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Abstract: The use of quasi-Z-source inverters (qZSIs) for DC-DC power conversion applications
has gained much recognition when dealing with grid-tied renewable energy resource integrations.
This paper proposes a novel self-powered dynamic system (SPDS) involving a piezoelectric vibration
energy harvester (PVEH) using qZSI to establish interoperability with a DC load rated at 16.15 mW.
Based on uncertain output performances from a piezoelectric cantilever beam (CB), the qZSI-based
PVEH serves as a dynamic voltage restoration unit that establishes load-following synchronisation.
It uses a proportional-integral based boost controller (PI-based BC) to generate strategic ordering of
shoot-through voltage amplification into pulse-width modulation (PWM) gating sequences. The SPDS
was modelled using two software based on commercially available product specifications: (i) COMSOL
Multiphysics to mechanically design and optimise a CB. (ii) PSCAD/EMTDC to electronically design
and integrate the qZSI with the optimised CB, while functioning as a testbed to model the SPDS
against arbitrary wind speed and structural vibration frequency data collected from an above-ground
mass rapid transit (MRT) train station in Khatib, Singapore. The acquired simulation results
have depicted desirable transient responses at respective sub-systems, procuring fast settling-time
responses, negligible steady-state error, as well as high efficiencies of 94.07% and 91.64% for the CB
and SPDS respectively.

Keywords: energy harvesting; self-powered dynamic system; piezoelectric device; DC-DC power
converter; voltage-controlled oscillator; integrated circuit modelling

1. Introduction

Research efforts on self-powered dynamic systems (SPDSs) involving vibration-based energy
harvesting have gained interest due to the relevancy of their deployment to sustainable urban energy
planning. They can replicate operational benefits similar to either solar or wind energy harvesting
systems that possess compact circuitry design and lower installation costs, whilst achieving greater
sensitivity towards environment variations [1–3]. Vibration-based energy harvesting technology is
commonly associated with piezoelectric mechanisms that convert mechanical energy into electrical
energy based on detected ambient vibrations. Notably, the piezoelectric vibration energy harvester
(PVEH) is known for its high power density and high energy conversion efficiency [4–7]. The PVEH
typically employs a piezoelectric cantilever beam (CB) with a proof mass mounted at its free end
while its other end is fixed to a centralised, vibrating host structure. Whenever ambient vibrations
are propagated across the host structure, the CB’s free end resonates in vertical oscillatory motion to
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generate electrical power. The proof mass expedites this power generation process by reducing the
CB’s resonant frequency to match the ambient vibration frequency [8].

1.1. Cantilever Beam Configurations

Different CB configurations were explored for optimised energy harvesting. Abasian et al. [9]
proposed a CB that features a miniature permanent magnet (PM) at the tip of its free end instead
of a non-magnetic proof mass. However, this design is only compatible with AC-based systems as
the interaction between PM and the magnetic field will induce vibrations across the CB to generate
power. Moreover, it was discovered that the narrow operational bandwidth of CBs is generally difficult
to overcome using magnetic-based configurations, as the PM only operates optimally at a specific
angle for all magnetisation vectors. To overcome this limitation, unimorph-configured CB that was
designed with a single piezoelectric layer made of lead zirconate titanate (PZT), fused with an elastic
charge conductor layer made of silicon, as well as a proof mass is proposed in [10]. Experimental
results proved that by incrementing the dimensions of both layers and volume of the proof mass
proportionally, the CB’s resonant frequency will be greatly reduced to match the ambient vibration
frequency. Subsequently, [11] suggested a superior unimorph-configured CB concept by proposing
an additional PZT layer to form a composite beam known as the bimorph. It improves the tunable
effectiveness of the proof mass, since doubled output peak power is observed when compared to
the unimorph. Power was transferred to the load with improved electromechanical coupling and
impedance matching.

1.2. Power Management Frameworks

Various research works have been initiated into engineering-suitable power conversion systems
that can harvest optimal power generation from PVEH technology [12–15]. Typically, it involves a
centralised isolated or non-isolated DC-DC converter to perform either buck or boost operations before
transferring power to the load. Two major challenges arise whenever conventional DC-DC converters
are operated in conjunction with the CB; (i) the piezoelectric material exhibits large capacitance, and a
primitive approach requires an impractical-sized inductor on the load, (ii) the CB’s impedance varies
according to the environmental condition. Hence, impedance matching methods such as conjugate
matching [16] and resistive matching [17] are proposed. Conjugate matching uses switching devices
(e.g., insulated-gate bipolar transistors, or IGBTs) and inductors for shaping the output voltage and
current waveforms to alter the load impedance, thus enabling a higher power transfer for a wider
vibration frequency range as compared to resistive matching. Since the switching devices should be
switched synchronously with the displacement of the beam, it is inherently difficult to conform to
rigorous timing control with simple circuitry and low power consumption [18,19]. However, resistive
matching can only be realised if the impedance of the CB vibrating around the resonant frequency
is mostly resistive [17–20]. Existing power management circuits that employ impedance matching
methods have not addressed practical concerns such as synchronous switching enablement and efficient
power transfer in SPDSs.

