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Abstract: To solve the complexity of the traditional motion intention recognition method using a
multi-mode sensor signal and the lag of the recognition process, in this paper, an inertial sensor-based
motion intention recognition method for a soft exoskeleton is proposed. Compared with traditional
motion recognition, in addition to the classic five kinds of terrain, the recognition of transformed
terrain is also added. In the mode acquisition, the sensors’ data in the thigh and calf in different motion
modes are collected. After a series of data preprocessing, such as data filtering and normalization,
the sliding window is used to enhance the data, so that each frame of inertial measurement unit
(IMU) data keeps the last half of the previous frame’s historical information. Finally, we designed a
deep convolution neural network which can learn to extract discriminant features from temporal
gait period to classify different terrain. The experimental results show that the proposed method
can recognize the pose of the soft exoskeleton in different terrain, including walking on flat ground,
going up and downstairs, and up and down slopes. The recognition accuracy rate can reach 97.64%.
In addition, the recognition delay of the conversion pattern, which is converted between the five
modes, only accounts for 23.97% of a gait cycle. Finally, the oxygen consumption was measured by
the wearable metabolic system (COSMED K5, The Metabolic Company, Rome, Italy), and compared
with that without an identification method; the net metabolism was reduced by 5.79%. The method
in this paper can greatly improve the control performance of the flexible lower extremity exoskeleton
system and realize the natural and seamless state switching of the exoskeleton between multiple
motion modes according to the human motion intention.

Keywords: motion intention recognition; neural network; soft exoskeleton; soft lower extremity
exoskeleton; IMU

1. Introduction

The soft suit exoskeleton robot has drawn wide attention in recent years. It has widely used
in fields of both military and civil life to enhance people’s walking ability and relieve people’s
fatigue under the condition of heavy load and long-time walking [1]. In the control system
of the soft suit exoskeleton, human motion intention recognition plays an important role [2–5].
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However, recognition delay is still one of the greatest challenges in the sense system soft exoskeleton,
particularly in the recognition of different terrain. Furthermore, the great majority of soft exoskeletons
are only made available for single locomotion mode, which makes the wearer uncomfortable when
walking on stairs and ramps. A kind of active adaptation for different terrains and movement
transformation greatly improves the accuracy of control and helps the wearer walk more naturally,
smoothly and stably. Therefore, in the control of the soft exoskeleton robot, it is necessary to recognize
the motion pattern under different terrain.

The recognition of locomotion patterns in different terrains is a base for soft exoskeleton to
achieve precise control. Several motion recognition methods have been proposed for different types
of signals [6]. Electromyography (EMG) is one of the most important signals in motor pattern
recognition [6,7]. Based on the EMG signal controller, Michael et al. [8] proposed a recognition
method for walking on flat ground, ramps up and downhill. Joshi et al. [6] present a classification
method to recognize walking on ground, ascending stairs and the transition between these motions
using the spectrogram of EMG signal. Another accessible signal is ground reaction force (GRF),
usually collected by a plantar pressure sensor on insole [9–11]. Duc Nguyen et al. [12] extracted
plantar pressure data as input features, and proposed five classical motion pattern recognition methods
by using the K-nearest neighbor (KNN) classification method. Chen et al. [13] identified different
motion patterns through wearable capacitance sensors without requiring real-time gait conversion.
Li et al. [14] used the threshold method based on inertial measurement unit (IMU) to identify horizontal
ground, staircase rise/fall and slope rise/fall, which required only a few sensors and low computation.
However, there is a phase delay in the transition to identification. Multi-sensor fusion, which is
able to enhance system performance and robustness, has been widely used in recent years [15–17].
In [18], a neural muscle mechanical fusion motion pattern recognition algorithm combining EMG
and GRF is proposed, which involves installing seven or more electrodes in the extremities and an
insole with a pressure sensor at the foot of a healthy limb. Ma et al. [19] proposed a kernel recursive
least-squares method (KRLS) to show the model generalization abilities. It was used to build a gait
phase classification model which has good performance, stability and robustness. Ren et al. [20]
proposed a new automatic intelligent gait planning method, which takes the finite state machine (FSM)
model as the basis and generates a gait generation model on the exoskeleton system. Its parameters
include step length and step speed, and the shape of gait can be adjusted according to the requirements
of the exoskeleton wearer. A vision-assisted VALOR prototype autonomous gait pattern planning was
proposed and validated in [2], with the aim of improving the exoskeleton’s adaptability to complex
environments. The disadvantage is that this method cannot detect the ground environment in real
time. Wu et al. [21] proposed the multi-layer perceptron neural network (MLPNN) to identify a gait
task. Liu et al. [15] used inertial sensors and two pressure sensors to collect real-time motion data,
calculated the group correlation coefficient of motion data and template data, used a hidden Markov
model (HMM) to identify the final motion state, and realized five steady-state motion modes under
three different speeds: walking on flat ground, going up and down stairs, and up and down slopes.
The recognition rate is 95.8%, but this method does not involve transformation pattern recognition.

