One-Transistor Dynamic Random-Access Memory Based on Gate-All-Around Junction-Less Field-Effect Transistor with a Si/SiGe Heterostructure
Abstract
:1. Introduction
2. Device Structure and Simulation Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- “More Moore,” IEEE International Roadmap for Device and Systems (IRDS). 2017. Available online: https://irds.ieee.org (accessed on 12 December 2020).
- Park, S.-K. Technology Scaling Challenge and Future Prospects of DRAM and NAND Flash Memory. Proc. IEEE Int. Mem. Workshop IMW 2015. [Google Scholar] [CrossRef]
- Lee, S.-H. Technology scaling challenges and opportunities of memory devices. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016. [Google Scholar]
- Kim, S.K.; Popovici, M. Future of dynamic random-access memory as main memory. MRS Bull. 2018, 43, 334–339. [Google Scholar] [CrossRef]
- Spessot, A.; Oh, H. 1T-1C Dynamic Random Access Memory Status, Challenges, and Prospects. IEEE Trans. Electron. Devices 2020, 67, 1382–1393. [Google Scholar] [CrossRef]
- Okhonin, S.; Nagoga, M.; Sallese, J.M.; Fazan, P. A capacitor-less 1T-DRAM cell. IEEE Electron. Device Lett. 2002, 23, 85–87. [Google Scholar] [CrossRef]
- Yoshida, E.; Tanaka, T. A capacitorless 1T-DRAM technology using gate-induced drain-leakage (GIDL) current for low-power and high-speed embedded memory. IEEE Trans. Electron. Devices. 2006, 53, 692–697. [Google Scholar] [CrossRef]
- Nissimoff, A.; Martino, J.A.; Aoulaiche, M.; Veloso, A.; Witters, L.J.; Simoen, E.; Claeys, C. Spike anneal peak temperature impact on 1T-DRAM retention time. IEEE Electron. Device Lett. 2014, 35, 639–641. [Google Scholar] [CrossRef]
- Seo, J.H.; Yoon, Y.J.; Yu, E.; Sun, W.; Shin, H.; Kang, I.M.; Lee, J.-H.; Cho, S. Fabrication and Characterization of a Thin-Body Poly-Si 1T DRAM with Charge-Trap Effect. IEEE Electron. Device Lett. 2019, 40, 566–569. [Google Scholar] [CrossRef]
- Yoon, Y.J.; Seo, J.H.; Cho, S.; Lee, J.-H.; Kang, I.M. A polycrystalline-silicon dual-gate MOSFET-based 1T-DRAM using grain boundary-induced variable resistance. Appl. Phys. Lett. 2019, 114, 183503. [Google Scholar] [CrossRef]
- Hubert, A.; Bawedin, M.; Guegan, G.; Ernst, T.; Faynot, O.; Cristoloveanu, S. SOI 1T-DRAM cells with variable channel length and thickness: Experimental comparison of programming mechanisms. Soild-State Electron. 2011, 65–66, 256–262. [Google Scholar] [CrossRef]
- Duan, M.; Navarro, C.; Cheng, B.; Adamu-Lema, F.; Wang, X.; Georgiev, V.P.; Gamiz, F.; Millar, C.; Asenov, A. Thorough understanding of retention time of Z2FET memory operation. IEEE Trans. Electron. Devices. 2019, 66, 383–388. [Google Scholar] [CrossRef]
- Bawedin, M.; Cristoloveanu, S.; Flandre, D. A capacitorless 1T-DRAM on SOI based on dynamic coupling and double-gate operation. IEEE Electron. Device Lett. 2009, 29, 795–798. [Google Scholar] [CrossRef]
- Ansari, M.H.R.; Navlakha, N.; Lee, J.Y.; Cho, S. Double-Gate Junctionless 1T DRAM with Physical Barriers for Retention Improvement. IEEE Trans. Electron. Devices. 2020, 67, 1471–1479. [Google Scholar] [CrossRef]
- Colinge, J.P.; Lee, C.-W.; Afzalian, A.; Akhavan, N.D.; Yan, R.; Ferain, I.; Razavi, P.; O’Neill, B.; Blake, A.; White, M.; et al. Nanowire transistors without junctions. Nature Nanotech. 2010, 5, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-W.; Ferain, I.; Afzalian, A.; Yan, R.; Akhavan, N.D.; Razavi, P.; Colinge, J.P. Performance estimation of junctionless multigate transistors. Solid-State Electron. 2010, 54, 97–103. [Google Scholar] [CrossRef]
- Yang, L.; Watling, J.E.; Wilkins, R.C.W.; Borici, M.; Barker, J.R.; Asenov, A.; Roy, S. Si/SiGe heterostructure parameters for device simulations. Semicond. Sci. Technol. 2004, 19, 1174–1182. [Google Scholar] [CrossRef]
