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Abstract: A three directional (3-D) multi-scroll chaotic attractors based on the Jerk system with
nonlinearity of the sine function and sign function is introduced in this paper. The scrolls in the
X-direction are generated by the sine function, which is a modified sine function (MSF). In addition,
the scrolls in Y and Z directions are generated by the sign function series, which are the superposition
of some sign functions with different time-shift values. In the X-direction, the scroll number is
adjusted by changing the comparative voltages of the MSF, and the ones in Y and Z directions are
regulated by the sign function. The basic dynamics of Lyapunov exponent spectrum, phase diagrams,
bifurcation diagram and equilibrium points distribution were studied. Furthermore, the circuits of the
chaotic system are designed by Multisim10, and the circuit simulation results indicate the feasibility of
the proposed chaotic system for generating chaotic attractors. On the basis of the circuit simulations,
the hardware circuits of the system are designed for experimental verification. The experimental
results match with the circuit simulation results, this powerfully proves the correctness and feasibility
of the proposed system for generating 3-D grid multi-scroll chaotic attractors.
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1. Introduction

Chaotic system with slight changing of initial value will produce different trajectories, and the
power spectrum of chaotic system state variables is similar to random signals, the chaotic system has
been widely studied around the world. Owing to deep research, the chaotic system has been applied
in a great variety of engineering fields, for instance, digital image watermarking [1,2], weak signal
detection [3–5], image encryption [6–10], and secure communication [11–13].

In the field of chaos, designing a chaotic system with more complex dynamical behaviors is
a challengeable task and sometimes the key to solve practical application problems. In general,
the number of scrolls and the direction of scrolls affect the complexity of dynamic behavior of
chaotic systems. Hence, many researchers have studied the multi-scroll chaotic system with different
directions, and reported large amounts of that with different dynamical characteristics. According
to how many directions have generated scrolls, the multi-scroll chaotic system can be divided as
one-directional (1-D) [14–23], two-directional (2-D) [17,23–26], three-directional (3-D) [25–31], and so
on. A 1-D multi-scroll chaotic attractors based on Chua’s circuit are designed by Suykens [14].
Tang et al. [15] realized a chaotic attractor with a 1-D multi-scroll through the modified sine function,
while Wang and Liu [16] used the sign function to implement the chaotic attractor with 12 scrolls.
Sánchez-López [17] using staircase functions designed 1-D and 2-D chaotic attractors, Zhang and
Yu [18] used triangular wave, sawtooth wave and hysteresis sequence to realize 2-D chaotic attractors,
respectively. A 1-D chaotic attractor is also designed based on a saturated nonlinear function [20],

Electronics 2020, 9, 2145; doi:10.3390/electronics9122145 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-3297-4438
http://dx.doi.org/10.3390/electronics9122145
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/12/2145?type=check_update&version=2


Electronics 2020, 9, 2145 2 of 18

in addition, Ding et al. [22] designed a 1-D chaotic attractor by using a special form of sine function.
Günay et al. [23] designed a 1-D and 2-D multi-scroll chaotic attractor via hyperbolic tangent function.
Zhang and Yu [24] used time delay hysteresis and step sequence designed a 2-D chaotic attractor,
and step function with saturation to generate a chaotic attractor with scrolls in the two-direction and
three-direction. Multi-segment saturated nonlinear function is also designed for generating chaotic
attractors [26], Lü [27,28] introduced different methods for designing chaotic attractors with scrolls in
the one-direction, two-direction and three-direction by using hysteresis function and saturated function,
respectively. Zhang [29] realized a 3-D chaotic attractor based on a four-dimensional autonomous
system. Lü and Chen [30] introduced the theories, methods and applications for generating 3-D
multi-scroll chaotic attractors, Deng and Lü [31] proposed a 3-D multi-scroll chaotic systems based
on the fractional differential system. Lately, Wang et al. [32] given a 1-D multi-scroll chaotic attractor
via simplified piecewise-linear Chua’s diode, and the chaotic system is verified by experimental
circuits. Jia et al. [33] studied a 1-D multi-scroll chaotic attractor based on Chua’s circuit with a
nonlinearity of logarithmic function. Echenausía-Monroy et al. [34] introduced a fractional order
chaotic system, which can generate a monostable multi-scroll attractor and coexisting attractors.
Wang et al. [35] designed a 2-D multi-scroll chaotic system based on the jerk model for realizing
physical layer encryption.