In order to alleviate the limitations of conventional power converters, the quasi-Z-source inverter
(qZSI) has been proposed in various power systems [21–25]. The qZSI is an improved version of the
Z-source inverter (ZSI). It comprises of an impedance network formed by a diode, two inductors
and two capacitors, interfaced with an inverter circuit. The passive components allow the qZSI to
realise buck-boost inversion and power conditioning in a single stage with greater reliability [25,26].
Unlike conventional voltage-source inverters (VSIs) and current-source inverters (CSIs), it has an
extra switching state known as the shoot-through state. The shoot-through state is a phenomenon
that occurs in qZSIs when synchronous switching of their inverter legs is enabled, which eliminates
dead-time to minimise ripple in output waveforms. Conjointly, it facilitates charging and discharging
of the passive components in order to step-up voltage at the qZSI’s DC-link, thus mitigating a system’s
reliance on step-up transformers [27]. If shoot-through is attempted in VSIs and CSIs, their respective



Electronics 2020, 9, 265 3 of 21

semiconductor devices will be destroyed due to sudden voltage and current surges (i.e., inrush current)
between passive components at start-up [28].

1.3. Related Work and Research Gaps

Extensive comparisons between the qZSI and conventional power converters were performed in
the recent research trend [26–30]. Results indicated that the qZSI has several unique advantages such
as its ability to draw continuous current from an input source, being able to operate at a myriad of
input voltages, and possessing a common DC rail between the source and inverter to minimise circuit
complexity as well as electromagnetic interference (EMI). Higher overall efficiency was attained at lower
component ratings and costs. Several proportional-integral (PI) based, pulse-width modulation (PWM)
boost control schemes for qZSIs in power system applications were explored [31–33]. Reference [31]
presentsed a multilevel space vector modulation (SVM) scheme for three-phase quasi-Z-source cascaded
multilevel inverters (qZS-CMIs) in photovoltaic (PV) power systems. It employed a phase-locked loop
(PLL) that detects the grid voltage’s phase angle to ensure that the reference grid current is in phase
with the grid voltage. Modulation deficiencies are prevented during boost operations, since the PLL
does not require extra references and comparators to generate shoot-through duty cycles for each qZSI
module. Reference [32] proposed a new control scheme derived from the simple boost control (SBC)
method. It uses a higher modulation index to achieve the same voltage gain. As such, the voltage
stress on the qZSI’s network capacitor, switches, and diodes will be minimal. In contrast to the SBC
method, the proposed control scheme introduces an additional operating state whereby the inverter
switch S5 is turned on during non-shoot-through periods. Reference [33] presented a pulse-width
amplitude modulation (PWAM) boost control scheme which is conceived by combining sinusoidal
pulse-width modulation (SPWM) with pulse-amplitude modulation (PAM). This control scheme aids
in nullifying power losses across the qZSI while producing a varied DC-link voltage. In addition, the
qZSI’s network impedance was significantly reduced due to the allowance of second harmonic voltage
pulsation at DC-link.

The aforementioned research works [31–33] demonstrated that by actively manipulating the qZSI’s
shoot-through duty ratio to attain the desired boost factor, its DC-link voltage will be correspondingly
adjusted. Notable advancements in power management were attained through the utilisation of
traditional PWM switching sequences involving different types of carrier signals. However, to the
authors’ best knowledge, so far no literature has presented the boost control scheme for qZSI-based
PVEHs in SPDSs. To date, the research focus has been on the integration of qZSIs with either PV solar
panels or wind turbines.

1.4. Contributions

This paper’s contributions are as follows: (i) A novel SPDS using qZSI-based PVEH is proposed to
convert mechanical energy from wind-enhanced vibrations into electrical energy at an above-ground
mass rapid transit (MRT) train station in Khatib, Singapore. (ii) The SPDS’s design features a CB
interfaced with qZSI and three-phase rectifier to provide efficient power transfer to a DC load rated at
16.15 mW in PSCAD/EMTDC testbed environment. (iii) Prior to the SPDS’s development, COMSOL
Multiphysics was employed to optimise the CB’s design based on varied conditions such as resonant
frequency, load resistance, the length-width ratio of piezoelectric layers, the width of proof mass
and thickness of piezoelectric layers. (iv) Optimised parameters including maximum output voltage
and power were acquired as reference PSCAD/EMTDC inputs for the SPDS. (v) A modified PI-based
control scheme derived from the SBC method is utilised to resolve input voltage inadequacies during
fluctuating ambient conditions through autonomous voltage step-up operations. (vi) This is an
extended work of the authors’ previous works [7,26]; which investigated the physical properties of a
CB for optimal energy harvesting, and the differences between the ZSI and qZSI in terms of transient
performance. From these investigations, it was found that a bimorph-configured CB made of lead
zirconate titanate 5A (PZT-5A) is able to maximise its electromechanical coupling ability to generate
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substantial power in a typical urban environment, whilst the qZSI exhibited several unique traits that
allow it to overcome the limitations of the ZSI. This includes lower inrush current at start-up, reduced
capacitor voltage stress, smaller ripple, negligible clipping of DC-link voltage, lower EMI, and the
ability to draw continuous input current. Hence, this paper aims to harness the benefits offered by
the CB and qZSI topologies through implementation of the SPDS, using model-based integration and
experimentation approaches.

