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Abstract: This paper presents an evaluation and comprehensive comparison for the topologies
which are applied to the front stage of transformer-less cascaded multilevel converter (TCMC).
The topologies investigated are targeted at the bidirectional cascaded H-bridge rectifier and three
unidirectional rectifiers, including the diode H-bridge cascaded boost rectifier, cascaded bridgeless
rectifier and cascaded VIENNA rectifier. First, the operation principles of the unidirectional rectifiers
are discussed. Then the performances of these topologies such as power losses, efficiency, device
current stress, cost, and total harmonic distortions are analyzed and evaluated respectively. Finally,
advantages and disadvantages for each topology are discussed and highlighted. The evaluation and
comparison methods presented in this paper and their results are feasible and effective for selecting
the appropriate topology in practical applications under different operating conditions.

Keywords: unidirectional rectifier; bidirectional rectifier; comparison; power losses; efficiency; cost;
current stress; THD analysis

1. Introduction

In recent years, with the rapid development of power semiconductor devices and power electronic
technologies, the transformer-less cascaded multilevel converter (TCMC) has attracted extensive
attention in the medium and high voltage application [1–7]. As shown in Figure 1, by employing the
cascade H-bridge (CHB) converter as the front (last) stage, and the high-frequency isolated bidirectional
DC-DC converter as the DC/DC stage, the TCMC can not only remove the bulky and expensive
line-frequency transformer, but can also be connected directly to the medium/high voltage power grid
and suited for the bidirectional power flow applications, such as coal mine hoists and locomotive
traction, with some features as small size and light weight.

However, the TCMC mentioned above utilizes too many fully-controlled power switches (such as
IGBTs or MOSFETs), making its main circuit and control system more complicated with higher cost
and lower reliability. Considering that in many practical applications, bidirectional power flow is not
always necessitated, such as in the Alternating Current (AC) speed regulation systems with pumps or
fans load, etc., some researchers believe that in these applications, it might be a better choice to take
the unidirectional rectifier like diode H-bridge cascaded boost rectifier, cascaded bridgeless rectifier
and cascaded VIENNA rectifier as the front stage of TCMC [8–12]. The authors of [9] investigated the
possibility of using the cascaded bridgeless rectifier to construct the front stage of TCMC. The authors
of [10] discussed a method of using the diode H-bridge with the cascaded boost rectifier to construct
the front stage of TCMC. The authors of [11] studied the cascaded single-phase VIENNA circuit and
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the corresponding voltage balancing control strategy. The authors of [12] presented a hybrid cascading
typology, in which the N bridgeless rectifiers and the M fully-controlled H-bridge rectifier are connected
in cascading, causing the constructed front stage of TCMC to operate not only in unity power factor,
but also in leading or lagging power factors. However, all the previous references are mainly directed at
the power factor regulation and voltage balancing control, with no discussion about the comparison of
comprehensive performance between these different unidirectional converter typologies, and between
these different unidirectional rectifier typologies and H-bridge bidirectional rectifier-based TCMC,
while the comprehensive performance comparison is very important for choosing the suitable typology
to construct the TCMC in different industrial applications.
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In this study, the topologies are focused on the bidirectional cascaded H-bridge rectifier, and three
different kinds of topologies used in unidirectional power flow, including the diode H-bridge cascaded
boost rectifier, the cascaded bridgeless rectifier, and the cascaded VIENNA rectifier. These topologies
are compared on the basis of the theory of operation, power losses, efficiencies, device current stress,
cost, and input current THD analysis. Moreover, it needs to be emphasized that in these topologies,
identical hardware and parameters are utilized to ensure the objectivity and fairness of the comparison
in this paper.

The remainder of the paper is organized as follows: Section 2 presents the configuration and the
operation principle of these topologies. Section 3 discusses an investigation into the loss distribution
of semiconductors and the efficiency comparison. Cost comparison is proposed in Section 4. Then the
device stress and THD analysis are evaluated in Sections 5 and 6. Finally, conclusions are summarized
in Section 7.