Yu et al. [36] used a modulating sine function as the nonlinearity in a general jerk system,
and given 4-scroll and 8-scroll nesting chaotic attractors. Hu et al. [37] realized 1-D multi-scroll hidden
attractors by using an improved Sprott A system with a nonlinearity of a sine function. In addition,
Hu et al. [38] realized a 1-D multi-scroll chaotic attractor and a multi-butterfly wing chaotic attractor
in a 5-dimensional memristive system. Fan and Yao [39] found the Chua circuit with a sine function
can generate an infinite-scroll chaotic attractor, and the number of scrolls generated by this system can
be adjusted by using a negative feedback control. Sun et al. [40] introduced a 3-dimensional chaotic
system with three sine functions and a 4-dimensional chaotic system with four sine functions can
generate infinite coexisting attractors. Lai et al. [41] studied a four-dimensional system with two sine
functions, and given the phase portraits of sixteen coexisting chaotic attractors. Wu et al. [42] presented
a novel and simple 3-dimensional system with two sine functions that can generate abundant coexisting
multiple attractors, but not a grid multi-scroll chaotic attractor. However, none of the above chaotic
systems with sine functions can generate 2-D grid multi-scroll chaotic attractors, let alone 3-D multi
scroll chaotic attractors. Cafagna and Grassi [43] generated a 3-D multi-scroll hyperchaotic attractor
by coupling three Chua’s circuits with the sin-type function as nonlinearities forming a ring, but this
9-dimensional chaotic system is much more complex due to its nine state variables. As far as we know,
there is no 3-dimensional chaotic system with nonlinearity of the sine function for generating 3-D
chaotic attractor, so design a sine function based 3-D grid multi-scroll chaotic attractor is a challenging
task. Inspired by the work of other researchers, we proposed a novel approach for generating 3-D
grid multi-scroll chaotic attractor by using the MSF and sign function series. Scroll number in the
X-direction is regulated by MSF, while the scroll number in Y-direction and Z-direction are controlled
by sign function series.

2. A Novel Chaotic System for Generating 3-D Multi-Scroll Chaotic Attractors

Yalçin, Lü et al. [24,25,27,44] proposed a 3-D multi-scroll chaotic attractor, where the matrix
representation of the differential equation is

.
Y = AY + BΦ(Y) (1)

where,

A =


0 1 0
0 0 1
−a −a −a

, B =


−1 0 0
0 −1 0
0 0 a

, Φ =


h1(y)
h2(z)
h3(x)

 and Y =


x
y
z
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In Equation (1), if matrix Φ with a different nonlinear function of h1(y), h2(z) and h3(x),
different chaotic attractors can be generated by the chaotic system (1).

Based on chaotic system (1), we designed a novel chaotic system, which can generate multi-scroll
in three directions, the mathematical expression of the system is:

.
x = a f1(y)
.
y = b f2(z)

.
z = −c f1(y) − d f2(z) − e f3(x)

(2)

In Equation (2), a, b, c, d and e are real constants, f3(x) is a MSF. f1(y) and f2(z) are sign function
series, which are the superposition of some sign functions with different time delay values. f1(y) and
f2(z) have two different forms of expression and they are described as f1(y) ∈

{
f11(y), f12(y)

}
and

f2(z) ∈
{
f21(z), f22(z)

}
. f11(y) and f21(z) for generating an odd number of scrolls, and f12(y) and

f22(z) for an even number of scrolls. The representatives of the nonlinear functions of f3(x), f11(y),
f12(y), f21(z) and f22(z) are given by:

f3(x) =
{
− sin(2πpx), (−n1/p) < x < (n2/p)
sin(2πpx), x < −n1/p or x ≥ n2/p

(3)

f11(y) = y− B{
N11∑
k=0

sign[y + (2k + 1) ∗ B] +
N11∑
k=0

sign[y− (2k + 1) ∗ B]
}

(4)

f12(y) = y− B[−sign(y) +
N12∑
k=0

sign(y + 2k ∗ B) +
N12∑
k=0

sign(y− 2k ∗ B)] (5)

f21(z) = z− B{
N21∑
k=0

sign[z + (2k + 1) ∗ B] +
N21∑
k=0

sign[z− (2k + 1) ∗ B]
}

(6)

f22(y) = z− B[−sign(z) +
N22∑
k=0

sign(z + 2k ∗ B) +
N22∑
k=0

sign(z− 2k ∗ B)] (7)

In the X-direction, the number of scrolls is related to the nonlinear function of f3(x). Since the sine
function has the characteristic of periodicity, it is used as a nonlinear function in the chaotic system
by some researchers. In Refs. [19,37,38,45,46], the sine function selected as Equation (8); in Ref. [14],
the sine function selected as Equation (9), and the sine function selected as Equation (10) in Refs. [47,48].

f (x) = sin(2πbx) (8)

f (x) =


(x− 2ac)bπ/(2a), x ≥ 2ac

−b sin[πx/(2a) + d],−2ac < x < 2ac
bπ(x + 2ac)/(2a), x ≤ −2ac

(9)

f (x) = sin(x) (10)
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If the sine functions in the form of Equations (8) and (10) are used directly to the chaotic system,
the number of scrolls will be varied with transient simulation time. In order to generate a constant
number of scrolls by using a sine function, a state feedback controller is used [46], for the same purpose,
we change the expression of the sine function as Equation (3).