To sum up, a lot of work has been done in the field of motion pattern recognition. However, there are
many limitations and challenges [7]. First, as mentioned earlier, EMG is often used to recognize biological
signals of motion patterns. However, the electrode of the EMG signal must stick to the surface of the
human skin. Once the human body perspires, the wire will fall off, which brings a lot of trouble to
practical application [22]. Second, GRF is ineffective on uneven ground where the swing phase and the
pressure sensor are not in full contact, even though it is readily available [23]. Last but not least, most of
the existing classification algorithms are based on the characteristics of the current time, except long
short-term memory (LSTM), such as LDA, Bayesian network, SVM, boosting, C4.5 decision trees and
random forests.

Taking these problems into account, a motion recognition method based on a single sensor is
proposed. By using neural networks with historical information, it avoids the complexity of data
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fusion and simplifies the process of data analysis. Moreover, the recognition of the transformation
pattern is added, which will recognize human motion intention before the emergence of the latter
mode to change the control strategy of the flexible exoskeleton. In this way, unnecessary accidents
such as shaking and falling caused by untimely change of power parameters can be avoided. The major
contributions of this paper are as follows:

1. We propose a recognition method with historical information based on neural network to
recognize different terrain, which solves the problem of the single control of the current single
terrain of the soft exoskeleton. This method enables the exoskeleton to adapt to different terrain
and achieve better human–computer cooperation.

2. We add the pattern transformation recognition, trying to predict the next motion mode in advance.
The results of the experiments show that the recognition delay rate is about 23.97% in a gait cycle.

The structure of the paper is as follows: the system design of the soft exoskeleton and its motion
characteristics are described in detail in Section 2. Gait data processing and motion recognition algorithms
are explained in detail in Section 3. The experiment results with detailed analysis are given in Section 4.
The comparison of methods is presented in Section 5. Finally, we arrive at a conclusion in Section 6.

2. The Structure of Exoskeleton and Analysis of Motion Characteristics

2.1. The Structure of Soft Exoskeleton

In this article, the Shenzhen Institutes of Advanced Technology (SIAT) soft lower limb exoskeleton
robot as the research object. It is independently developed by the Shenzhen Institute of Advanced
Technology, Chinese Academy of Sciences. Our soft exoskeleton system is composed of six components
which are the actuation module, Bowden cable, a Bowden cable adjusting unit, load cells, IMU sensor,
and soft wraps (see Figure 1).

Actuator

Adjust 
Device

IMU

Knee 
board

Battery

Vest

Wraps

Load cell

Bowden 
Cable

Figure 1. The system overview is showing the structure of the soft exoskeleton and the position of its
every part.

The overview of our exoskeleton is shown in Figure 1. The actuator, fixed in the back of the
human through a belt, contains the motor, microprocessor, and switch. The end of the Bowden cable
is connected to the load cell (GJBLS-WS, Bengbu Zhongcheng Sensor, Bengbu, China), and the other
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end of the load cell is connected to the wraps through an elastic material. The soft exoskeleton is not
interfering with the wearer’s movement when the Bowden cable is slack. The real-time assistance
force can be measured by the load cell. The elastic material between the load cell and wraps is used
to counteract the significant changes of the force in Bowden cable, and increase the comfort of the
soft exoskeleton. The wraps are fixed in the knee joint, which helps to avoid the problem of wraps
slapping with assistance. In each leg, the IMU (BWT901CL, Shenzhen wit-motion Technology Co.
Ltd., Shenzhen, China, Integrated high-precision Kalman filter attitude fusion algorithm to reduce
measurement noise and improve measurement accuracy) and the microprocessor are fixed in the thigh
through wraps. The state of the lower limb can be obtained through IMU, and the information of IMU
and load cell is transmitted to the main controller through Bluetooth.