2. Description to Unidirectional Rectifier Topologies and Operation Principles

Since the cascaded H-bridge rectifier has already been a focus that attracts many scholars’ attention
and adopted in many practical applications [13–16], it will not be discussed in this section. Instead,
the single-phase cascaded rectifiers with two modules in cascading will be taken as an example, and the
structures and operation principles of the three types of unidirectional rectifiers will be analyzed.

2.1. Diode H-Bridge Cascaded Boost Rectifier

The diode H-bridge cascade boost rectifier is a novel cascaded multi-level rectifier which employs
fewer fully-controlled switches and can achieve a unity power factor. Its structure is the combination



Electronics 2020, 9, 309 3 of 13

of a high voltage rated diode bridge D1-D4, and the cascaded boost DC/DC modules, as shown in
Figure 2 [10,17].
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Figure 2. Single-phase diode H-bridge two-stage cascaded boost rectifier for transformer-less cascaded
multilevel converter (TCMC).

S=1 is defined as the status when the fully-controlled power switch is turn-on, while S=0 is
turn-off, and for two switches (S1, S2), there are four modes during the operation of the circuit, namely
(1,1), (0,1), (1,0), (0,0). Because the positive and negative half cycles of the power supply voltage are
symmetrical, only the positive half cycle is analyzed, and the current path of the four operation modes
in the positive half period of AC voltage are shown in Figure 3.
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Figure 3. Current paths of the four operation modes for diode H-bridge two-stage cascaded boost
rectifier; (a) Mode I; (b) Mode II; (c) Mode III; (d) Mode IV.

2.2. Cascaded Bridgeless Rectifier

As the bridgeless topology avoids the needs for the rectifier input diode bridge, and maintains
the classic boost topology, it has been studied by many scholars and widely used in power factor
correction (PFC) [18–22]. Furthermore, the bridgeless rectifier can be cascaded as the front stage of
TCMC, as shown in Figure 4. Each module is composed of two fast recovery diodes D1 and D2,
two active switches S1 and S2 with inherently body diodes DS1 and DS2, and a capacitor C. With fewer
active switches than H-bridge rectifier, and when compared with the diode H-bridge boost rectifier,
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bridgeless rectifier can not only reduce the total number of switching devices by two, but also lessens
the number of switching devices in the current path during normal operation in each module. Since the
fast recovery diodes D1 and D2 are unidirectional conductive, the AC side combined voltage of the
bridgeless rectifier is determined by the states of switches, and the polarity of the input current.
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The effective operation mode of the two-stage cascaded bridgeless rectifier can be divided into
four modes according to the states of the four switches (S11, S12, S21, S22), namely (1, 1, 1, 1), (0, 0, 1, 1),
(1, 1, 0, 0) and (0, 0, 0, 0). The four operation modes in the positive half period of AC voltage can be
obtained in Figure 5.
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2.3. Cascaded VIENNA Rectifier

The cascaded VIENNA rectifier circuit is shown in Figure 6. Due to the structural characteristics of
the VIENNA rectifier, one of the most important advantage for this topology is that each semiconductor
device only suffers half of the total DC bus voltage [8]. As for the structure of a single module VIENNA
topology, it is comprised of one input inductor L, two output capacitors C1 and C2, one active switch S,
two regular diodes D1 and D3, and four fast recovery diode D2, D4, D5 and D6.
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3. Power Losses and Efficiency-Based Evaluation

Since the power losses of the power semiconductor, including the conduction and switching losses
are the major contributors to the rectifier losses, the total losses only take the semiconductor power
losses into consideration in the following discussion. Analysis in this section will be implemented
by PLECS software on the power loss distribution of the power semiconductors and the efficiency
comparison in the four types of topologies as shown in Section 2, since PLECS software has been
widely used in simulation on power electronics losses, on the basis of the component datasheet [23–25].

