization of the angles of incidence and not to the SVR models per se.

Table 3. Average relative error over the test set and training time of the SVR model with Nr = 0.7N for
each output variable. N for Discretization #14 is 65,000, while for 2D SVR Discretization #19 is 190,000.
The average test error RESVR is in dB while the training time ttrain is in seconds.

SVR Variable |ρxx|
∣∣ρyy

∣∣ Re{ρxx} Im{ρxx} Re
{

ρxy
}

Im
{

ρxy
}

Re
{

ρyx
}

Im
{

ρyx
}

Re
{

ρyy
}

Im
{

ρyy
}

#14 RESVR −81.7 −82.0 −38.1 −38.5 −39.2 −38.6 −38.3 −38.4 −38.6 −38.7

#19 RESVR −82.4 −82.5 −38.1 −38.5 −39.2 −38.7 −38.2 −38.3 −38.6 −38.7

#14 ttrain 645 689 1 019 1 027 916 978 990 1 192 838 961

#19 ttrain 1 833 2 122 3 067 3 175 2 799 3 044 2 985 3 586 2 457 2 823

To graphically compare the different approaches, three radiation patterns are considered using
the same antenna optics described in Section 4.2:

• Pencil beam pattern in boresight direction.
• Shaped-beam reflectarray with a sectored beam pattern in azimuth and a squared-cosecant pattern

in elevation. This radiation pattern presents a dynamic range in the coverage zone of almost 15 dB
in elevation, where the copolar component has to smoothly decrease over an angular span of 50°.

• Contoured beam with European coverage for direct-to-home (DTH) applications. This kind of
application has very tight cross-polarization requirements. Thus, it is necessary to accurately
predict the crosspolar pattern. This is the same radiation pattern considered in previous sections.

For the three cases, a dual-linear reflectarray is designed following the steps detailed in [31].
Please note that, according to Figure 1, the vertical polarization (V) corresponds to the field aligned to
the x̂ axis. In addition, the following tools are compared. The MoM-LP serves as the baseline. Then, in
addition to Discretizations #14 and #19, Discretization #0, which corresponds to the normal incidence
model, is also compared for the pencil and shaped-beam patterns.

For the pencil beam pattern, Figure 7 shows the main cut for ϕ = 90° for the copolar and crosspolar
components of polarization V. The reference is the simulation performed with the MoM-LP tool, and it
is compared with Discretizations #0, #14 and #19 (see Table 2). The simulation of the copolar pattern
shows that all approaches give very similar results. In this case, there are some discrepancies for the
normal incidence SVR model (Discretization #0) in some nulls (see the inset), which are not as deep
as the ones predicted by the rest of SVR models. However, this model presents serious discrepancies
in the prediction of the crosspolar pattern, giving a maximum value that is several dB below the real
value. However, the other SVR models present a higher degree of accuracy with regard to the MoM-LP
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simulation. As expected, Discretization #19 presents a higher degree of accuracy for the prediction of
the crosspolar pattern than Discretization #14.
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Figure 7. Main cut of a pencil beam (ϕ = 90°) for the (a) copolar and (b) crosspolar radiation pattern
for polarization V comparing the MoM-LP and SVR predictions.

Figure 8 shows the main cuts for the radiation pattern with squared-cosecant and sectored
beams. The MoM-LP simulation is compared with the same SVR models as in the previous example
(Discretizations #0, #14 and #19). The copolar pattern is predicted with a high degree of accuracy by the
SVR Discretizations #14 and #19. However, the normal incidence model (Discretization #0) presents a
ripple of around 5 dB in the coverage area in the same cut, but not in the cut in azimuth, where all
models are very accurate. The SVR Discretization #0 presents the largest deviation with regard to
the MoM-LP simulation, while the SVR Discretizations #14 and #19 present better accuracy than the
normal incidence model, especially in the zone of maximum cross-polarization. Similar results were
obtained for polarization H.
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Figure 8. Main cuts for the copolar and crosspolar radiation pattern with (a) squared-cosecant
pattern in elevation and (b) sectored beam in azimuth for polarization V comparing the MoM-LP and
SVR predictions.

