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Abstract: Suffering from the multi-view data diversity and complexity, most of the existing graph
convolutional networks focus on the networks’ architecture construction or the salient graph structure
preservation for node classification in citation networks and usually ignore capturing the complete
graph structure of nodes for enhancing classification performance. To mine the more complete
distribution structure from multi-graph structures of multi-view data with the consideration of
their specificity and the commonality, we propose structure fusion based on graph convolutional
networks (SF-GCN) for improving the performance of node classification in a semi-supervised way.
SF-GCN can not only exploit the special characteristic of each view datum by spectral embedding
preserving multi-graph structures, but also explore the common style of multi-view data by the
distance metric between multi-graph structures. Suppose the linear relationship between multi-graph
structures; we can construct the optimization function of the structure fusion model by balancing the
specificity loss and the commonality loss. By solving this function, we can simultaneously obtain
the fusion spectral embedding from the multi-view data and the fusion structure as the adjacent
matrix to input graph convolutional networks for node classification in a semi-supervised way.
Furthermore, we generalize the structure fusion to structure diffusion propagation and present
structure propagation fusion based on graph convolutional networks (SPF-GCN) for utilizing these
structure interactions. Experiments demonstrate that the performance of SPF-GCN outperforms that
of the state-of-the-art methods on three challenging datasets, which are Cora, Citeseer, and Pubmed
in citation networks.

Keywords: structure fusion; graph convolutional networks; node classification; citation networks

1. Introduction

As an efficient representation of data distribution, the graph plays an important role for describing
the intrinsic structure of data. Therefore, many existing works have constructed a significant theory and
method depending on the graph structure of data in pattern recognition, such as the graph cut building
energy function for the semantic segmentation task [1], graph-based learning system constructing the
accurate recommendations for the interaction of the different objects [2,3], graph modeling molecules’
bioactivity for drug discovery [4,5], and graphs simulating the link connection of a citation network
for the different group classification [4–6]. In fact, we can usually observe data and their distribution
relationship (This distribution relationship is defined as the data of structure, which often can be
described by a graph. Each datum is the node of the graph, and the distance metric of data pairs is
the weight between nodes in the graph.) from multiple views, which provide a more abundant and
complete information for object recognition. Learning on a multi-graph (In each view, we can use
a graph for describing the distribution relationship of the observation data, and in multiple views,
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we can obtain multiple graphs, which are called multi-graphs. In the multi-graphs, we can learn
their relevance based on some optimization functions, and this process is called learning on the
multi-graph.) can effectively mine multiple relationships (this includes specificity and commonality
in Section 4. The specificity relationship is the linear relationship between the embedding matrix of
multiple structures, while the commonality relationship is the distance metric between the embedding
matrix of multiple structures.) to discriminate the different data objects.

The recent learning methods for mining multi-graph structure information mainly have tow
categories. One is structure fusion [7–17] or diffusion on the tensor product graph [18–23] based on
the complete data, which include each view observation datum. Another is graph convolutional
networks for the salient graph structure preservation [6] or node information fusion [24,25] based on
incomplete data, which lacks some view observation data. For example, the link relationship among
nodes can be extracted by the hyperlink direction in citation networks, but it cannot be described by
the corresponding node feature computation. In other words, these link relationships exist, while the
corresponding node features are lost in citation networks. Therefore, the method based on graph
convolutional networks usually ignores the complete complementary of the different observation
structures based on the incomplete multi-view data. To analyze this issue, we attempt to construct
structure fusion based on graph convolutional networks for classifying the different nodes in citation
networks in a semi-supervised way. Figure 1 shows the overall flow diagram of structure fusion based
on graph convolutional networks (SF-GCN).

Figure 1. The diagram of structure fusion based on graph convolutional networks (SF-GCN),
in which three graphs indicating the structure of the multi-view data and eight nodes (the different
color connecting lines mean the various connecting weights) expressing the multi-nodes in these
graphs; β = [β1 β2 β3] (the linear coefficient between the multi-graph structure) can be learned for
complementary fusion.
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The inspiration of SF-GCN comes from multi-GCN in the literature [6], but there are two different
points of comparison with multi-GCN. One is that SF-GCN considers the different roles of multiple
structures by learning different weights, while multi-GCN only deals with their relationship by the
same weights. The other is that SF-GCN focuses on the contributions of all nodes’ structure in the fusion
structure, while multi-GCN only emphasizes the salient structure of the part nodes. In the classification
sense, the strong and weak link relationships between nodes both considered for complementing the
structure are more fit to the intrinsic structure of the data for node classification in citation networks.