3.1. Calculation of Switching and Conduction Losses

(1) Calculation of IGBT losses
Switching losses are caused by the transition of the power devices between the blocking state and

the conducting state, including turn-on losses and turn-off losses.
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Accordingly, the switching losses Psw can be expressed in (1) as:

Psw = (Eon + Eo f f ) × fsw (1)

where Eon and Eoff are the energy losses during the turn-on and turn-off of the switches and be read
from a 3D look-up table, fsw represents the switching frequency.

The conduction losses, caused by the on resistance of IGBTs, occur when the device is in full
conduction mode. Those losses are computed by averaging the conduction losses in each switching
cycle as shown in (2) as:

Pcon =
1
T

∫ T

0
[vce(t) × ice(t) ×D(t)]dt (2)

where vce is the forward voltage drop of the device, ice stands for the current flowing through the
device during the conduction period, and they are calculated based on second order approximation
from the 2D look-up table. D is the duty cycle, T is the switching period

So that the losses of a IGBT can therefore be described as:

PIGBT = Psw + Pcon (3)

(2) Calculation of diode losses
Diode losses involve conduction losses PconD and reverse recovery losses PrecD. Because the

turn-on time is very short and the diodes’ reverse blockage current is very small, the turn-on losses
and blockage losses can be neglected.

The reverse recovery losses of diode can be expressed as:

PrecD = Err × fsw (4)

where Err indicates the turn-off losses of diode.
And the conduction loss calculation of the diode is similar to that of the switch. So the losses of a

diode can be denoted as (5):
PD = PrecD + PconD (5)

Thus, the total losses are calculated as follows:

Ploss = (PQ + PD) = (Psw + Pcon + PrecD + PconD) (6)

3.2. Investigation of Power Losses and Efficiency

In order to make a fair comparison, the same hardware and parameters have been used, as shown
in Table 1.

Table 1. Rectifier Parameters.

Parameters Type/Values

Input voltage (RMS) 380 V
Source voltage frequency 50 Hz

Switching frequency 10 KHz
DC-link voltage 1200 V

Load side capacitor 2200 mF
Input inductor 2 mH

Regular Diode (diode H bridge rectifier) CS4112499C
Regular Diode (VIENNA rectifier) 60EPS12

Fast Diode RHRG75120
IGBT IGW60T120
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Figure 8 shows the loss distribution of the power semiconductors in the four topologies investigated
under the condition of Po = 6000 W.
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It is obvious that the cascaded VIENNA rectifier always functions more efficiently than the other
two unidirectional rectifiers and the bidirectional cascaded H-bridge rectifier, and can also achieve at
a peak efficiency of 97.97%, whereas the efficiencies for the cascaded bridgeless rectifier and diode
H-bridge cascaded rectifier are secondary to it. The cascaded H-bridge rectifier performs at the
lowest efficiency.



Electronics 2020, 9, 309 8 of 13

4. Cost Performance Analysis

The differences in the main electrical power components used in N-stage cascaded single-phase
topologies are illustrated in Table 2.

Generally speaking, the cost of these rectifiers depends mainly on the devices such as IGBT, diode,
input inductor, and DC-link capacitor, etc. As can be seen from Table 3, the cost for the cascaded
bridgeless rectifier is relatively lower, and the coat for the diode H-bridge cascaded boost rectifier
is moderate, whereas the cost of the cascaded H-bridge rectifier and the cascaded VIENNA rectifier
are relatively higher. Moreover, it should be noted that due to the fairness of the comparison in this
paper, identical hardware is guaranteed to be utilized in these topologies. However, the semiconductor
devices of the VIENNA rectifier only share half of the DC bus voltage, and accordingly the price for
semiconductor devices with low withstand voltage may be decreased. Thus, the cost of VIENNA
rectifier will be reduced in practical applications.