In Equation (3), p is the frequency of the sine function f3(x), n1 and n2 control the scroll number in
the negative and positive axis of the X-direction respectively, f3(x) is depicted as Figure 1.
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Figure 1. The waveform of sine function ( )3  f x with 1p = : (a) 1 1n = , 2 3n = ; (b) 1 0n = , 2 4n = . 

3. Dynamics of the 3-D Multi-Scroll Chaotic Attractors 

In this section, the phase portraits, Lyapunov exponents, distribution of the equilibrium point, 
and bifurcation diagram of the multi-scroll chaotic attractor were analyzed for understanding its 
dynamical behaviors. 

3.1. The Phase Diagrams of the System  

In Equation (2), ( )3  f x  is selected as Equation (3), ( )1  f y  can be selected as ( )11  f y  or 

( )12  f y , while 2 ( )f z  can be 21( )f z  or 22 ( )f z , so the generated 3-D multi-scroll chaotic attractors by 
system (2) can be divided into four cases. 

Case 1: ( ) ( )1 11 f y f y=  and 2 21( ) ( )f z f z= , 1 2 11 21   2 3  ( ) (  ) (2 3)n n N N+ × + × +  -scrolls chaotic 
attractor can be generated. 

Case 2: ( ) ( )1 12 f y f y=  and 2 21( ) ( )f z f z= , 1 2 12 21   2 2  ( ) (  ) (2 3)n n N N+ × + × +  -scrolls chaotic 
attractor can be generated. 

Case 3: ( ) ( )1 11 f y f y=  and 2 22( ) ( )f z f z= , 1 2 11 22   2 3  ( ) (  ) (2 2)n n N N+ × + × +  -scrolls chaotic 
attractor can be generated. 

Case 4: ( ) ( )1 12 f y f y=  and 2 22( ) ( )f z f z= , 1 2 12 22   2 2  ( ) (  ) (2 2)n n N N+ × + × +  -scrolls chaotic 
attractor can be generated. 

In order to illustrate the phase diagrams of the system, taking 1B = , 1.8a = , 15b = , 6.4c = , 
4d = , 4e = , and the initial vales ( ) ( )0 0 0, , 0.1,0,0x y z =  as an example, the generated multi-scroll 

chaotic attractors have four types.  
Type 1: 1 1n = , 2 2n = , ( ) ( )1 11 f y f y= , 2 21( ) ( )f z f z= , 11 0N = , and 21 0N = , the chaotic 

attractor with 3 × 3 × 3-scroll is displayed in Figure 2. 

Figure 1. The waveform of sine function f3(x) with p = 1: (a) n1 = 1, n2 = 3; (b) n1 = 0, n2 = 4.

3. Dynamics of the 3-D Multi-Scroll Chaotic Attractors

In this section, the phase portraits, Lyapunov exponents, distribution of the equilibrium point,
and bifurcation diagram of the multi-scroll chaotic attractor were analyzed for understanding its
dynamical behaviors.

3.1. The Phase Diagrams of the System

In Equation (2), f3(x) is selected as Equation (3), f1(y) can be selected as f11(y) or f12(y),
while f2(z) can be f21(z) or f22(z), so the generated 3-D multi-scroll chaotic attractors by system (2) can
be divided into four cases.

Case 1: f1(y) = f11(y) and f2(z) = f21(z), (n1 + n2) × (2N11 + 3) × (2N21 + 3) -scrolls chaotic
attractor can be generated.

Case 2: f1(y) = f12(y) and f2(z) = f21(z), (n1 + n2) × (2N12 + 2) × (2N21 + 3) -scrolls chaotic
attractor can be generated.

Case 3: f1(y) = f11(y) and f2(z) = f22(z), (n1 + n2) × (2N11 + 3) × (2N22 + 2) -scrolls chaotic
attractor can be generated.

Case 4: f1(y) = f12(y) and f2(z) = f22(z), (n1 + n2) × (2N12 + 2) × (2N22 + 2) -scrolls chaotic
attractor can be generated.

In order to illustrate the phase diagrams of the system, taking B = 1, a = 1.8, b = 15, c = 6.4,
d = 4, e = 4, and the initial vales (x0, y0, z0) = (0.1, 0, 0) as an example, the generated multi-scroll
chaotic attractors have four types.