As shown in Figure 1, the entire drive module is fixed to the vest. The Bowden cable relates to the
leg cover of each leg through the fixed point on the vest, which transmits the force from the motor
system to the protective clothing. When the motor rotates inward, the distance between the connection
points will be shortened, producing tension on the Bowden cable and acting on the whole protective
clothing. Moreover, the initial length of the Bolton cable is adjustable for different wearers. IMU is
used to collect real-time motion data of the wearer, such as angle, angular acceleration, and angular
velocity. On each leg, two IMUs are respectively installed in the front of the thigh and shin. A load
sensor is defined between the anchor cable and the anchor point to monitor force change in real time
and return the force data to supply the microcontroller [24]. The exoskeleton consists of a nylon vest
with a traction train, two belts wrapped around the test object, and two scaffolds (carbon fiber plate)
which transmit traction torque to the knee and femoral joints.

We use two driving modules ADM-15D80-CALT (ADM-15D80-CALT, Techservo, Shenzhen, China).
Each driving module includes a brushless motor (MG-1/S 6010, DJI, Shenzhen, China). There are
microprocessors (STM32F407, STMicroelectronics, Milano, Italy) that connect the microprocessor with
the CAN communication protocol to process IMU and load sensor data, and send the command from
the position required for the engine drive device. The system is supplied by a battery of lithium
ions capable of 48V and 3ah. As shown in Figure 2, the control system is divided into three parts:
perception layer, conversion layer and execution layer. The perception layer mainly receives signals
from various mechanical sensors and identifies the human motion intention according to the intention
recognition algorithm. In the conversion layer, a parameter optimal iterative learning control (POILC)
method proposed by Chen et al. [24] is adopted, which maps the generated motion intention into the
corresponding force generation trajectory. Finally, the executive layer controls and

Control System

Control System 

Perception Layer
Recognize human movement intention

Conversion Layer
Montion intent is mapped to control 
algorithm 

Execution Layer
Control algorithm drives flexible 
lower exoskeleton

Human body

Fexible lower 
exoskeleton

Perceived motion 
information

Motion perception 
information feedback

Control instruction 

System status

Interaction

Figure 2. Control strategy of flexible exoskeleton.
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drives the flexible exoskeleton according to the force generation trajectory. Therefore, in the control
system of flexible lower limb exoskeleton, human motion intention recognition plays an important role.

2.2. Analysis of Motion Characteristics

The lower limb movement of the human body has periodicity and regularity. Therefore, the cycle
can be defined under flat conditions, starting from the foot impact of a foot to the end of the next foot
of the same foot. [12]. Thus, the gait can be divided into support phase and swing phase (see Figure 3).

Support phase Swing phase

Figure 3. Gait cycle.

In this paper, four inertial sensors in front of the big and small legs are installed, as shown in
Figure 1. We calibrate the x-axis of the sensors uniformly and horizontally to the left. The angle
analysis of hip and knee joints in different terrains is mainly based on the angle of these two joints,
relative to the x-axis.

In our daily life, besides walking on the ground, stairs and ramps are the most common terrains.
Five kinds of terrains are studied (see Figure 4). In different terrains, the motion information of the
hip joint and knee joint is different. While walking on flat ground, the left and right legs regularly
switch between the two major phases. The angle and angular velocity of the hip and knee joints
change periodically. The process of walking up and downstairs is similar to walking on flat ground,
which also has periodicity. In the process of going upstairs, the hip and knee joints are in a state
of flexion. With lifting the leg, the flexion angles of the hip joint and knee joint gradually increase.
The maximum value of the flexion angle appears in the later stage of the swing phase. While going
downstairs, the flexion angle of the knee joint gradually increases in the support phase, reaches the
maximum flexion angle in the early swing phase, and gradually extends in the second half of the
swing phase. Different terrain can be identified by motion information. Figure 5 shows the changes in
hip and knee joint angles in diverse terrain.

Figure 4. Five classic terrains.
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When the human body is standing still, the starting angle of the hip and knee joints is about
90 degrees, which may vary slightly from person to person. From standing to walking on the horizontal
ground, the first time you lift the right foot, then you start to enter the support phase. The angle of the
right leg’s hip joint increases slowly to the peak value and reaches the middle stage of the support
phase. At the end of the support phase, the angle of the right leg’s hip joint fell back to the standing
state. After that, the right leg’s hip joint angle began to decrease to the minimum value, reached the
middle swing phase, and finally returned to 90 degrees in the late swing phase. The whole process is a
gait cycle. The hip joint angle of the left leg is a mirror image to the right leg. The angle change of the
knee joint will not be described in detail. The gait change of walking on flat ground can be clearly seen
from Figure 5.
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Figure 5. The changes in hip and knee joint angles in diverse terrain. LW (Level ground walking),
SA (Stair ascent), SD (Stair descent), RA (Ramp ascent), RD (Ramp descent). rh (right hip),
rk (right knee), lh (left hip) and lk (left knee).