Table 2. Main electrical power component count for rectifier topologies.

Device Cascaded
H-Bridge Rectifier

Diode H-Bridge
Cascaded Boost Rectifier

Cascaded Bridgeless
Rectifier

Cascaded
VIENNA Rectifier

Regular Diode 0 4 0 2N
IGBT 4N N 2N N

Fast Recovery 0 N 2N 4N
Diode Capacitor N N N 2N

Inductor 1 1 1 1

N represents the number of cascades modules.

Table 3. Cost comparison of the four topologies.

Topology Cost

Cascaded H-bridge rectifier High
Diode H-bridge cascaded boost rectifier Medium

Cascaded bridgeless rectifier Low
Cascaded VIENNA rectifier High

5. Component Stresses

In order to select and design the devices in practical applications, comparison and analysis on
the stresses of devices with different topologies are conducted in this section under the following
assumptions [26]:

(1) All the topologies are worked at CCM mode.
(2) These circuits are supplied by an ideal AC power source with 50 Hz frequency and operate at

unity power factor.
(3) The output DC voltage is stable with no voltage ripple

The inductor current is assumed as:

iL(θ) = Im sin(θ) (7)

Then, the inductor current ripple is assumed to be half of the peak inductor current:

∆IRP =
1
2

Im

2
(8)

Therefore, the RMS current of inductor is:

ILRMS =

√
1
π

∫ π
0
|Im| sin(θ)||2 + (

1

2
√

3
∆IRP)2 =

√
97
48

Pin
Um

(9)
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The duty cycle of the IGBT is given by:

δIGBT(θ)= 1−
Us(θ)

Udc
= 1−

Um sin(θ)
Udc

(10)

where Us, Um are the input voltage and the corresponding peak voltage, the Udc is the DC bus voltage.
The instantaneous current of IGBT is:

iIGBT(θ) = Im sin(θ)(1−
Um sin(θ)

Udc
) (11)

So the RMS current of IGBT can be expressed as:

IIGBTRMS =

√
1
π

∫ π
0

[
Im| sin(θ)|(1−

Um sin(θ)
Udc

)

]2
dθ (12)

Then, the fast diode duty cycle is given by:

δD(θ) =
US(θ)

Udc
=

Um sin(θ)
Udc

(13)

So, the instantaneous current and AVG current of diode can be expressed as:

ID(θ) = Im sin(θ)
US(θ)

Udc
= Im sin(θ)

Um sin(θ)
Udc

(14)

IDAVG =
1
π

∫ π
0

Im sin(θ)
Um sin(θ)

Udc
dθ (15)

The output capacitor current is calculated by:

ICRMS =
I0
√

2
=

√
2

2
P0

Udc
(16)

where I0 represents the output current.
The RMS and AVG of other devices can also be calculated by the above algorithm. As a result, the

device stresses for the four circuit topologies are shown in Tables 4 and 5.

Table 4. The component current stress of H-bridge rectifier and bridgeless rectifier.

Topology H-Bridge Rectifier Bridgeless Rectifier

Inductor
(RMS)

√
97
48

Pin
Um

√
97
48

Pin
Um

Bridge Diode
(AVG) Not applicable Not applicable

Fast Diode
(AVG) Not applicable 1

2
Pin
Udc

IGBT
(RMS)

Pin√
3UmUdc

√
6π(3Um2+Udc

2)−64UmUdc
π

Pin√
6UmUdc

√
3π(3Um2+4Udc0

2)−64UmUdc
π

IGBT Intrinsic Diode
(AVG)

1
2

Pin
Udc

1
2

Pin
Udc

Output Capacitor Ripple
√

2
2

P0
Udc

√
2

2
P0
Udc
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Table 5. The component current stress of diode H-bridge rectifier and VIENNA rectifier.