The remainder of this paper is organised as follows: Section 2 presents the CB’s proposed
fundamental design and circuit model analysis. Section 3 presents the results and parameters acquired
from the CB’s optimisation. Section 4 presents the SPDS’s proposed framework, control scheme,
impedance network components’ design, and simulation model specifications. Section 5 presents the
corresponding simulation results and performance analyses. Finally, Section 6 concludes the paper.

2. Fundamental Design and Modelling of the Cantilever Beam

The proposed CB is illustrated in Figure 1. Its bimorph-configured design mainly consists
of two identical piezoelectric layers made of PZT-5A and a flexible, charge conductor layer made
of copper. A tungsten proof mass is mounted at the tip of the upper PZT-5A layer for improved
vibration sensitivity. Both PZT-5A layers are series-connected with opposite polarisation directions
in order to sustain large displacements and high reliability whenever the CB’s operational threshold
exceeds its coercive electric field. The piezoelectric constant d31 is selected for the CB as its primary
operating mode, therefore enabling maximisation of its power generation potential with respect to low
matching impedance.
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Hence, if both PZT-5A layers of the CB are physically deformed by applied mechanical stress
such as vibration or pressure, electric charges will be generated to form an electric field. This process
of converting mechanical energy into electrical energy is known as the forward piezoelectric effect,
which can be defined by its constitutive equations [7]:

S1 = s11T1 + d31E3 (1)

D3 = d31T1 + ε33E3 (2)

where S1 and T1 are the mechanical strain and stress in length direction of the PZT-5A layers. E3 is the
electric field. D3 is the electric displacement, or electric charge density. s11 is the elastic compliance in a
constant electric field. d31 is the piezoelectric constant. ε33 is the permittivity constant of the PZT-5A
layers under constant stress.
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Since the PZT-5A layers are assumed to be identical, the voltage across the electrodes of each
layer is vp(t)/2 when connected in series. Due to opposite polarisation directions in d31 mode, the
instantaneous electric fields of the PZT-5A layers are in the same direction, and can be defined as:

E3(t) =
−vp(t)

2hp
(3)

where hp is the thickness of each PZT-5A layer. Based on the Euler-Bernoulli beam theory [11], the CB
is modelled as a uniform composite beam. As such, when the CB vibrates, the effects of rotary inertia
and shear deformation are neglected, while its plane sections are assumed to remain plane. This is a
reasonable assumption since commercially available CBs are typically manufactured using relatively
thin piezoelectric layers.

To maximise the output power of the CB, it has to be operated at a resonant frequency that matches
the vibration frequency of its intended application. Hence, it is crucial to attenuate the resonant
frequency, where its angular form ωr and regular form f r can be defined as [34,35]:

ωr =

√
k

meff
=

√√
3YpIp

(
l −3
p

)
0.24mlp + mt

(4)

fr =
ωr

2π
(5)

where k is the coupling coefficient, meff is the effective mass of the CB, Yp Ip is the flexural rigidity of
the CB, lp is the length of each PZT-5A layer, m is the mass per unit length, and mt the proof mass.
The numeric constant 0.24 denotes that 24% of the CB’s mass is participative in vertical displacements.
From (4), it is deduced that the CB’s resonant frequency can be attenuated by changing either the
coupling coefficient or the aforementioned geometric parameters.

For oscillating devices such as the CB, it is mandatory to implement damping measures that
mitigate excessive vibrations and protect the system which incorporates it. Thus, unnecessary power
losses can be avoided while the CB operates at an optimal resonant frequency. In this case, the
mechanical damping ratio ζ is used to gauge the CB’s oscillatory behaviour based on (4). It can be
expressed using the following equation [36]:

ζ =
c

2meffωr
(6)

where c is the damping coefficient of PZT-5A. Succeedingly, the DC output voltage of the CB under
vibration-induced vertical displacements can be analytically determined as follows [36]:

Vp =
− jω

(
Ypd31hpSz

ε33

)(
A2

in

)
(
ω2

r
RpCp

−
ω2

RpCp
− 2ζωrω2

)
+ jω

(
ω2

r + ω2
r k2 + 2ζωr

RpCp
− ω2

) (7)

in which:
Sz =

0.5T1

Ypz
(8)

Cp =
2ε33bple

hp
(9)

where ω is the ambient vibration frequency (in rad/s), Yp is the Young’s modulus of PZT-5A, Sz is
the strain relative to the vertical displacement of the CB, Ain is the input acceleration, Rp is the load
resistance, Cp is the internal capacitance of the CB, z is the vertical displacement, bp is the width of the
PZT-5A layers, and le is the electrode length relative to the length of the PZT-5A layers.
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Assuming that the CB’s resonant frequency ωr matches the ambient vibration frequency ω,
Equation (7) can be simplified to:

Vp =
− j

(
Ypd31hpSz

ε33

)(
A2

in

)
2ζω2 + j

(
ω2k2 + 2ζω

RpCp

) (10)

hence maximising output power in conjunction with impedance matching, where the CB’s source
resistance is equivalent to the load resistance. The output power P can be computed as a function of
the output voltage Vp and the load resistance Rp [37–39]:

P =
V 2

p

2Rp
(11)

Through analyses of Equations (7)–(11), it is deduced that the key parameters which dictate the
CB’s electrical output performance are its resonant frequency and load resistance, as both require concise
formulation with respect to the CB’s geometric parameters (i.e., length, width, thickness and mass).