Our contributions can be summarized as follows. (a) We present a novel structure fusion based
on graph convolutional networks (SF-GCN) that discriminates the different classes by optimizing
the linear relationship of multiple observation structures with balancing the specificity loss and the
commonality loss. (b) In three citation datasets with the sparse document feature and document link
relationship, the proposed SF-GCN outperforms the state-of-the-art methods for node classification.
(c) Our model generalizes the different multi-graph fusion methods for evaluating the performance of
the proposed SF-GCN.

2. Related Works

In this section, we mainly review recent related works about structure fusion, graph neural
networks, and node classification based on GCN.

2.1. Structure Fusion

The structure fusion initially proposed in [7] can merge multiple structures for shape classification.
In the follow-up works, the extend methods can be divided into three categories according to the
different fusion methods.

The first kind of method tried to find the optimized linear relationship of multiple observation
structures based on the different manifold learning methods [8] or statistics model analysis [9]
for encoding the importance degree of the different structure in multiple views. These methods
can consider the different weights of the homogeneous structure for capturing the more complete
distribution relationship.

The second kind of method attempts to mine the nonlinear relationship of the heterogeneous
feature structure based on the global feature [10,11] or the local feature encoding [12] for finding the
complementary of the different structures in multiple representations. These methods can bridge the
gap between heterogeneous structures for the uniform fusion feature representation.

The third kind of methods can capture the dynamic changes of multiple structures for
semi-supervised classification [13] or the structure propagation method for zero-shot learning [14–17]
for transferring the structure information of the different data objects. These methods can find the
dynamic rule of the structure change to help understand the cross-domain data.

From the above, existing methods emphasize the completeness of data and their relationship based
on data mapping, while graph convolutional networks focus on the transformation and evolution of
the data structure by deep learning frameworks. Therefore, we expect to draw support from structure
fusion based on the structure metric and graph convolutional networks for processing the incomplete
view data and find the evolution law of the fusion structure with the consideration of their specificity
and commonality.

2.2. Graph Neural Networks

Graph neural networks can discover the potential data relationship by computation based on
graph nodes and links. Especially, the computation is defined as convolution for graph data, and graph
convolution networks (GCN) have become a promising direction in pattern recognition. In terms
of the different node representation, graph convolution networks include spectral-based GCN and
spatial-based GCN.
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Spectral-based GCN can define the graph Fourier transform based on the graph Laplacian matrix
for projecting the graph signal into the orthonormal space. The difference of these methods is the
selection of the filter, which may be the learned parameters set [26], Chebyshev polynomial [4], or the
first-order Chebyshev polynomial [27,28].

Spatial-based GCN regards an image as a special graph with a pixel describing a node. To avoid
the storage of all states, these methods have presented improved training strategies, such as sub-graph
training [29] or stochastically asynchronous training [30]. Furthermore, some complex networks’
architecture can utilize the gating unit to control the selection of the node neighborhood [31], or design
two graph convolution networks with the consideration of the local and global consistency on the
graph [25], or adjust the receptive field of the node on graph by hyper-parameters [32].

We need to process the image as a node of the graph, so spatial-based GCN is not suitable for
node classification in citation network. Spectral-based GCN can explicitly construct the learning
model on the graph structure, which can easily be separated from GCN architecture. Therefore,
this point provides an independent way for processing multiple structures. In this paper, we focus on
the important role of the graph (structure) from multi-view data and attempt to mine the plentiful
information from multiple structures for spectral-based GCN input.

2.3. Node Classification Based on GCN

According to the different node information processing method, the recent node classification
methods based on GCN are divided into two categories. One is node neighbor information exploiting
for GCN, and the other is node information fusion based on GCN.