Topology Diode H-Bridge Rectifier VIENNA Rectifier

Inductor
(RMS)

√
97
48

Pin
Um

√
97
48

Pin
Um

Bridge Diode
(AVG)

2
π

Pin
Um

1
π

Pin
Um

Fast Diode
(AVG)

Pin
Udc

4Pin
Um
−
πPin
Udc

∗1
or Pin

Udc

∗2

IGBT
(RMS)

Pin√
6UmUdc

√
3π(3Um2+4Udc

2)−64UmUdc
π

Pin√
3UmUdc

√
6π(3Um2+Udc

2)−64UmUdc
π

IGBT Intrinsic Diode
(AVG) Not applicable Not applicable

Output Capacitor Ripple
√

2
2

P0
Udc

√
2

4
P0
Udc

*1 represent the current stresses of D2 and D4 in VIENNA topology. *2 represent the current stresses of D5 and D6 in
VIENNA topology.

6. THD Analysis of Input Current

In order to better analyze the difference of total harmonic distortions (THD) of the input current
between the bidirectional rectifier and the unidirectional rectifier, some simulations have been performed
with MATLAB /Simulink software, the results at Po = 6 kW are shown in Figure 10. From the harmonic
analysis of the input current, it is evident that the THD of the unidirectional rectifiers are generally
higher than that of the bidirectional rectifier. Then the scaled-down experiment prototypes are built
under Po = 1650 W. The experiment results show that the input current and voltage waveforms of
three different types of unidirectional rectifiers are much the same. Taking the comparison between the
cascaded H-bridge rectifier and the cascaded bridgeless rectifier as an example, as shown in Figure 11,
it can be seen that the unidirectional rectifiers have the zero-crossing distortion of the input current.
The cause of the distortion for the input current is analyzed below.
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Figure 11. Input current and input voltage waveforms (a) cascaded three-phase H-bridge rectifier;
(b) cascaded three-phase bridgeless rectifier.

Figure 12 shows the AC side phasor diagram under unity power factor for the unidirectional
rectifiers. The input voltage us is in phase with input voltage is, the voltage across the inductance uL is
orthogonal to is. According to the vector addition, the AC side reference voltage u*con lags the is by θ.
Therefore, the u*con needs to be opposite to is during the period of θ as depicted in Figure 13. However,
due to the unidirectional power flow, the polarity of input current is should be the identical to the AC
voltage ucon, so ucon can only generate a zero AC voltage during the period of θ. After u*con changes
from negative to positive, is can follow i*s after a period of γ [12,27]. The distortions of the input
current will become more severe while the leading or lagging angle is increased, so the controllability
angle for unidirectional rectifier is limited.
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However, in order to improve the THD performance for the unidirectional topologies, the control
methods have been modified to decrease the distortion of the input current, and to increase the
controllability angle [28–30].

7. Conclusions

An evaluation and comprehensive comparison between unidirectional rectifiers and bidirectional
rectifier are presented in this paper. The topologies discussed are centered on the cascaded bidirectional
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H-bridge rectifier, and three different types of unidirectional rectifiers. The operation principle of the
rectifiers, and their power losses, efficiencies, device stress, cost, and THD of the input current are
analyzed and compared. The results show that each of the topologies possesses several advantages
and disadvantages. Although the bidirectional rectifier exhibits the characteristic of low THD input
current, and those types of topologies are appropriate for the bidirectional power flow application,
its disadvantages cannot be neglected because of its fully-controlled power switches, resulting in higher
power losses, greater cost and a more complicated control system. Meanwhile, unidirectional rectifiers
also have many advantages, such as lower device stress, lower power losses, higher efficiency for the
cascaded VIENNA rectifier, and lower cost for cascaded bridgeless rectifier, whereas their THD of the
input current is relatively higher, so that their control systems must be carefully designed. The evaluation
and comparison methods presented in this paper and their results are feasible and effective for selecting
the appropriate topology in practical applications under different operating conditions.
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