The change of gait on stairs is similar to that on flat ground, especially the hip joint change, but its
peak value is different. The maximum amount of going upstairs is about 110 degrees, while walking
on flat ground is about 120 degrees. The curve of the hip joint angle is sinusoidal. However, the knee
joint has a small increase in the early stage of swing, and then falls back to the minimum value.
For downstairs, the range of knee joint swing is more wider, the hip joint mainly plays a role of
supporting body balance, and its swing range is tiny, between 70 and 95 degrees.

It is not difficult to find that the angle change trend of uphill and upstairs is very similar.
The difference is that the knee joint drops sharply from the middle stage of support phase to the
intermediate stage of swing phase during the uphill process. In contrast, the knee joint first drops
to the later stage of support phase, and then goes through a small increase and then decreases until
the later stage of the swing phase. During the ascent, the angle of hip and knee joint changes greatly.
The knee joint has a broader range of change, while the hip joint is not apparent. Except for the joint
angle which is able to be used as a recognition feature, in order to find more in-depth representation
by deep learning, we also add angular acceleration and angular velocity as input data.

The angle information used in this paper is directly output by IMU, and there is a 90-degree
difference with the actual hip posture angle. Therefore, 90 degrees should be subtracted from the
original angle information when compared with the attitude angle obtained by Vicon system dynamic
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capture in [25]. One-way ANOVA showed that there was no significant difference in F value at the
level of a = 0.01. Therefore, the inertial measurement system used in this paper is reliable.

To solve severe delays in the flexible exoskeleton control, we also studied the conversion modes
between the five topologies. Continuously moving on the same terrain is defined as steady-state model,
and all five types of terrain mentioned above belong to the steady-state model. The motion mode from the
initial terrain to another terrain is called the transition mode. The sliding window is used to extract the
data corresponding to the steady-state mode, i.e., 100 data points are extracted from the toe off the ground.
For the eight transition modes, several frame data are extracted from the conversion step. Figure 6 shows
the angle signals of both legs’ sensors with eight transition modes.

Figure 6. The angle signals of both legs sensor with eight transition modes.

3. Identification Method

3.1. Gait Data Process

Considering that data loss is inevitable in data acquisition, we first replace the data loss with the
values of the previous moment to ensure that the subsequent data are correctly transmitted to the
network. We use mean filter with a window length of three for the random noise processing of the
original data according to Equation (1).

θi(t− j)′ = 1
3 ∑−1

1 θi(t− j),

ai(t− j)′ = 1
3 ∑−1

1 ai(t− j), i =
{

rh, lh, rk, lk
}

wi(t− j)′ = 1
3 ∑−1

1 wi(t− j)

(1)

where θ is the joint angle at time t before filtering and θ′ is the corresponding joint angle after filtering.
In the same way, a, a′, w, w′. Here, i denotes one of the six joints, and j is the tag of a window.

Therefore, the characteristics of the DDLMI model are characterized according to Equation (2):

x =
[
θi, ai, wi

]T
, i =

{
rh, lh, rk, lk

}
(2)

To make the neural network produce a better effect, we use the following formula to standardize
the input vector elements to the range of [−1, 1], according to Equation (3):



Electronics 2020, 9, 2176 8 of 18

Xθi
′ = (ymax − ymin) ∗ Xθi−Xθmin

Xθmax−Xθmin
+ ymin

Xai
′ = (ymax − ymin) ∗ Xai−Xamin

Xamax−Xamin
+ ymin

Xwi
′ = (ymax − ymin) ∗ Xwi−Xwmin

Xwmax−Xwmin
+ ymin

(3)

We normalize the angle, acceleration, and angular velocity, and set ymin the lower limit to −1 and
the upper limit to 1. Xθmin and Xθmax represent the minimum and maximum values of the input angle
vector, respectively. Xamin, Xamax, Xwmin and Xwmin are set in the same way.

Next, we use a sliding window with an overlap of fixed length to segment the data. We move
the sliding window from one sampling point to another, then keep a certain proportion of the
previous window and move forward the same length. Each window sequence is a training sample.
Moreover, each sample carries the history information of the previous sample. In this paper,
the window size is set to 100, and the step size is 50.

Concerning labeling, we adopt the method of “one-hot”, that is, in each column vector, except one
is 1, the others are 0. All the locomotion modes as expressed by Equation (4).