Type 1: n1 = 1, n2 = 2, f1(y) = f11(y), f2(z) = f21(z), N11 = 0, and N21 = 0, the chaotic attractor
with 3 × 3 × 3-scroll is displayed in Figure 2.
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attractors with 3 × 4 × 3-scroll are shown in Figure 3. 
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Figure 2. (Color online) chaotic attractors with 3 × 3 × 3-scroll of system (2) with: n1 = 1, n2 = 2,
f1(y) = f11(y), f2(z) = f21(z), N11 = 0, N21 = 0, and (x0, y0, z0) = (0.1, 0, 0): (a) x–y–z plane;
(b) projection on the x–y plane; (c) projection on the y–z plane; and (d) projection on the x–z plane.

Type 2: n1 = 1, n2 = 2, f1(y) = f12(y), f2(z) = f21(z), N12 = 1, and N21 = 0, the chaotic attractors
with 3 × 4 × 3-scroll are shown in Figure 3.
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Figure 3. (Color online) chaotic attractor with 3 × 4 × 3-scroll of system (2) with n1 = 1, n2 = 2,
f1(y) = f12(y), f2(z) = f21(z), N12 = 1, N21 = 0, and (x0, y0, z0) = (0.1, 0, 0): (a) phase diagram
in three-dimensional space; (b) projection on the x–y plane; (c) projection on the y–z plane; and (d)
projection on the x–z plane.

Type 3: n1 = 2, n2 = 1, f1(y) = f11(y), f2(z) = f22(z), N11 = 0, and N22 = 1, the chaotic attractors
with 3 × 3 × 4-scroll are depicted in Figure 4.
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Figure 4. (Color online) chaotic attractor with 3 × 4 × 3-scroll of system (2) with n1 = 2, n2 = 1,
f1(y) = f11(y), f2(z) = f22(z), N11 = 0, N22 = 1, and (x0, y0, z0) = (0.1, 0, 0): (a) phase diagram
in three-dimensional space; (b) projection on the x–y plane; (c) projection on the y–z plane; and (d)
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Type 4: n1 = 0, n2 = 3, f1(y) = f12(y), f2(z) = f22(z), N11 = 1, and N22 = 1, the chaotic attractors
with 3 × 4 × 4-scroll are displayed in Figure 5.
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Figure 5. (Color online) 3 × 4 × 4-scroll chaotic attractors of system (2) with n1 = 0, n2 = 3,
f1(y) = f12(y), f2(z) = f22(z), N11 = 1, N22 = 1, and (x0, y0, z0) = (0.1, 0, 0): (a) x–y–z plane;
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Electronics 2020, 9, 2145 7 of 18

3.2. The Distribution of Equilibrium Points

The distribution of equilibrium points (xe, ye, ze) of system (2) can be obtained by making
.
x = 0,

.
y = 0 and

.
z = 0. 

a f1(y) = 0
b f2(z) = 0

c f1(y) − d f2(z) − e f3(x) = 0
(11)

According to Equation (11), xe is determined by f3(x), which is described as Equation (3).
The solution of xe is described as Equation (12).

xe =

{
xe1 = 2nT1,−n1 < n < n2, T1 = 1/(2p), n ∈ Z

xe2 = 2(n + 1)T1,−n1 < n < n2, T1 = 1/(2p), n ∈ Z
(12)

For ye, it is determined by f1(y) , which can be selected as f11(y) or f12(y), and they are described
as Equations (4) and (5), respectively. Taking f1(y) = f11(y), as an example, ye is given as

ye =

{
ye1 = 2mA,−(N11 + 1) ≤ m ≤ N11 + 1, m ∈ Z

ye2 = (2m + 1)A,−N12 ≤ m ≤ N12, m ∈ Z
(13)

Regarding ze, it is determined by f2(z), which can be chosen as f21(z) or f22(z), and they are given
as Equations (6) and (7), respectively. Taking f2(z) = f21(z) as an example, ze is given as

ze =

{
ze1 = 2kA,−(N21 + 1) ≤ k ≤ N21 + 1, k ∈ Z

ze2 = (2k + 1)A,−N22 ≤ k ≤ N22, k ∈ Z
(14)

From Equations (12)–(14), the equilibrium points of Equation (13) have eight cases, which are
E1 = (xe1, ye1, ze1), E2 = (xe1, ye1, ze2), E3 = (xe1, ye2, ze1), E4 = (xe1, ye2, ze2), E5 = (xe2, ye1, ze1),
E6 = (xe2, ye1, ze2), E7 = (xe2, ye2, ze1), and E8 = (xe2, ye2, ze2).

Let B = 1, a = 1.8, b = 15, c = 6.4, d = 4, e = 4, and p = 1, the equation expression for solving the
equilibrium point at E1 is:

J1 =


0 a f ′1(y) 0
0 0 b f ′2(z)

−e f ′(x) −c f ′1(y) −d f ′2(z)

 =


0 a 0
0 0 b

2πeh −c −d

 =


0 1.8 0
0 0 15

8π −6.4 −4

 (15)

For Equation (15), its characteristic equation is given as follows:

|λI − J1| = λ3 + 4λ2 + 96λ− 216π = 0 (16)

In Equation (16) I is the unit matrix, its eigenvalues are λ11 = 4.873,λ12 = −4.437 + 10.934i,λ13 =

−4.437− 10.934i, so equilibrium points E1 = (xe1, ye1, ze1) are saddle points of index 1. The analysis
method of the rest equilibrium points is the same as that of equilibrium point E1. The equilibrium
point types are described in Table 1.