Node neighbor information exploiting attempts to capture the distribution structure of
the node neighbor for obtaining the stable graph structure representation. For example,
graph attention networks (GAT) can specify different weights to different nodes in a neighborhood [33];
stochastic training of graph convolutional networks (StoGCN) allows sampling an arbitrarily small
neighbor size [34]; deep graph infomax (DGI) can maximize mutual information between different
levels of subgraphs centered around nodes of interest (the different way for considering neighbor
information) [35].

Node information fusion tries to mine the information from the multi-view node description
or multiple structures for complementing the difference of multi-view data. For instance,
large-scale learnable graph convolutional networks (LGCN) can fuse neighboring nodes’ features by
ranking selection to transform the graph data into grid-like structures in 1D format [24]; dual graph
convolutional networks (DGCN) can consider local and global consistency for fusing different view
graphs of raw data [25]; multi-GCN can extract and select the significant structure form the multi-view
structure by manifold ranking [6].

The proposed method belongs to the node information fusion method for exploiting neighbor
information, and the difference compared with the above methods focuses on the complementary of
multiple structures by mining their commonality, specificity, and interactive propagation.

3. Graph Convolutional Networks

In terms of the multiplication of convolution in the Fourier domain, graph convolution is defined
as the multiplication between the signal s ∈ Rn and the filter gη [26]. Further, graph convolution can
also be approximated by first-order Chebyshev polynomials [27] as follows.

gη ∗ s = UgηUTs

≈
1

∑
k=0

η
′
kTk(L̃)s

≈ η(I + D̃−1/2W̃D̃−1/2)s

(1)
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where U is the eigen-decomposition of the normalized Laplacian L = I − D−1/2WD−1/2 (I is the
identity matrix; D is the degree matrix of graph G); L̃ = I − D̃−1/2W̃D̃−1/2 (D̃ and W̃ respectively are
the rescaled degree and adjacent matrix by W̃ = W + I); Tk expresses the Chebyshev polynomials;
η = η

′
0 = −η

′
1.

Fusion structure W (details in Section 4.3) can directly be input into the above graph convolutional
networks. The forward propagation based on two layers of graph convolutional networks can be
indicated as follows.

Z = so f tmax(W̃ReLU(W̃SΘ0)Θ1) (2)

where Z is the output of networks; S is the representation matrix of each node; Θ0 and Θ1 respectively
are the first and second layer filter parameters; ReLU and so f tmax are the different types of activation
function located in the various layers.

To obtain the complete graph information as the input of GCN, we deal with multiple structures’
fusion in the next section.

4. Multiple Structures’ Fusion

To the best of our knowledge, existing structure fusion methods usually construct the optimizing
function for feature projection, in which feature data and the corresponding structure jointly participate
in the computation. Because of the possible data loss and the structure preservation of multi-view data,
we expect to build a novel structure fusion by the structure metric, in which the optimizing function
involves multiple structures for avoiding the negative effect of the data lost. The relationships of
multiple structures include not only the specificity relationship, but also the commonality relationship.
Therefore, we also anticipate that a novel structure fusion can be constrained by these characteristics
of multiple structures. Figure 1 demonstrates the internal mechanism of structure fusion in SF-GCN.
First, we construct the specificity loss based on spectral embedding method with the consideration of a
multiple structure linear relationship. Second, we measure the commonality loss between multiple
structures based on the distance metric in the Grassmann manifold. Finally, we jointly exploit the
structure fusion based on two losses and input the fusion structure into GCN for node classification.

4.1. Specificity Loss of Multiple Structures

Given an object set with m multi-views, we can use graph Gi to describe the observation
distribution of data on each view. Therefore, the graph Gi is the representation of the observation
structure, and G = {Gi|i = 1, 2, ..., m} can indicate multiple structures of data from multi-view
observations. Because multiple structures detail the same object set, each Gi includes the same vertex
set V or the possible different edges set Ei. If Wi is the adjacency matrix of Gi and is the numerical
expression of the structure in the ith view, in terms of spectral embedding [36], we can obtain the
following optimization function on the embedding matrix Yi ∈ Rn×k (n is the number of samples,
and k is the dimension of the embedding space) of each view. The data embedding shows the
distribution characteristic of the data, and the different data embedding can be solved for each view
datum as follows.