Level ground walking
[
1 0 0 0 0

]
,

Stair ascent
[
0 1 0 0 0

]
,

Stair descent
[
0 0 1 0 0

]
,

Ramp ascent
[
0 0 0 1 0

]
,

Ramp descent
[
0 0 0 0 1

]
.

(4)

3.2. DNN-Based Deep Locomotion Mode Identification Model

In order to obtain a strong correlation between different signal features of four IMUs at different
positions, from the perspective of time, a motion pattern recognition method based on deep learning
with historical information is proposed. M. Zeng et al. [26] proposed the first important work of human
activity recognition using a convolutional neural network. In this paper, the author develops a simple
CNN model for accelerometer data. Accelerometer data of each axis of accelerometer data are input
into a separate convolution layer, pooling layer, and then connected before the hidden full connection
layer is interpreted. With the rise of deep learning networks, many researchers have begun to use a
neural network to recognize human movement [27–29], which provides a new idea for improving the
pose recognition of flexible lower limb exoskeleton.

Since sensor activity data are recorded in time series, it is important to prepare training data
according to the request for neural network convolution (CNN). In our proposed DNN-based
deep location mode identification model(DDLMI), the data input includes four multi-dimensional
channels, including an axis angle (x), two axes (XY) acceleration and two axes (YZ) angular velocity.
Before transmitting to the network, we generally perform a series of preprocessing on the original
data. Firstly, average filtering is performed for noise filtering, and then the data are normalized to
eliminate the adverse effects of singular sampling data, and data is expanded by sliding window
algorithm. Finally, data from parallel one-dimensional time series need to be reconstructed in the
three-dimensional structure required by DDLMI, including the specific number of one-dimensional
neurons, storing the number of memory steps to be processed for each time step and representing
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different sensor channels. For the architecture shown in Figure 7, we prepared a reformatted matrix of
shape: No. of data rows × 100 samples/sequence × 20 features.

Figure 7. The structure of the motion recognition method with historical information based on
deep learning.

The network architecture of this paper is composed of four convolution layers and one layer of
full connection. Since Relu activation function can alleviate the problem of overfitting, we add Relu
to each layer of the convolution network. In the last full connection layer, we use a dropout layer to
randomly discard some neural network units according to the probability of 0.5.

Therefore, the evidence for a locomotion mode is expressed by Equation (5).

f (x) = wh ∗ xt + bh, j = 1, 2, 3 . . . N (5)

where xt is the input feature, wh is the weights, bh is the bias, and N is the total number of all motion
modes. In this paper, we discuss five classical steady-state modes, eight transition modes, a total of
13 motion modes, so N = 13.

Finally, we use SoftMax function to calculate the probability of the model; the SoftMax function
as expressed by Equation (6).

yi = softmax ( f (x)) =
e f (x)

∑N
j=0 e f (x)

(6)

In the process of training the model, we must give the definition of error, namely loss function.
“Cross-entropy” is used for calculating the loss in this paper. Furthermore, it is defined by Equation (7).

loss =
1
N

N

∑
i=1

1
2

exp(−log(σ2))
∥∥yi
′ − yi

∥∥2
+

1
2

log(σ2(xi)) (7)

where yi is our predicted value, and yi
′ is the true value. In the loss function, this σ2(xi) describes the

accidental uncertainty of the model on the data xi, that is, the variance of the data.
Finally, Adam optimization algorithm is selected to adjust the network parameters to minimize

the loss and improve network performance.
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3.3. Performance Evaluation

To verify our proposed DDLMI method’s performance, we need to determine an evaluation index.
In this paper, the locomotion period was divided into a steady locomotion period and a locomotion
transition period. For the steady-state mode, the critical point is to identify the target terrain. As for
the transition mode, we are more concerned about whether it can be recognized earlier. As a result,
they were assessed separately.

1. Steady Locomotion Period: Normally, the identification success rate (ISR) is used for evaluating
the accuracy of a classification [7], which is given Equation (8).

ISR =
Ncorrect

Ntotal
(8)

where Ncorrect is the number of correct identification data while Ntotal is the total number of test
events in the experiment.

To better illustrate the identification performance and quantify the error distribution, the confusion
matrix is defined Equation (9).

CM =



c11 c12 c13 c14 c15

c21 c22 c23 c24 c25

c31 c32 c33 c34 c35

c41 c42 c43 44 c45

c51 c52 c53 c54 c55


(9)

The element of the confusion matrix is expressed by Equation (10).

cij =
Nij

Ni
(10)

where Nij is the number of samples that terrain i wrongly recognized as terrain j, and Ni is the
total number of terrains i. The elements on the diagonal of the confusion matrix are the recognition
accuracy. At the same time, those elements on the non-diagonal refer to the error rates.