To perform design optimisation of the CB in COMSOL Multiphysics, its fundamental design is
defined as input parameters for the software’s simulation model interface. These parameters [40,41]
are shown in Tables 1–3. The selected materials’ relatively high Young’s modulus and Poisson’s ratio
indicate that the CB is capable of exhibiting high bending strength while supporting the weight of its
proof mass if exposed to large, vibration-based excitation forces. Notably, PZT-5A was selected for its
highly flexible yet robust nature, and for its renowned ability to detect low-level vibrations.

Table 1. Initial geometric parameters of the CB.

Geometric Parameters Symbols Values

PZT-5A dimensions lp × bp × hp 10 mm × 5 mm × 0.2 mm
Copper dimensions lc × bc × hc 10 mm × 5 mm × 2 mm

Proof mass dimensions lt × bt × ht 5 mm × 5 mm × 5 mm
Proof mass mt 0.0024 kg

Table 2. Material properties of the CB.

Material Properties Symbols Values

PZT-5A
Piezoelectric constant d31 −10.4 C/m2

Permittivity constant ε33 13.3 nF/m
Young’s modulus Yp 61 GPa

Poisson’s ratio vp 0.31
Density ρp 7750 kg/m3

Copper
Young’s modulus Yc 119 GPa

Poisson’s ratio vc 0.33
Density ρc 8960 kg/m3

Tungsten
Young’s modulus Yt 411 GPa

Poisson’s ratio vt 0.28
Density ρt 19,300 kg/m3
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Table 3. 1N5822 Schottky diode (D1–D4) specifications.

Parameters Symbols Values

Absolute maximum ratings
Repetitive reverse voltage VRRM 40 V

Forward continuous current IF,CO 3 A
Power dissipation PD 3.6 W

Electrical characteristics
Reverse breakdown voltage VBR 40 V

Forward voltage VF 0.53 V
Reverse current IR 0.5 mA

3. Optimisation of the Cantilever Beam

As part of the optimisation process of the CB in COMSOL Multiphysics, the finite element
method (FEM) is used to evaluate it for stress distribution within a real-time environment based
on structural vibrations from common ambient vibration sources. Through FEM, the CB is initially
developed using the proposed input parameters (i.e., Tables 1–3) and triangular mapped meshing
to facilitate discretisation. Eigenfrequency analysis is conducted to identify the range of resonant
frequencies that the CB is able to operate in, while verifying against Equations (4) and (5). Thus,
a range of 20–220 Hz has been identified, which is relatively similar to the vibration frequency range of
common ambient vibration sources. Extensive optimisation of the CB is performed through frequency
domain analysis, where simulated output power responses are acquired with respect to varying input
parameters. These parameters are resonant frequency, load resistance, the length-width ratio of PZT-5A
layers, the width of proof mass and thickness of PZT-5A layers. Figures 2–5 present the respective
simulation-based optimisation results.

From the results, it is observed that the CB’s output power tend to increase steadily before
decreasing at a relatively proportional rate once it reaches its peak value, which indicates that the
CB has a performance threshold for each input parameter. Hence, its design is modified according
to the parameters that allowed it to achieve maximum output power. Figure 2 has indicated peak
performance of the CB at 120 Hz resonant frequency with an ideal operating load condition of 4 kΩ.
Using results from Figure 2 as the basis for subsequent optimisations, the length-width ratio of
the PZT-5A layers is varied from 2 to 20, as shown in Figure 3. It is discovered that as the length
increases, vertical displacements of the CB will increase, therefore sharply increasing its output power.
Contrastingly, as the width increases, vertical displacements will decrease, thus reducing the output
power. The maximum output power of 7.4 mW is obtained at an optimum length-width ratio of 12.
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To explore the proof mass’ effect on power generation, its width is varied from 5 mm to 32 mm,
as shown in Figure 4. The range of the experimental widths is identified based on (4), given that the
CB needs to conform to a resonant frequency of 20-220 Hz in order to generate a substantial voltage.
The width correlates with the weight of the proof mass, mt, in (4), such that any change in the width
affects the volume of the proof mass, thus fine-tuning mt. Consequently, the CB’s resonant frequency is
reduced to enhance its vertical displacements based on the inertia effect of the proof mass. Results
indicate that the output power increases linearly with respect to increasing width of the proof mass
(up to 17 mm), before decreasing moderately. The maximum output power of 15.4 mW is obtained
when the width of the proof mass is 17 mm. Finally, the thickness of the PZT-5A layers is varied from
0.2 mm to 2 mm. The range of the experimental thickness is identified based on the viable thickness
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of PZT-5A layers [40] used in the manufacturing of commercially available CBs. Figure 5 illustrates
the output power responses at the corresponding thickness, in which minor deviations are observed.
The maximum output power of 16.15 mW is obtained when using PZT-5A layers that are 1.2 mm
thick. Thus, by re-arranging (11) into Vp =

√
2RpP, a corresponding output voltage of 11.37 V DC is

computed. Based on the aforementioned results, it can be concluded that the dominant factor which
affects the CB’s output is the weight of its proof mass.