Yi = arg min tr(YT
i LiYi), s.t. YT

i Yi = 1 (3)

where tr stands for the trace of the square matrix, Li = Di −Wi is the Laplacian matrix of Gi, and Di
is the degree matrix for Gi. Therefore, Li can still describe the characteristic of the structure on graph
Gi. We can compute the embedding matrix Yi by optimizing Equation (3), which is equivalent to
an eigenvalue solution problem. When all eigenvalues are solved, eigenvectors corresponding to
the smallest eigenvalues can build the embedding matrix Yi, which is a mapping from the original
nodes into the low-dimensional spectral space [36]. We can regard tr(YT

i LiYi) as the specificity loss
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of the structure on graph Gi, and then, we can reformulate the specificity loss of multiple structures
as follows.

Losss = tr(YT LY) (4)

where Y is the embedding matrix of multiple structures in graph G and closely approximates Yi.
Suppose fusion structure W is the linear combination of Wi, then L and Li have the same linear
relationship L = ∑m

i=1 βiLi, in which βi is the linear coefficient to encode the importance of
multiple structures.

4.2. Commonality Loss of Multiple Structures

To measure the commonality loss of multiple structures, we need the metric for the distance between
Laplacian matrices Li and L. According to the solution of Equation (3), we can obtain Equation (5) for
describing the internal connection between embedding matrix Yi and the corresponding Laplacian
matrix Li.

Li = YiλiYT
i (5)

where λi is the diagonal matrix, in which diagonal values are the smallest eigenvalues of Li. Yi can
be explained as a subspace for preserving the smaller variance of the column in Li, that is for
reserving the bigger variance of the column in the structure Wi. In other words, Yi can maintain
the greater discrimination of the data. Similarly, Y has the same sense in the multiple observation
structure. Therefore, we can replace the distance between Laplacian matrices Li and L by the distance
between Yi and Y for indirectly computing the commonality loss of multiple structures. This point is
consistent in the specificity loss of the assumption, which is that Yi approximates Y between each view
and multi-views.

In terms of Grassmann manifold theory [37,38], the orthonormal matrix Yi ∈ Rn×k can be regarded
as the column of Yi spanning a unique subspace, which can be projected into a unique point on
Grassmann manifold G(n, k). Similarly, Y also can be mapped into a unique point on this Grassmann
manifold. Therefore, the principle angles {θj}k

j=1 between these subspaces can represent the distance
between Yi and Y. Furthermore, this distance can be reformulated as follows [39].

d2(Y, Yi) =
k

∑
j=1

sin2 θj = k− tr(YYTYiYT
i ) (6)

In multiple structures, we can define the commonality loss Lossc as the distance between Y and
{Yi}m

i=1 as follows.

Lossc =
m

∑
i=1

d2(Y, Yi) = km−
m

∑
i=1

tr(YYTYiYT
i ) (7)

4.3. Structure Fusion by Structure Metric Losses

As two structure metric losses, specificity loss can balance the contribution of the structure in
each view, while commonality loss can consider the similarity of multiple structures in multi-views.
These structure metric losses can both constrain the linear relationship {βi}m

i=1 of multiple structures.
Therefore, we combine these structure metric losses as a total loss for encoding the importance of
multiple structures. The total loss can be reformulated as follows.

Loss = losss + αlossc (8)
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where α is the regularization parameter. From Equation (8), we can construct the object optimization
function as follows.

{Y, {βi}m
i=1} = arg min(losss + αlossc)

= arg min tr(YT LY) + α(km−
m

∑
i=1

tr(YYTYiYT
i ))

= arg min tr(YT
m

∑
i=1

βiLiY) + α(km−
m

∑
i=1

tr(YYTYiYT
i ))

s.t. YTY = 1,
m

∑
i=1

βi = 1, α > 0

(9)

In commonality loss, constant term km cannot influence the loss trend change, so we may remove
this term for conveniently computing. Equation (9) is reformulated as Equation (10) for balancing
parameter {βi}m

i=1 between zero and one.