Table 1. The equilibrium point types of system (2).

Equilibrium Points Corresponding Characteristic Root Index Type of Saddle Point

E1 = (xe1, ye1, ze1) λ11 = 4.873,λ12 = −4.437 + 10.934i,λ13 = −4.437− 10.934i index 1
E2 = (xe1, ye1, ze2) λ21 = 134.177, λ22 = 5.757, λ23 = −25.198 index 2
E3 = (xe1, ye2, ze1) λ31 = 46.350, λ32 = 7.286, λ33 = −57.636 index 2
E4 = (xe1, ye2, ze2) λ41 = 0.071, λ42 = 0.538 + 2.745i, λ43 = 0.538− 2.745i index 2
E5 = (xe2, ye1, ze1) λ51 = −6.193, λ52 = 1.096 + 10.410i, λ53 = 1.096− 10.410i index 2
E6 = (xe2, ye1, ze2) λ61 = 136.03, λ62 = −10.65 + 5.45i, λ63 = −10.65− 5.45i index 1
E7 = (xe2, ye2, ze1) λ71 = 53.849, λ72 = −7.126, λ73 = −50.723 index 1
E8 = (xe2, ye2, ze2) λ81 = −6.99, λ82 = 60.86 + 275.92i, λ83 = 60.86− 275.92i index 2
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From Table 1, it can be seen that there are eight kinds of equilibrium points of system (2) with
f1(y) = f11(y) and f2(z) = f21(z), among which five cases are saddle points of index 2, and the other
cases are saddle points of index 1. When f1(y) = f11(y) and f2(z) = f22(z), or f1(y) = f12(y) and
f2(z) = f21(z), or f1(y) = f12(y) and f2(z) = f22(z), the equilibrium point types of system (2) has a
similar result. Compare the result of Table 1 with Figure 2, it can be found that the generated scrolls
only around the saddle points of index 2 of equilibrium points E5. So, the equilibrium point with
saddle points of index 2 is a necessary but not sufficient condition to generate the scroll.

3.3. Bifurcation Diagram and Lyapunov Exponents Spectrum

For facilitating the analysis of the Lyapunov exponents and bifurcation diagram of system (2),
the parameters were selected as f1(y) = f11(y) with N11 = 0, f2(z) = f21(z), with N21 = 0, f3(x) with
n1 = 1 and n2 = 2, a = 1.8, b = 15, c = 6.4, and d = 4. Varying parameter e from 3.5 to 6 with step 0.01,
the Lyapunov exponent and bifurcation diagram are displayed in Figure 6a,b, respectively.
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Figure 6. (Color online) Bifurcation diagram and Lyapunov exponents under the conditions of
f1(y) = f11(y), with N11 = 0, f2(z) = f21(z), with N21 = 0, f3(x) with n1 = 1 and n2 = 2, a = 1.8,
b = 15, c = 6.4, d = 4, and (x0, y0, z0) = (0.1, 0, 0): (a) Lyapunov exponents and (b) bifurcation diagram.

Figure 6a,b indicates that when e ∈ [3.5, 6], LE1 > 0, LE2 = 0, and LE3 < 0, the Lyapunov
exponents in accordance with the bifurcation diagram. In Figure 6b, there were some values of e at the
range of e ∈ (4.8, 5.7) causing system (2) to generate more than 3-scrolls in the X-direction. For instance,
system (2) with e = 5.0 and (x0, y0, z0) = (0.1, 0, 0) generated 6-scrolls in the X-direction, where the
phase portraits are shown in Figure 7.

It should be noted that the system parameters in Figures 2 and 7 were identical except parameter
e, the parameter e of Figure 2 was 4, while that of Figure 7 was 5. By comparing Figures 2 and 7, it can
be concluded that the number of scrolls generated by system (2) in the X-direction could be determined
by the parameters n1 and n2, while the system with suitable parameters.
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3.4. Generation Mechanism Analysis of the Chaotic Attractors