2. Locomotion Transition Period: In order to judge whether the conversion pattern recognition
is timely, we adopt the critical moment of [7] proposed, which refers to the moment when the
user starts to change the current locomotion mode. The identification delay can be expressed by
Equation (11).

DI =
Ti − Tc

T
∗ 100% (11)

where Ti is the moment when locomotion transition is identified, Tc is the critical moment, and T
is the average time of a gait cycle.

4. Experiments Results and Analysis

4.1. Model Validation

4.1.1. Subjects and Experiment Protocol

Seven healthy subjects in the experiments (six males and one female, 24 ± 5 years old, 62 ± 9 kg
weight, and 172 ± 8 cm height) were provided with informed consent. According to the guidelines,
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all participants wore the flexible lower limb exoskeleton system and then performed the experiment
according to the requirements.

The experiment consists of three parts. Firstly, in order to train the model, we need to collect
sensor data. Through the second part of the feature analysis, we use four inertial sensors to place the
subjects’ left and right thighs and the center of the shin to collect data. The data are recorded at a
sampling frequency of 50 Hz, including accelerometer and gyroscope measurements. Each subject
was required to repeat the steady-state movement mode at a steady speed 30 times, including eight
switching modes: LW to SA, LW to SD, SA to LW, SD to LW, LW to RA, LW to RD, RA to LW and RD
to LW. The experimenter is responsible for collecting and recording the time series data generated
by the sensor. Each subject’s data are recorded separately, and each different gait behavior needs to
be labeled correspondingly. In the second part, the model parameters are determined by training
the model. In the process of model training, the test set is completely separated from the training
data set. In addition, to avoid using training data to overfit the model, 20% of the training data set is
reserved as the verification set [30]. When training the model, we set batch size = 600, epoch = 200,
and each training epoch takes 1.26 ms. When the epoch is about 130, the train loss tends to be balanced.
Using the TensorFlow framework, the system runs on a laptop with a processor of 1.8 GHz and a
memory size of 8 GB. The compiler environment is Python 3.7. In the last part, the accuracy and
real-time performance of the model are verified. The subjects were asked to walk at a uniform speed
on different terrains, including all-terrain and movement transitions shown in Figure 8. The height of
the stairs in the experimental scene is 16 cm, while the slope angle of the ramp is 10 degrees.

Figure 8. The testers wear a flexible lower-limb exoskeleton to test the continuous terrain
motion recognition. (a) LW (Level ground walking), (b) SA (Stair ascent), (c) SD (Stair descent),
(d) RA (Ramp ascent), (e) RD (Ramp descent).

4.1.2. DDLMI Identification Performance

In the model training stage, the loss and accuracy of network training and verification can be
obtained from Figure 9. After about 50 iterations, the loss functions of training and verification are
infinitely close to zero, and the accuracy of both approaches 100%. This shows that the model has a
good fitting effect. In the offline testing phase, the recognition accuracy of 7 subjects under different
terrain conditions is shown in Table 1. The lowest recognition rate is 96.07%, and the highest is 100%.
In the five terrains, ascending stairs and descending stairs have the best recognition rate. In these two
cases, the hip and knee of both legs extend more widely, different from other terrains. The recognition
of flat ground is the worst. The average classification rate of the five terrains is as high as 98.96%,
which is in line with the actual requirements. Moreover, the five steady states confusion matrix is
given in Figure 10. From the confusion matrix, it is not difficult to find that walking up and down the
slope is easy to be confused with walking on the ground. The main reason is that walking upslope and
walking downslope are similar, especially when the angle of slope is small. The second point is that on
the initial uphill and downhill, the smaller the stride, the easier it is to be recognized as walking on flat
ground. In addition, during the conversion, the last step is to walk on the ground, which may also be
inaccurate. Generally speaking, the probability of confusion is within the acceptable range, which is in
line with the actual situation, so the probability of correct identification is still satisfying.
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Figure 9. Average training and validation set accuracy performance over 50 iterations for DDLMI model.
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Figure 10. Confusion matrix of the steady locomotion period.

Table 1. The recognition accuracy of five different terrains.