Figure 9 shows, for polarization V, the radiation pattern for the very large reflectarray with
European coverage, comparing the MoM-LP simulation and the SVR Discretizations #14 and #19
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predictions. As in the previous case, the accuracy in the prediction of the copolar pattern for both SVR is
very high, with very slight discrepancies for the 0 dBi curves and below. Again, the SVR Discretization
#19 is better for the prediction of the crosspolar pattern than SVR Discretization #14. However,
both SVRs present high accuracy for the high levels of the crosspolar pattern. A 2D discretization such
as Discretizations #14 may be employed, offering a similar accuracy in the copolar pattern, and with
reasonable results in the critical parts of the crosspolar pattern (i.e., the areas with the highest gain).
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Figure 9. Comparison of the MoM-LP simulation and SVR predictions for the (a) copolar and
(b) crosspolar patterns for polarization V of a very large reflectarray with European coverage for
DTH application.

Finally, Table 4 summarizes the errors obtained for the three radiation patterns for the different
SVR models. As can be seen, the SVR Discretizations #14 and #19 offer lower error in the copolar
pattern. The model for normal incidence presents an acceptable error for the copolar pattern but fails
to predict the crosspolar pattern. In light of these results, it is clear that a proper discretization of the
angles of incidence is necessary to obtain a good prediction of the crosspolar pattern. This is relevant
for those applications in which the optimization of the cross-polarization performance is important.

Table 4. Cumulative relative errors (%) in the prediction of the three radiation patterns using different
SVR models for the copolar (CP) and crosspolar (XP) patterns.

Discretization Pencil Beam Shaped-Beam Contoured-Beam

CP XP CP XP CP XP

#0 1.02 78.13 2.54 82.18 1.63 80.52

#14 0.11 7.20 0.91 8.32 0.36 11.54

#19 0.21 2.14 0.91 3.47 0.51 4.00

6. Conclusions

In this study, we carried out a systematic investigation on how the discretization of the angles
of incidence in reflectarray antennas affects the prediction of the radiation patterns. This study was
applied to surrogate models of the reflectarray unit cell using support vector regression (SVR). As a
baseline, simulations considering the real angle of incidence at each reflectarray element and a method
of moments based on local periodicity (MoM-LP) were considered. The figure of merit was the relative
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error between the SVR prediction and MoM-LP simulation of the radiation pattern, considering both
the copolar and crosspolar components in dual-linear polarized designs.

The results of this study showed that, in addition to the great stability of the copolar radiation
pattern with the angle of incidence, the crosspolar component is very sensitive to the discretization
of the angle of incidence. The physical explanation for this phenomenon lies in the electromagnetic
response of the unit cell, i.e., the reflection coefficients, and their relation to the far field. On the one
hand, the copolar pattern mainly depends on the direct coefficients (ρxx and ρyy), whose magnitude
and phase are usually very stable with the angle of incidence of the impinging plane wave. As a
consequence, the copolar pattern will be barely affected by the discretization of the angles of incidence.
In fact, even considering normal incidence only, the cumulative error in the copolar pattern is less
than 3%. This is the reason normal incidence curves are usually employed in the literature to perform
reflectarray copolar design.

On the other hand, the crosspolar pattern depends on the four reflection coefficients, including the
cross-coefficients (ρxy and ρyx). It was shown that the cross-coefficients strongly depend on the angles
of incidence, and this dependence is directly translated into the crosspolar pattern. Thus, to correctly
predict the crosspolar pattern, the discretization of the angles of incidence has to conveniently capture
the behavior of the cross-coefficients. In this study, it was shown that a discretization in θ, with steps
between 5° and 10°, and in ϕ between 10° and 20° is enough to properly predict the crosspolar pattern
with a high degree of accuracy.

The results presented here are valuable as guidelines for the development of efficient tools for
the design of reflectarray antennas. The main conclusions reached comprise two aspects. First, due to
the curse of the dimensionality [15], it is more competitive to generate surrogate models per angle of
incidence, as done in this work, rather than to include the angles of incidence as input variables and
thus having models with higher dimensionality. However, the discretization of the angles of incidence
may introduce distortions in the radiation pattern. In this regard, the present study showed that,
while the copolar pattern is robust against the discretization, the crosspolar pattern is very sensitive.
This is especially important for space applications with tight crosspolarization requirements. While it
is true that reflectarray copolar design may be achieved with normal incidence curve, the optimization
and correct prediction of the crosspolar pattern relies on a proper discretization of the angles of
incidence, as shown in this study. Finally, these conclusions are also applicable to other types of
antennas based on periodic and quasi-periodic surfaces such as transmitarrays, metasurfaces and
phased-arrays.
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CP Copolar
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MoM-LP Method of Moments based on Local-Periodicity
SVM Support Vector Machine
SVR Support Vector Regression
XP Crosspolar
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