{Y, γ} = arg min(tr(YT
m

∑
i=1

βiLiY)− α
m

∑
i=1

tr(YYTYiYT
i )))

2

= arg min(tr(YT(
m

∑
i=1

βiLi − α
m

∑
i=1

YiYT
i )Y))

2

s.t. YTY = 1,
m

∑
i=1

βi = 1, α > 0, γ = {{βi}m
i=1, α}

(10)

Equation (10) is a nonconvex optimization problem, and we can solve this problem by Y and
γ alternated optimization. If γ is fixed, Equation (10) can be transformed as an eigenvalue solving
problem as follows.

{Y} = arg min tr(YT MY)

s.t. YTY = 1, α > 0, M = (
m

∑
i=1

βiLi − α
m

∑
i=1

YiYT
i ), γ = {{βi}m

i=1, α}
(11)

Equation (11) is equivalent to an eigenvalue solution problem. When all eigenvalues of M
are solved, eigenvectors corresponding to the smallest eigenvalues can build the fusion embedding
matrix Y. If Y is fixed, Equation (10) can be converted into a quadratic programming problem
as follows.

{γ} = arg min(tr(YT(
m

∑
i=1

βiLi − α
m

∑
i=1

YiYT
i )Y))

2

s.t.
m

∑
i=1

βi = 1, α > 0, γ = {{βi}m
i=1, α}

(12)

By alternate solving between Equations (11) and (12), we can obtain fusion embedding matrix Y
and the linear relationship γ of multiple structures. Furthermore, the fusion structure (fusion adjacent
matrix) can be computed by W = ∑m

i=1 βiWi.
Algorithm 1 shows the pseudocode for the fusion structure of multiple structures. In this

algorithm, there are three steps. The first step (Line 1) initializes the linear relationship of multiple
structures. The second step (from Line 2 to Line 3) computes the Laplacian matrix and the spectral
embedding in each view. The third step (from Line 4 to Line 6) alternately optimizes the spectral
embedding fusion and the linear relationship of multiple structures. The last step (Line 8) calculates
the fusion structure by the linear combination of each structure. Therefore, the complexity of this
algorithm is O(mn3 + mn2kT + k3.5l2T), in which m represents multi-views; n is the sample number;
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k is the dimension of the selected eigenvectors; T is the iterative times of optimization; l is the number
of bits in the input of the algorithm.

Algorithm 1 Fusion structure of multiple structures.

Input: {Wi}m
i=1: n× n adjacency matrices of graph {Gi}m

i=1; α: regularization parameter of the total

loss; T: the iteration times
Output: W: fusion structure of multiple structures

1: Initializing the linear relationship {βi}m
i=1 of multiple structures and regularization parameter α

2: Computing the Laplacian matrix Li of Gi
3: Computing the spectral embedding Yi of the structure in each view by Equation (3)
4: for 1 < t < T do

5: Computing the spectral embedding fusion Y of multiple structures in multi-views by Equation (11)

6: Updating the linear relationship γ of multiple structures by Equation (12)
7: end for
8: Computing the fusion structure by W = ∑m

i=1 βiWi

5. Experiments

For evaluating the proposed SF-GCN, we carried out the experiments from four aspects.
Firstly, we conducted the comparing experiment between the proposed SF-GCN and the baseline
methods, which included graph convolutional networks (GCN) [27] with the combination view and
multi-GCN [6]. Secondly, we utilized the different multi-graph fusion methods for analyzing the
intrinsic mechanism of the proposed SF-GCN. Thirdly, we showed the experimental results between
the proposed SF-GCN and the state-of-the-art methods for the node classification in citation networks.
Finally, we implemented the proposed SF-GCN method of the lost structure for demonstrating the
importance of the complete structure.

5.1. Datasets

We used three paper citation networks in the experiments. These popular datasets usually
utilized in node classification respectively were Cora, Citeseer, and Pubmed. The Cora dataset had 7
classes that involved 2708 grouped publications about machine learning and their undirected graph.
The Citeseer dataset included 6 classes that had 3327 scientific papers and their undirected graph.
In these datasets, each publication stood for a node of the related graph and was represented by
a one-hot vector, each element of which could indicate the presence and absence state of a word
in the learned directory. The Pubmed dataset had 3 classes that contained 19,717 diabetes-related
publications and their undirected graph. In this dataset, each paper (each node of the related graph)
could be described by a term frequency-inverse document frequency (TF-IDF) [40]. Table 1 shows the
statistics of these datasets. To obtain the structure of the second view from the publication description,
we normalized the cosine similarity between these publication. If the similarity was greater than 0.8,
we produced an edge for the corresponding nodes in the citation network. This configuration was the
same in [6].