Experimenter LW SA SD RA RD

Subject 1 96.14% 98.15% 99.03% 97.20% 97.03%
Subject 2 96.36% 99.42% 98.96% 98.05% 96.57%
Subject 3 96.78% 96.98% 99.24% 97.78% 98.05%
Subject 4 97.25% 96.25% 100% 96.42% 96.34%
Subject 5 96.22% 100% 97.89% 96.78% 96.27%
Subject 6 97.06% 100% 98.09% 99.01% 97.36%
Subject 7 96.21% 99.86% 99.56% 96.34% 96.07%
Average 96.57% 98.66% 98.96% 97.36% 96.67%
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In this paper, we consider eight conversion modes among five kinds of terrain: LW to SA, LW to
SD, SA to LW, SD to LW, LW to RA, LW to RD, RA to LW and RD to LW. The average delay rates of these
transition modes are listed in Table 2. The DDLMI method can identify the next motion mode before
the forelegs touch the ground. According to the definition, the results show that the recognition delay
rate is relatively small in horizontal ground walking and uphill and downhill, because the gait curves
of uphill and downhill are similar to that of horizontal walking. However, for the conversion between
walking up and down stairs and walking horizontally, the recognition delay rate is low, which shows
that this method has a significant recognition effect for up and down stairs and horizontal walking.

Table 2. Identification delay of locomotion transition.

Conversion Mode Identification Delay (Percent of One Gait Cycle)

LW to SA 8.28%
LW to SD 3.96%
LW to RA 13.54%
LW to RD 16.72%
SA to LW 9.12%
SD to LW 13.02%
RA to LW 12.38%
RD to LW 15.67%
Average 23.97%

4.2. Metabolic Cost Test

4.2.1. Experimental Setup and Protocol

In the field of exoskeleton, net metabolic costs are often used to support its efficiency to evaluate.
Six healthy adult males (24 ± 5 years old, 68 ± 8 kg weight, and 177 ± 6 cm height) participated in
the experiment for metabolic rate. We conducted the experiment indoors at a speed of 4 km/h and
temperature of 26 ◦C. To measure the metabolism, concentration and volume of expired lung gas were
measured using a gas analyser (COSMED K5, Rome, Italy) to record the concentration and volume of
the exhaled pulmonary gas, which is mainly composed of carbon dioxide and oxygen. The metabolic
rate can also be calculated using with Brockway equation modified [31]. For example, Equation (12).

∆H = c1VO2 + c2VCO2 (12)

where coefficients c1 and c2 are 16.89 kJ/L and 4.84 kJ/L, respectively, and ∆H is the energy rate (kJ/s).
During the migration process, carbon dioxide and oxygen sacrifice data were collected during the
stabilisation phase.

It is more beneficial to reduce oxygen consumption by exerting different forces according to
different terrains [24]. In [24], the experimental methods and steps of applying different forces
to different terrains are introduced in detail. This paper will not repeat the steps of the experiment,
the only thing that needs to be explained is that in the whole experiment process, the terrain recognition
method proposed in this paper is added in this experiment, and the fixed terrain in [24] is changed
into randomly switching terrain. The experimental progress is shown in Figure 11.

4.2.2. Metabolic Reduction by DDLMI

By adding the method of terrain recognition, the exoskeleton can give more accurate assistance in
different terrain, and the assist performance of exoskeleton is improved. A comparative experiment
was carried out on different terrains. The effect of DDLMI method on metabolic rate reduction is
shown in Figure 12 . The results show that the algorithm improves the flexible exoskeleton through
adaptive terrain. After applying the DDLMI method, the net metabolism is reduced greatly. The net
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metabolism was reduced by 13.66% without DDLMI and 19.45% without DDLMI. Compared with the
unrecognized method, the net metabolism was reduced by 5.79%, which improved the auxiliary effect
of the flexible lower extremity exoskeleton.

K5

Soft 
Exoskeleton

Figure 11. The subjects wore exoskeletons and walked on five different terrains. The Bowden cable
driven by a motor assisted different forces in different terrain. The metabolic rate is measured
through K5.

13.66%
19.45%

p1 p2

p3

Figure 12. The metabolic reduction when walking on different terrains. The NO EXO, NO DDLMI,
and DDLMI present the case of not wearing soft exoskeleton, and wearing exoskeleton with and
without the DDLMI method. p1, p2, and p3 are the results of two-side t-tests, which are 0.0015,
0.009, and 0.0002, respectively.

5. Discussion

This article first introduces the basic structure of the SIAT flexible exoskeleton and its control
strategy, and then determines the characteristics of the motion mode by analyzing the gait in five
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different motion modes. Finally, a novel DDLMI method is proposed to identify the movement
intention of the flexible exoskeleton. This method can transfer parameters before the next movement
mode is switched, so that the exoskeleton can change the state parameters in advance to adapt to
the new mode. Thereby, the control performance of the flexible lower extremity exoskeleton system
is greatly improved, and the exoskeleton can switch naturally and seamlessly between multiple
movement modes according to the human movement intention.