The colour contour of simulated stress distribution across the optimised CB, notably known as
von Mises stress, is illustrated in Figure 6. Hence, both the location and magnitude of the stress can
be examined. Starting near the CB’s clamped end, the stress distribution is found to be decreasing
along its beam length, towards its free end. From Equation (2), the charge density is determined to
be proportional to the distributed stress, therefore maximum charge density can be found near the
clamped end. Minimum stress is indicated at the tip of the free end with a magnitude of 16.2 N/m2,
whereas maximum stress is indicated near the clamped end, with a magnitude of 1.98 × 107 N/m2.
As such, both magnitudes depict a positive response towards dynamic loading.
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Table 4 presents the optimised parameters that have been acquired from the CB’s simulation-based
optimisation. They will be utilised as reference data for setting the input conditions of the proposed
SPDS in PSCAD/EMTDC.

Table 4. Parameters of the optimised CB.

Parameters Symbols Values

Geometric
PZT-5A dimensions lp × bp × hp 84 mm × 7 mm × 1.2 mm
Copper dimensions lc × bc × hc 84 mm × 7 mm × 2 mm

Proof mass dimensions lt × bt × ht 5 mm × 17 mm × 5 mm
Proof mass mt 0.0082 kg

Mechanical
Input acceleration Ain 9.81 m/s2

Damping ratio ζ 0.001
Resonant Frequency f r 120 Hz

Von Mises stress (max.) σy,max 1.98 × 107 N/m2

Von Mises stress (min.) σy,min 16.2 N/m2

Electrical
Output voltage Vp 11.37 V DC
Output power P 16.15 mW
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4. Proposed Self-Powered Dynamic System

4.1. System Overview

Figure 7 presents the proposed SPDS for mechanical-to-electrical energy conversion based on
wind-enhanced vibration of the optimised CB. Its design is conceived with respect to Table 4 and
deployment feasibility at an above-ground MRT train station in Khatib, Singapore, where the wind
speed ranges from 6 m/s to 8 m/s, and the structural vibration frequency is 119.58 Hz during non-peak
operating hours [42,43]. The CB is interfaced with the impedance (qZS) network’s input to provide an
input power of 16.15 mW and an initial input voltage of 11.37 V DC. Using a proportional-integral
based boost controller (PI-based BC), line RMS voltage at the three-phase inverter’s output is detected
for feedback control to tune the shoot-through duty ratio of the qZSI-based PVEH, consequently tuning
its DC-link voltage (Vboost) to obtain the boost factor.
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Hence, the fluctuating voltage from the qZS network’s input will be stepped up with respect to a
reference line RMS voltage of 40.28 V AC at the three-phase inverter’s output by utilising the obtained
boost factor. A rectifier circuit is interfaced with the three-phase inverter for AC-to-DC rectification
before transferring power to a 16.15 mW DC load through a filter capacitor. The SPDS adopts the
non-isolated DC-DC converter topology so that the input and output of the power stage will share a
common ground, allowing current to flow between them. Thus, the entire SPDS circuitry, including
PI-based BC, is capable of being self-powered by the rectified voltage from the CB upon detecting
vibrations. The designated 16.15 mW rating is suitable for powering miniature electronic devices
used in the MRT train station; notably the infrared (IR) diode laser modules [44] that are installed at
entry-exit gantries for motion detection of train commuters.

4.2. Control Methodology

The proposed PI-based BC for the SPDS is sub-divided into three control units, namely the inverter
control unit, boost control unit and shoot-through control unit. Figure 8 illustrates the functionality
of the inverter control unit. A PI controller is engaged to compare the three-phase inverter’s output
voltage (Vq) with its desired line RMS value, namely the reference voltage (Vq,ref) before deriving an
error signal (Vq,err) for required adjustments. Vq is also assigned at the PI controller’s output as a
controller bias to serve as a constant offset for the adaptive proportional and integral gains (Kp and Ki).
This ensures consistency in the adjusted voltage (Vq,adj) throughout the SPDS’s operation.
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Figure 9 illustrates the functionality of the boost control unit, which aims to obtain the boost
factor (B) required for voltage step-up through DC-link voltage (Vboost) management. Firstly, Vq,adj is
converted into Vboost using the line RMS-to-DC voltage conversion algorithm. Vboost is then divided
by the qZS network’s input voltage (Vin) to obtain B, which is curtailed through a limiter. The limiter’s
usage is attributed to the need to maintain a constant Vboost in order to attain the desired load (output)
voltage. Hence, regardless of Vin deviation from its initial value of 11.37 V DC during wind-enhanced
vibration of the CB, B will vary accordingly to perform voltage step-up.
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Equation (12) elaborates on B curtailment, where the minimum boost factor (Bmin) and maximum
boost factor (Bmax) have been identified against the available Vin region before Vboost was finalised:

(B min) 1 ≤ B ≤ 5 (B max). (12)

Using the shoot-through control unit shown in Figure 10, B is engaged as a determinant of the
shoot-through duty ratio (DZ) in order to initiate the SBC method for shoot-through pulse generation.
The SBC method involves traditional PWM switching sequences, whereby square wave is used as a
reference signal (Vref) while the triangular wave is used as a carrier signal (Vcarrier). These signals
are compared with each other using two horizontal lines known as the upper limit (Vupp) and lower
limit (Vlow) respectively. If Vcarrier is greater than Vupp or lower than Vlow, the IGBTs in each of the
three-phase inverter’s leg will be shorted synchronously to generate shoot-through pulses, hence
adjusting DZ autonomously. As such, Vboost constancy is enforced to influence B.
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Equation (13) depicts the corresponding logic-based algorithm for generating shoot-through
pulses, which will be combined with the respective phases of Vref to form the IGBTs’ gate switching
pulses:

Shoot-Through Pulse =


1, Vcarrier > Vupp

1, Vcarrier < Vlow

1, Vref = 1
0, Otherwise

. (13)

Figure 11 projects the qZSI’s PWM switching sequences derived from the SBC method. Assuming
that the switching period is Tsw, the shoot-through period is TZ and non-shoot-through period is TNZ,
DZ can be expressed as:

DZ =
B− 1

2B
=

TZ

Tsw
(14)

in which:
Tsw =

1
fsw

= TZ + TNZ (15)

where f sw is the corresponding switching frequency to determine Tsw.Electronics 2019, 8, x FOR PEER REVIEW 12 of 21 

 

 

Figure 11. PWM switching sequences for qZSI operation. 

4.3. Design of qZS Network Inductors and Capacitors 

Formulations to determine inductor and capacitor ratings in the qZS network are strictly 
dependent on compatibility with Vin, where B, current stress and voltage stress might become 
maximised during voltage step-up operations, affecting Vboost stability. Conjointly, maximum shoot-
through period (TZ,max) tend to occur, allowing maximum current (IL,max) to pass through the 
inductors, hence establishing maximum current ripple. To address the aforementioned practical 
concerns, 10% peak-to-peak current ripple is strategically selected for the inductors (rc% = 10%). Since 
the capacitors tend to charge the inductors through their current during the shoot-through state, 
current ripple will be mostly absorbed while voltage ripple is minimised on the three-phase inverter 
bridge in order to stabilise Vboost. Therefore, 0.9% voltage ripple is strategically selected for the 
capacitors (rv% = 0.9%). 

Equation (16) defines the relation between the inductors’ average current (IL), load power (Pload) 
and Vin. Of which, IL is used to identify the permissible value of IL,max in the qZS inductors by engaging 
rc% in Equation (17): 

IL = 
Pload

Vin
 (16) 

IL,max = IL + IL
rc%

2
 (17) 

Through equations (16–20), a trend is observed in the qZS network’s efficiency, where it is 
possible to retain inductance and capacitance values without attenuating rc% and rv%. Contrastingly, 
attenuation of rc% and rv% requires an impractical approach whereby the inductors and capacitors 
have to be interchanged in conjunction with Vin fluctuations. Therefore, the key approach is to identify 
the permissible value of TZ,max: 

TZ,max = 
1 − ൫Bmax

 -1 ൯

TZ
  -1  (18) 

which constitutes: 

L1 = L2 = 
TZ,max 

2
ቆ

MVin 

IL,maxrc%
ቇ (19) 

C1 = C2 = 
TZ,max 

2
ቆ

2IL 

BmaxVinrv% 
ቇ (20) 

in which: 

Figure 11. PWM switching sequences for qZSI operation.

4.3. Design of qZS Network Inductors and Capacitors

Formulations to determine inductor and capacitor ratings in the qZS network are strictly dependent
on compatibility with Vin, where B, current stress and voltage stress might become maximised
during voltage step-up operations, affecting Vboost stability. Conjointly, maximum shoot-through
period (TZ,max) tend to occur, allowing maximum current (IL,max) to pass through the inductors,
hence establishing maximum current ripple. To address the aforementioned practical concerns, 10%
peak-to-peak current ripple is strategically selected for the inductors (rc% = 10%). Since the capacitors
tend to charge the inductors through their current during the shoot-through state, current ripple will
be mostly absorbed while voltage ripple is minimised on the three-phase inverter bridge in order to
stabilise Vboost. Therefore, 0.9% voltage ripple is strategically selected for the capacitors (rv% = 0.9%).