The generation mechanism of a different number of scrolls in a certain direction is the same,
so we took the chaotic attractor with a 3 × 3 × 3-scroll shown in Figure 2 for analyzing the generation
mechanism of this system. From Figure 2, it can be seen that when y = z = 0, the system generated
three scrolls on the X-axis, the corresponding equilibrium points were P−0.5(−0.5, 0, 0), P0(0, 0, 0),
P0.5(0.5, 0, 0), P1(1, 0, 0), and P1.5(1.5, 0, 0). The five equilibrium points are plotted in Figure 8.
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As analyzed in Section 3.2, P−0.5(−0.5, 0, 0), P0.5(0.5, 0, 0) and P1.5(1.5, 0, 0) ∈ E5, P0(0, 0, 0),
and P1(1, 0, 0) ∈ E1. Thus, P−0.5(−0.5, 0, 0), P0.5(0.5, 0, 0), and P1.5(1.5, 0, 0) are saddle-focus equilibrium
points with index 2, while P0(0, 0, 0) and P1(1, 0, 0) ∈ E1 are saddle-focus equilibrium points with index
1. The scrolls in regions D−0.5, D0.5, and D1.5 were generated by X-axis shrinkage and other-axis tension.
In regions D0 and D1, the trajectory of the chaotic attractor was stretching at the X-axis and shrinking
at the Y-axis and Z-axis. As a result, P0(0, 0, 0) and P1(1, 0, 0) formed bond orbits. For the rest of the
equilibrium points, the formation mechanism of the scrolls was similar to that of the above scrolls.

4. Electronic Circuit Simulation on Multisim 10

For examination of the feasibility of generating a 3-D multi-scroll chaotic attractor by this system,
the electronic circuits of f3(x), f1(y), and f2(z) were designed on Multisim 10, and the electronic circuit
simulations were given. On the basis of these circuits, the whole circuits of the chaotic system were
proposed, and the feasibility of this chaotic system was approved by the electronic circuit simulations.

4.1. The Circuits of Nonlinear Functions of f3(x)

The nonlinear function f3(x) is described as Equation (3), which can be changed as the
following representation.

f3(x) = − sin(2πpx)H(x, vn1, vn2) (17)

where,
H(x, vn1, vn2) = sign(x + vn1) − sign(x− vn2) − 1 (18)

In Equation (18), sign(x) is a signal function, when x > 0, its value is 0; when x > 0 and x < 0,
the values are 1 and −1, respectively. Furthermore, vn1 and vn2 correspond to −n1/p and n2/p in
Equation (3), respectively. According to circuit theory, we designed the electronic circuits of Equation
(18), which are shown in Figure 9a. Let p = 1, n1 = 1, n2 = 2, then vb1 = −1 V and va1 = 2 V, the circuit
simulation result of Figure 9a is shown in Figure 9b.
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Figure 9. The implement circuit of nonlinear function f3(x): (a) electronic circuit with p = 1, n1 = 1
and n2 = 2 and (b) circuit simulation result by Multisim 10.

Figures 1 and 9b show that the numerical simulation result was highly consistent with the one
of electronic circuit. In implementation circuits, the change of scroll number in the X-direction only
needed to modify the values of comparison voltage of va1 and vb1 in Figure 9a.
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4.2. The Circuit of Nonlinear Functions of f1(y) and f2(z)

From Equations (4)–(7), it can be found that if f1(y) and f2(z) have the same expression, system (2)
can generate the same number of scrolls in the Y-direction and Z-direction. Moreover, system (2) with
f11(y) and f21(z) for can generate odd number of scrolls, while with f12(y) and f22(z) generate even
number of scrolls. As an example, we designed the electronic circuits of f11(y) for generating 3-scrolls
and f12(y) for generating 4-scrolls. The circuits and the circuit simulation results for 3-scrolls are
displayed in Figure 10, while that for 4-scrolls are depicted in Figure 11.
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Figure 11. The implement circuit of nonlinear function f12(y) with N12 = 1 and B = 1: (a) electronic
circuit for 4-scroll and (b) the corresponding circuit simulation result.

In Figures 10 and 11, using z instead of the input signal y, the output signal f11(y) will be f21(z)
and f12(y) will be f22(z). From Figures 10 and 11, it can be found that the circuits for generating odd
and even scrolls have different circuit structures. Moreover, in Figure 10a, va2, U1, R17 and va1, U10,
R18 are composed of a scroll generating circuit unit, for generating 5-scrolls in the Y-direction, a scroll
generating circuit unit needs to parallel connect between the input signal y and the right of resistance
R18, and the two comparison voltages corresponding to va1 and va2 need to be set to −3 V and 3 V,
respectively. Same as the circuit for generating odd number of scrolls, an additional scroll generating
circuit unit is required for every additional 2-scrolls in the circuit of generating even number scrolls,
and the comparison voltage of the operational amplifier in the circuit unit needs to be changed.
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4.3. The Circuits of the System

Combine the circuits of f1(y), f2(z), and f3(x), the whole circuit diagram of system (2) is designed,
which is shown in Figure 12. For generating odd number of scrolls in the Y-direction, f1(y) should
be connected to f11(y), and the scroll generating circuit unit should be adjusted according to the
scroll number. For generating even number of scrolls in the Y-direction, f1(y) should be connected to
f12(y), and the scroll generating circuit unit also should be adjusted according to the scroll number.
In the Z-direction, f2(z) should be connected to f21(z) or f22(z) according to the scroll number in
the Z-direction.Electronics 2020, 9, x FOR PEER REVIEW 14 of 20 
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Figure 12. The implement circuit of system (2).