Table 1. Three datasets’ statistics in citation networks.

Datasets Nodes
Number

Edges
Number

Classes
Number

Feature
Dimension

Label
Rate

Cora 2708 5429 7 1433 0.052

Citeseer 3327 4732 6 3703 0.036

Pubmed 19,717 44,338 3 500 0.003
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5.2. Experimental Configuration

In the experiments, we followed the configuration of GCN [27], in which we trained a two-layer
GCN for a maximum of 200 epochs and a test model in 1000 labeled samples. Moreover, we selected
the same validation set of 500 labeled sample for hyper-parameter optimization (dropout rate for all
layers, number of hidden units, and learning rate).

In the proposed SF-GCN, we initially set the linear relationship {βi}m
i=1 of multiple structures

and regularization parameter α as 0.5 and then updated these parameters in the iteration optimization.
The iteration time T of the algorithm was 5 according to the convergence degree.

5.3. Comparison with the Base-Line Methods

The proposed method (SF-GCN) could be constructed based on GCN [27] and attempted to mine
the different structure information for completing the intrinsic structure in multi-view data. Therefore,
two base-line methods (GCN and multi-GCN can find and capture the different structure information
from the different considerations) were involved for processing multi-view data based on GCN.
GCN for multi-views [27] could concatenate the different structure to build a sparse block-diagonal
matrix where each block corresponded to the different structures (the adjacent matrix of different
graphs). Multi-GCN [6] could preserve the significant structure of the different structures by manifold
ranking. In contrast with these base-line methods, the proposed method (SF-GCN) could not only
enhance the common structure, but also retain the specific structure by structure fusion.

Table 2 shows that the classification of SF-GCN outperformed that of the base-line methods,
and the least improvement of SF-GCN respectively was 0.7% for Cora, 2.1% for Citeseer, and 0.6%
for PubMed. However, GCN for multi-views was not superior to GCN for single-views, and it
demonstrated that information mining of multi-view data was a key point for node classification.
Therefore, SF-GCN attempted to mine the structure information from multi-view data for node
classification and obtained better performance.

Table 2. Accuracy comparison of the structure fusion based on graph convolutional networks (SF-GCN)
method with the base-line methods for node classification in citation network (View 1 stands for the
graph structure from the original dataset, while View 2 indicates the graph structure from the cosine
similarity of node representation).

Method Cora Citeseer PubMed

GCN [27] for View 1 81.5 70.3 78.7

GCN [27] for View 2 53.6 50.7 69.5

GCN [27] for multi-view 80.4 70.7 78.2

Multi-GCN [6] 82.5 71.3 NA

SF-GCN 83.3± 0.4 73.4± 0.7 79.3± 0.4

5.4. Structure Fusion Generalization

Structure fusion (SF) focuses on the complementation of the distribution structure from the
different view data, and W = ∑m

i=1 βiWi can be defined in Section 4.3. However, the diffusion [19,22]
and propagation [14,16] of the different structure can also describe the complex relationship of the
various structure,and become an important part of structure fusion. Therefore, we can define fusion
structure W by the propagation fusion (PF) of the different structure as follows.

W =
m

∏
i

Wi (13)
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The propagation fusion can exchange and interact with the relationship information between the
various structures and mine the neighbor relationship of multiple structures. However, this propagation
can effect the clustering performance of the original structure by high-order iteration multiplication.
Therefore, we only considered zero-order (for example SF) and first-order (for instance PF) multiplication,
that is structure propagation fusion (SPF), as follows.

W =
m

∑
i=1

βiWi +
m

∏
i

Wi (14)

For evaluating structure fusion generalization, we compared structure fusion based on graph
convolutional networks (SF-GCN), propagation fusion based on graph convolutional networks
(PF-GCN), and structure propagation fusion based on graph convolutional networks (SPF-GCN).
In Table 3, we observe that the performance of SPF-GCN was better than those of other methods, and
the least improvement of SPF-GCN respectively was 0.2% for Cora, 0.1% for Citeseer, and 0.7% for
PubMed, while the performance of SP was superior to that of PF-GCN, the improvement of SF-GCN
respectively being 0.6% for Cora, 0.9% for Citeseer, and 0.2% for PubMed. Therefore, PF and SF both
were benefited for further mining the structure information, and the role of SF was more important
than that of PF.