- Ertosun, M.G.; Sarawat, K.C. Investigation of capacitorless double-gate single-transistor DRAM: With and without quantum well. IEEE Trans. Electron. Devices 2010, 57, 608–613. [Google Scholar] [CrossRef]
- Song, K.-W.; Jeong, H.; Lee, J.-W.; Hong, S.I.; Tak, N.-K.; Kim, Y.-T.; Choi, Y.L.; Joo, H.S.; Kim, S.H.; Song, H.J.; et al. 55 nm Capacitor-less 1T DRAM Cell Transistor with Non-Overlap Structure. In Proceedings of the 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2008. [Google Scholar]
- Aoulaiche, M.; Nicoletti, T.; Almeida, L.M.; Simoen, E.; Veloso, A.; Blomme, P.; Groeseneken, G.; Jurczak, M. Junction Field Effect on the Retention Time for One-Transistor Floating-Body RAM. IEEE Trans. Electron. Devices. 2012, 59, 2167–2172. [Google Scholar] [CrossRef]
- Giusi, G.; Iannaccone, G. Junction Engineering of 1T-DRAMs. IEEE Electron. Device Lett. 2013, 34, 408–410. [Google Scholar] [CrossRef]
- Morita, Y.; Fukuda, K.; Mori, T.; Mizubayashi, W.; Migita, S.; Endo, K.; O’uchi, S.-I.; Liu, Y.; Masahara, M.; Matsukawa, T.; et al. Introduction of SiGe/Si heterojunction into novel multilayer tunnel FinFET. Jpn. J. Appl. Phys. 2016, 55, 04EB06. [Google Scholar] [CrossRef]
- Li, W.; Liu, H.; Wang, S.; Chen, S.; Yang, Z. Design of High Performance Si/SiGe Heterojunction Tunneling FETs with a T-Shaped Gate. Nanoscale Res. Lett. 2017, 12, 198. [Google Scholar] [CrossRef] [Green Version]
- Synopsys, Sentaurus Device User Guide, Version L-2106.03. 2016.
- Schroder, D.K. Carrier Lifetimes in Silicon. IEEE Trans. Electron. Devices 1997, 44, 160–170. [Google Scholar] [CrossRef]
- Chang, S.T.; Liu, C.W.; Lu, S.C. Base transit time of graded-base Si/SiGe HBTs considering recombination lifetime and velocity saturation. Solid-State Electron. 2004, 48, 207–215. [Google Scholar] [CrossRef]
- Ansari, M.H.R.; Singh, J. Capacitorless 2T-DRAM for High Retention Time and Sense Margin. IEEE Trans. Electron. Devices 2020, 67, 902–906. [Google Scholar] [CrossRef]
- Yoon, Y.J.; Cho, M.S.; Kim, B.G.; Seo, J.H.; Kang, I.M. Capacitorless One-Transistor Dynamic Random-Access Memory Based on Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor with Si/SiGe Heterojunction and Underlap Structure for Improvement of Sensing Margin and Retention Time. J. Nanosci. Nanotechnol. 2019, 19, 6023–6030. [Google Scholar] [CrossRef] [PubMed]
Operation | Write ‘1’ | Write ‘0’ | Read | Hold |
---|---|---|---|---|
Gate Voltage (VG) [V] | −1.0 | 1.0 | 0.7 | 0 |
Drain Voltage (VD) [V] | 1.5 | −1.5 | 0.1 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, Y.J.; Lee, J.S.; Kim, D.-S.; Lee, S.H.; Kang, I.M. One-Transistor Dynamic Random-Access Memory Based on Gate-All-Around Junction-Less Field-Effect Transistor with a Si/SiGe Heterostructure. Electronics 2020, 9, 2134. https://doi.org/10.3390/electronics9122134
Yoon YJ, Lee JS, Kim D-S, Lee SH, Kang IM. One-Transistor Dynamic Random-Access Memory Based on Gate-All-Around Junction-Less Field-Effect Transistor with a Si/SiGe Heterostructure. Electronics. 2020; 9(12):2134. https://doi.org/10.3390/electronics9122134
Chicago/Turabian StyleYoon, Young Jun, Jae Sang Lee, Dong-Seok Kim, Sang Ho Lee, and In Man Kang. 2020. "One-Transistor Dynamic Random-Access Memory Based on Gate-All-Around Junction-Less Field-Effect Transistor with a Si/SiGe Heterostructure" Electronics 9, no. 12: 2134. https://doi.org/10.3390/electronics9122134
APA StyleYoon, Y. J., Lee, J. S., Kim, D. -S., Lee, S. H., & Kang, I. M. (2020). One-Transistor Dynamic Random-Access Memory Based on Gate-All-Around Junction-Less Field-Effect Transistor with a Si/SiGe Heterostructure. Electronics, 9(12), 2134. https://doi.org/10.3390/electronics9122134