For the sake of examining the feasibility of circuit implementation of system (2), we made the
circuit equation of Figure 12 consistent with the corresponding equations and parameters of Figures 2–5
by modifying the circuit parameters and circuit structure of Figure 12. The corresponding circuit
simulation results of Figures 2–5 are shown in Figure 13, in which the unit of vertical coordinates of all
graphs was 2 V/div, and the unit of horizontal coordinates of Figure 13a,c,e,g were 1 V/div, while that
of the others were 2 V/div.

From the simulation results in Figures 2–5 and 13, it can be seen that the trajectory of state variables
in the circuits in agreement with that of numerical simulation. The comparative voltages of va1 and
vb1 in Figure 9a determine the number of scrolls on the positive and negative part in the X-direction,
respectively. The scroll numbers in the Y-direction and Z-direction were restricted by the number of
scrolls generating circuit units and the structure of implementation circuits of the nonlinear functions
in the Y-direction and Z-direction.
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4.4. The Experimental Verification of the System

The circuits of the nonlinear functions of f3(x), f1(y), and f2(z) are displayed in Figures 9–11,
respectively. In addition, the whole circuits of the proposed system, which are depicted in Figure 12,
the hardware circuits were designed and implemented. The selection of electronic components was
consistent with that of Figures 9–12. The test system for experimental verification and the experimental
observations are shown in Figure 14.Electronics 2020, 9, x FOR PEER REVIEW 16 of 20 
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Figure 14. (Color online) The experimental verification of the proposed system: (a) the test system; 
(b) the experimental result of the 3 × 3 × 3-scroll in the x–y plane; (c) the experimental result of the 3 × 
3 × 3-scroll in the y–z plane; (d) the experimental result of the 3 × 4 × 3-scroll in the x–y plane; and (e) 
the experimental result of the 3 × 4 × 3-scroll in the y–z plane. 

Figure 14. (Color online) The experimental verification of the proposed system: (a) the test system; (b)
the experimental result of the 3 × 3 × 3-scroll in the x–y plane; (c) the experimental result of the 3 × 3 ×
3-scroll in the y–z plane; (d) the experimental result of the 3 × 4 × 3-scroll in the x–y plane; and (e) the
experimental result of the 3 × 4 × 3-scroll in the y–z plane.
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As an example, we gave the experimental results of the 3 × 3 × 3-scroll and 3 × 4 × 3-scroll in the
x–y plane and y–z plane. The experimental observations of Figure 14b–e corresponded to the circuit
simulations of Figure 13a–d. From Figures 13 and 14, it can be seen that the hardware circuits of the
proposed system could generate the same chaotic attractors generated by the circuits on Multisim 10.
The experimental results indicate that the proposed chaotic system could be applied for generating
3-D multi-scroll chaotic attractors.

In the multi-scroll chaotic system, the complexity of hardware circuits was closely related to the
type of nonlinear function and the structure of chaotic system. In order to compare the circuit simplicity
of this system with other 3-D multi-scroll chaotic systems with circuit design and experimental
results, the number of the used electronic components in circuit realization is presented in Table 2.
In Table 2, [27]-1 and [27]-2 represent the 3-D multi-scroll chaotic system with nonlinearity of the
hysteresis function and saturated function, respectively. n, m, and p represent the number of scrolls in
the X-direction, Y-direction, and Z-direction, respectively. NA, NC, NR, and NV represent the number
of used electronic components of amplifier, comparator, resistor, and reference voltage.

Table 2. Comparison of circuit realization of different 3-D multi-scroll chaotic systems.

Refs Attractor Type NA NC NR NV

[27]-1 (2n) × (2m) × (2p) 6(n + m) + 4p − 6 0 10(n + m) + 8p −1 2(n + m + p) − 3
(2n + 1) × (2m + 1) × (2p + 1) 6(n + m) + 4p + 9 0 10(n + m) + 8p + 13 2(n + m + p)

[27]-2 (2n) × (2m) × (2p) 2(n + m + p) − 1 0 6n + 8(m + p) − 9 2(n + m + p) − 3
(2n + 1) × (2m + 1) × (2p + 1) 2(n + m + p) + 2 0 6n + 8(m + p) + 2 2(n + m + p) + 2

[44] (2n) × (2m) × (2p) 5 2n + 2m + 2p − 3 2n + 2m + 2p + 1 2n + 2m + 2p − 3
(2n + 1) × (2m + 1) × (2p + 1) 5 2n + 2m + 2p + 4 2n + 2m + 2p + 4 2n + 2m + 2p + 4