Equation (16) defines the relation between the inductors’ average current (IL), load power (Pload)
and Vin. Of which, IL is used to identify the permissible value of IL,max in the qZS inductors by
engaging rc% in Equation (17):

IL =
Pload

Vin
(16)

IL,max = IL + IL
rc%

2
(17)
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Through Equations (16)–(20), a trend is observed in the qZS network’s efficiency, where it is
possible to retain inductance and capacitance values without attenuating rc% and rv%. Contrastingly,
attenuation of rc% and rv% requires an impractical approach whereby the inductors and capacitors
have to be interchanged in conjunction with Vin fluctuations. Therefore, the key approach is to identify
the permissible value of TZ,max:

TZ,max =
1−

(
B −1

max

)
T−1

Z

(18)

which constitutes:

L1 = L2 =
TZ,max

2

(
MVin

IL,maxrc%

)
(19)

C1 = C2 =
TZ,max

2

(
2IL

BmaxVinrv%

)
(20)

in which:
M =

TNZ

TNZ − TZ
(21)

where M is the modulation index of Vcarrier, thus correlating with SBC formulations in (14) and (15)
due to TZ and TNZ involvement. From equations (19) and (20), it is clear that determining the inductor
ratings (L1, L2) and capacitor ratings (C1, C2) involves the concise formulation of TZ,max, since it also
affects the transient response of the qZSI [21–26]. Undesirable TZ,max precipitates increased ripple in
inductor currents and capacitor voltages, as well as severe clipping of Vboost. From Equation (18), it is
determined that the exceedance of Bmax will cause Vboost to be forcibly constrained, thus propagating
severe clipping.

4.4. Simulation Model Specifications

Tables 5–7 present the respective simulation model specifications [45,46] of the proposed SPDS in
PSCAD/EMTDC. Notably, the Vin available range (11.37–20.31 V DC) was identified with reference to
Table 4 and the voltage generation potential of the CB during wind-enhanced vibrations, as validated
by simulation evaluations in Section 5. To emulate arbitrary wind speed at the above-ground MRT
train station in Khatib, Singapore, a wind source is interfaced with the CB through a limiter as shown in
Figure 12, functioning as an external input. The limiter is engaged to maintain the arbitrary wind speed
at 6-8 m/s, therefore matching actual arbitrary wind speed. Moreover, the wind source is configured to
generate variegated wind components that constitute the arbitrary wind speed; namely mean wind
speed, gust, ramp, and noise. Table 8 provides a formalised depiction of these wind components using
data collected from the above-ground MRT train station [42].

Table 5. Specifications of the SPDS.

Parameters Symbols Values

Load power Pload 16.15 mW
Input voltage Vin 11.37–20.31 V DC

DC-link voltage Vboost 56.85 V DC
Output voltage Vout 54.4 V DC

Switching frequency f sw 45 kHz
qZS inductors L1, L2 81 uH
qZS capacitors C1, C2 20 nF

Current ripple of qZS inductors rc% 10%
Voltage ripple of qZS capacitors rv% 0.9%

Output filter capacitor Cout 1 mF
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Table 6. 1N5711 Schottky diode (D0) specifications.

Parameters Symbols Values

Absolute maximum ratings
Repetitive reverse voltage VRRM 70 V

Forward continuous current IF,CO 15 mA
Power dissipation PD 430 mW

Electrical characteristics
Reverse breakdown voltage VBR 70 V

Forward voltage VF 0.41 V
Reverse current IR 0.2 uA

Table 7. FGD3325G2-F085 IGBT (S1-S6) specifications.

Parameters Symbols Values

Absolute maximum ratings
Collector-emitter breakdown voltage VCE,BR 250 V

Emitter-collector reverse voltage VCE,R 28 V
Gate-emitter continuous voltage VGE,CO ±10 V

Collector continuous current IC,CO 41 A
Power dissipation PD 150 W

Electrical characteristics
Collector-emitter saturation voltage VCE,SAT 1.68 V

Collector-emitter leakage current ICE,LK 1 mA
Emitter-collector leakage current IEC,LK 1 mA

Gate charge QG 21 nC
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Table 8. Arbitrary wind speed data input for the wind source.

Parameters Values

Arbitrary wind speed 6–8 m/s
Mean wind speed 7 m/s

Gust
Gust peak velocity 0.2 m/s

Gust period 0.13 s
Gust start-time 0.05 s

Ramp
Ramp maximum velocity 0.45 m/s

Ramp period 0.12 s
Ramp start-time 0.1 s

Noise
Number of noise components 50

Surface drag coefficient 0.02
Turbulence scale 0.03 m

5. Simulation Results and Analyses

Using PSCAD/EMTDC as a testbed to model the proposed SPDS, simulation evaluations are
presented to observe corresponding transient responses and load-following performances where
Vin fluctuates in conjuncture with arbitrary wind speed directed at the CB during vibration-based
operation. The aforementioned proceedings constitute wind-enhanced vibration effects that emulate
the SPDS’s deployment at the above-ground MRT train station in Khatib, Singapore, where its daily
recorded ambient data depicts an arbitrary wind speed of 6–8 m/s and a structural vibration frequency
of 119.58 Hz during non-peak operating hours. In order to demonstrate the dynamic responsiveness of
the SPDS, it is modelled at a simulation run-time of 5 s.