In terms of time, the method in this paper attempts to predict the next movement mode before the
movement mode has occurred, so as to better realize the recognition of the intention. The comparative
experiment and analysis are shown in Table 3.

Table 3. Comparison of the methods and experimental results, where acc, gyr and pre represent
accelerometer, gyroscope and pressure sensors, respectively.

Research Sensor Signal Characteristics Classifier DI ISR

Liu [15] 1 acc, 1 gyr, 2 pre ICC HMM 95.8%
Young [32] 1 IMU, 1 pre Mean, Std, Max, Min DBN 94.7%
Wang [7] 6 IMU ICC LSTM 30% 98.3%

Zheng [22] 2 acc, 2 gyr, 1 pre Mean, Std, etc SVM + QDA 94.9%
Omid [33] 5 IMU ICC DCNN 97.06%
This work 4 IMU ICC DDLMI 23.97% 97.64%

When only five steady-state modes are considered, the recognition rate of the method in
this paper is as high as 97.64%, which is slightly higher than the literature [15,32]. In addition,
most literature [15,32,34] uses multiple types of sensors, which need to solve the problem of data
fusion. For example, inertial measurement unit plus pressure sensor, etc. In this paper, a single sensor
is used. Before the mode conversion, the timing sequence of the two-side sensor is collected for
recognition, and the recognition result reaches 97.64%. Therefore, the method in this paper does not
need to consider the fusion of various types of sensors, such as mechanical sensors, pressure sensors
and multimodal data signals, reducing the complexity of the algorithm, and achieves recognition
accuracy, that is not lower than, or is even better than traditional methods. Research studies [7]
including this paper use a single sensor IMU, but the number of sensors is more than this paper.
In terms of recognition rate, this article is second only to literature [7], but the delay rate of the DDLMI
recognition method proposed in this article is the lowest overall. However, in [33], which also uses
convolutional neural network for gait recognition, it is still slightly lower in recognition accuracy
than the method in this paper, and it uses more IMUs. It can be seen that this method is not only
better than traditional machine learning (SVM, HMM) methods, but also slightly better than similar
neural networks. In [35], fixed cameras were used to capture the sequence image of human body
movement, and a neural network was finally used for recognition, with the recognition accuracy up to
95%, slightly lower than the method in this paper. Compared with the recognition of gait by optical
system which is confined to indoor sports, the method in this paper is applied to a wider range of
scenarios, and can be recognized even in outdoor sports. In order to further verify the performance
and effectiveness of our system, we compared the precision with the dynamic capture system in
Table 4.

Table 4. Comparison with motion capture system

System Number of IMU Number of Plantar Pressure ISR

Kinetic Human Movement Capture [36] 8 2 98%
This work 4 0 97.64%

Although our recognition accuracy is slightly lower than that of the motion capture system,
we used the minimum number of IMUs based on the minimum rule, and did not use the information
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of foot pressure, and obtained the recognition effect of 97.64%. In addition, fewer sensors are more
suitable for wearable flexible exoskeletons. Therefore, all in all, the accuracy and robustness of the
method in this paper are relatively good, and it has engineering application value in exoskeleton
and prosthesis.

6. Conclusions

In this paper, the DDLMI method for real-time terrain recognition based on a single sensor is
proposed. With the input of the original data of accelerometer and gyroscope, the average recognition
accuracy of the five typical motion patterns was 97.64%, and the average recognition delay was 23.97%
of a gait cycle. The results of continuous terrain recognition show that this method can run online in
real time. Moreover, it is proven that the net metabolism of walking on different terrains is reduced by
5.79% compared with that without the recognition method, which can improve the assist effect of the
flexible lower limb exoskeleton. Therefore, the parameters can be transferred in advance before the
motion mode is converted, so as to adjust the control parameters of the flexible exoskeleton in time and
recognize the human motion intention better. Using a single sensor can reduce the complexity of data
processing to a certain extent. Compared with the traditional intention recognition methods, we use a
deep learning model, which can directly extract deeper features from the original data without manual
intervention. This study’s significance is that it can make the flexible exoskeleton control system
change the related parameters of the lower limbs in advance and switch to different terrain modes
seamlessly, which helps the wearer achieve more stable and smooth walking. This provides a new
idea for the prediction and recognition of the movement intention of a flexible exoskeleton.
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