[49] (2n) × (2m) × (2p) 2(n + m + p) + 10 0 2(n + m + p) + 22 2(n + m + p) − 3
(2n + 1) × (2m + 1) × (2p + 1) 2(n + m + p) + 13 0 2(n + m + p) + 25 2(n + m + p)

[50] (2n) × (2m) × (2p) 2(n + m + p) + 1 0 6(n + m + p) − 2 2(n + m + p) − 3
(2n + 1) × (2m + 1) × (2p + 1) 2(n + m + p) + 4 0 6(n + m + p) + 7 2(n + m + p)

[51] (2n) × (2m) × (2p) 2(n + m + p) + 6 0 2(n + m + p) + 15 2(n + m + p) − 3
(2n + 1) × (2m + 1) × (2p + 1) 2(n + m + p) + 9 0 2(n + m + p) + 18 2(n + m + p)

This work
(2n) × (2m) × (2p) 2(m + p) + 14 0 2(m + p) + 27 2(m + p)

(2n + 1) × (2m + 1) × (2p + 1) 2(m + p) + 16 0 2(m + p) + 29 2(m + p) + 2

From Table 2, it can be seen that the number of used electronic components was not related to the
number of scrolls generated in the X-direction, and the used electronic components were least among
the 3-D multi-scroll chaotic system in the literature. As a result, the complexity of the hardware circuit
was reduced, and it is beneficial to the chip integration of the system. Furthermore, the number of
scrolls in X-direction is adjusted only by changing the two reference voltages, while the other 3-D
multi-scroll chaotic system need to change the electronic circuit structure. Thus, this system is very
convenient to change the number of scrolls in the X-direction.

4.5. Design Guidelines of the 3-D Grid Multi-Scroll Chaotic Attractors

As the above analysis, the proposed system with nonlinear functions of f1(y), f2(z), and f3(x)
could generate n ×m × p-scroll chaotic attractors. The n-scroll attractor in the X-direction is regulated
by the modified sine function of f3(x), while the m-scroll attractor in Y-direction and the p-scroll
attractor in Z-direction are adjusted by f1(y) and f2(z), respectively. In the X-direction, parameter n1

and n2 control the number of scrolls in negative part and positive part. In particular:

(a1) if n1 + n2 is odd, the number of scrolls in the X-direction is odd.
(a2) if n1 + n2 is even, the scroll number in the X-direction is even.

For the Y-direction, the expression of f1(y) determines whether the number of scrolls is odd or
even. In fact, f1(y) has different equation expression for generating odd or even number of scrolls.

(b1) if f1(y) = f11(y), the chaotic system can generate odd number of scrolls in the Y-direction.
(b2) if f1(y) = f12(y), even number of scrolls can be generated in the Y-direction.



Electronics 2020, 9, 2145 16 of 18

In the Z-direction, the scroll number is determined by f2(z), and f2(z) has two kinds of expressions,
one for an even number of scrolls and another for an odd number of scrolls.

(c1) if f2(z) = f21(z), the scroll number generated in the Z-direction is odd.
(c2) if f2(z) = f22(z), the scroll number generated in the Z-direction is even.

For generating different number of scrolls in the X-direction, Y-direction, and Z-direction, one can
realize it by adjusting the parameter n1 and n2, and selecting a different expression for f1(y) and f2(z).

5. Conclusions

In this paper, a three-dimensional autonomous system with the MSF and step function series was
proposed. The working scheme of the system was analyzed by theoretical analysis. The feasibility
of this system was verified via numerical simulation results and circuit simulation results. Some
dynamical behaviors, such as bifurcation diagrams, equilibrium points, phase portraits, and Lyapunov
exponents were discussed. On the basis of theoretical analysis, the implementation circuits of the
system were designed by Multisim 10. Furthermore, the physical realization of this system was given
for experimental verification. The circuit simulation results and experimental results were consistent
with the numerical ones, which show the feasibility of the system.

For the realization circuit of the chaotic system, the number of scrolls in the X-direction was
regulated by the comparative voltages in the circuit of the nonlinear function of the MSF. In the
Y-direction and Z-direction, the scroll numbers were adjusted by the nonlinear function of step function
series, which had two different forms of expression, one for generating an even number scrolls, and the
other for odd number scrolls. For generating the 3-D chaotic attractor, this system compared with other
chaotic system in literature has some advantages: (i) this system needs less electronic components to
generate the same number of scrolls; (ii) a different scroll can be generated on the positive and negative
part of the X-direction, which is much more different with other chaotic systems; and (iii) the circuit
structure in the X-direction is not restricted by the scroll number, while that of other methods are
closely related to the number of scrolls.
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