Figure 13 depicts the transient response of the three-phase inverter’s output voltage (Vq) and
adjusted voltage (Vq,adj) when matching the reference voltage (Vq,ref) during feedback control. It is
apparent that the adaptive proportional and integral gains (Kp = 0.03, Ki = 90.91 × 10−6) of the PI-based
BC have piloted fast settling-time response with negligible steady-state error, defining respective
scalar gain at different time-step to quickly secure 49 V AC for Vq,adj. Notably, Vq,adj is strategically
attenuated to anticipate accumulated losses (i.e., conduction loss and switching loss), hence attributing
the desired 40.28 V AC for Vq after incurring these losses. Conjointly, maximum peak overshoot is
decreased due to low Kp, while residual errors are mitigated using Ki to complement Kp.
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Figure 14 depicts the fundamental operation of the qZSI-based PVEH when the CB is controlled to
wind-enhanced vibrations. It is observed that the boost factor (B) consistently attenuates to step-up the
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input voltage (Vin) which randomly deviates from 11.37 V DC to 20.31 V DC due to variegated wind
components of the arbitrary wind speed. As evidenced in Figure 14b, B manages to conform to its
respective limits in (12) with respect to the DC-link voltage (Vboost) attained from Vq,adj conversion in
the PI-based BC’s boost control unit. Such attenuation involving B aims to secure a constant Vboost of
56.85 V DC despite Vin fluctuation during uncertain output performances of the CB. Figure 15 validates
this analogy to a large extent since minor clipping (i.e., 2.4%) is found in Vboost when observing its
voltage transient. Moreover, minimisation of clipping is attributed by low inductor and capacitor
ratings in the qZS network; which were determined based on the permissible maximum shoot-through
period (TZ,max), since TZ,max prevents Vboost from being forcibly constrained.Electronics 2019, 8, x FOR PEER REVIEW 16 of 21 
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Figure 14. qZSI-based PVEH operation during uncertain output performances of the CB: (a) Fluctuation
of input voltage. (b) Corresponding boost factor for voltage restoration at DC-link.

Figure 16 depicts the transient response of the inductors (L1, L2) and capacitors (C1, C2) in the
qZS network, specifically their ripple characteristics. It is evident that the determined ratings for
these components have rendered consistency in the inductor currents (IL1, IL2) and capacitor voltages
(VC1, VC2), strictly conforming to the selected 10% peak-to-peak inductor current ripple and 0.9%
capacitor voltage ripple respectively. Furthermore, it is observed in Figure 16a that the measured
average inductor current (IL) and maximum inductor current (IL,max) correlates with their theoretical
formulations in Equations (16) and (17). The strategic acquisition of both currents synchronises
optimised charging and discharging sequences between the capacitors and inductors as depicted.
Therefore, Vboost stability is enforced throughout the shoot-through and non-shoot-through periods
initiated by the aforementioned sequences.
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Figure 17 presents the measured output voltage (Vout) and load power (Pload) of the SPDS. Both
measurements proved that successful integration of the PI-based BC in the SPDS has established viable
load-following synchronisation across all sub-systems to secure 54.4 V DC for Vout, which constitutes
Pload measured value of 14.8 mW. Given that the SPDS’s input power is equivalent to Pload rated
value of 16.15 mW, its computed efficiency η is 91.64% based on: η = [Pload (measured)/Pload (rated)] ×
100%. It is also apparent that there is almost no distortion of Vout and Pload, thus further validating the
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PI-based BC’s excellent control functionality. Figure 18 illustrates the efficiency characteristics of the
CB and SPDS when experimented against different DC load sizes. It is observed that the respective
efficiencies are proportional to each other due to synchronised operations from the CB to the entirety of
the SPDS, peaking at the rated load power of 16.15 mW before deteriorating. This is attributed by the
limited B, which impairs the SPDS’s output power since Vout is required to be increased at larger loads.
Furthermore, the SPDS tend to have lower efficiency in comparison to the CB as a result of cumulative
losses across its circuitry.Electronics 2019, 8, x FOR PEER REVIEW 18 of 21 
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6. Conclusions

This paper has presented analytical modelling, control, and performance evaluations on perceiving
the operability of a novel SPDS that incorporates qZSI-based PVEH in its framework. Extensive
optimisation of a CB was performed in COMSOL Multiphysics to maximise its power generation
capability, followed by the conceptualisation of the SPDS’s specifications in respect of the CB’s
optimised parameters. Conjointly, a modified control scheme (i.e., PI-based BC) derived from the SBC
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method was devised to resolve voltage inadequacies at the qZSI-based PVEH during uncertain output
performances of the CB, establishing interoperability across the SPDS to maximise power transfer to
a DC load. The acquired simulation results from PSCAD/EMTDC have validated theoretical-based
design formulations of the SPDS when it was tested for deployment feasibility. Fast settling-time,
negligible steady-state error, minimal distortion, minor clipping as well as adherence to pre-set ripple
characteristics were observed at respective simulated transient outputs. Thus, high efficiencies of
94.07% and 91.64% were attained by the CB and SPDS respectively, after alleviating cumulative losses
in the qZSI-based PVEH. Due to the novelty of the qZSI-based PVEH in SPDSs, future extension of this
work may include devising a control scheme that allows higher boost factor manipulation without
inducing increased clipping across the DC-link voltage.
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