Table 3. Structure fusion generalization classification accuracy in three methods, which are structure
fusion based on graph convolutional networks (SF-GCN), propagation fusion based on graph
convolutional networks (PF-GCN), and structure propagation fusion based on graph convolutional
networks (SPF-GCN).

Method Cora Citeseer PubMed

SF-GCN 83.3± 0.4 73.4± 0.7 79.3± 0.4

PF-GCN 82.7± 0.5 72.5± 0.4 79.1± 0.6

SPF-GCN 83.5± 0.6 73.5± 0.8 80.0± 0.5

5.5. Comparison with the State-of-the-Art

Because graph convolutional networks and structure fusion are basic ideas for constructing
the proposed method SPF-GCN, we involved six related state-of-the-art methods (in Section 2.3)
for evaluating SPF-GCN. Table 4 shows that SPF-GCN outperformed other state-of-the-art methods
except DGCN on the Cora and PubMed datasets. Although SPF-GCN and DGCN reached the same
performance on the Cora and PubMed datasets, SPF-GCN could preserve the higher computation
efficiency of the original GCN because of the separable computation between structure fusion and GCN.

Table 4. Accuracy comparison of SF-GCN and SPF-GCN with state-of-the-art methods for node
classification in the citation networks. GAT, graph attention networks; StoGCN, stochastic training of
graph convolutional network; DGI, deep graph infomax (DGI); LGCN, learnable graph convolutional
network; DGCN, dual graph convolutional network.

Method Cora Citeseer PubMed

GAT [33] 83.0± 0.7 72.5± 0.7 79.3± 0.3

StoGCN [34] 82.0± 0.8 70.9± 0.2 78.7± 0.3

DGI [35] 82.3± 0.6 71.8± 0.7 76.8± 0.6

LGCN [24] 83.3± 0.5 73.0± 0.6 79.5± 0.2

DGCN [25] 83.5 72.6 80.0

Multi-GCN [6] 82.5 71.3 NA

SF-GCN 83.3± 0.4 73.4± 0.7 79.3± 0.4

SPF-GCN 83.5± 0.6 73.5± 0.8 80.0± 0.5
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5.6. Incomplete Structure Influence

Structure fusion can capture the complementary information of multiple structures, and this
complementary information can supply an efficient way for incomplete structure influence. The main
reason for the incomplete structure may be the noise and data loss in practical situations. For evaluating
the performance of the proposed methods under the condition of the incomplete structure, we designed
an experiment in all datasets. In semi-supervised classification, the distribution structure of test
datasets was more important than that of training datasets and could assure the performance of
classification because of the transfer relation of the structure between training and test datasets.
Therefore, we randomly deleted some structure of the test datasets to destroy this transfer relation for
simulating an incomplete structure.

In detail, we proportionally set the adjacency matrix (graph structure from the original dataset) of
elements (corresponding to test datasets) to zero from 10% to 60% and then respectively implemented
GCN for multi-views [27], DGCN [25], SF-GCN, and SPF-GCN methods for all datasets. In Figure 2,
we selected the structure loss degree from 10%, 20%, 30%, 40%, 50%, to 60% to construct the different
classification models for evaluating the performance of the compared methods. Especially, there was a
smaller descent of SPF-GCN classification accuracy with structure loss increasing from 10% to 60%,
e.g., 83.3 to 82.5 on Cora, 73.4 to 73.0 on Citeseer, and 79.8 to 79.4 on PubMed. We could observe
that the proposed SF-GCN and SPF-GCN were more stable and robust with the incomplete degree of
the structure increasing than GCN for multi-views and DGCN. In this situation, the performance of
SPF-GCN was better than that of SF-GCN, while the performance of GCN outperformed that of DGCN
on the Cora dataset, and the performance of DGCN was superior to that of GCN on the Citeseer and
PubMed datasets. The details of this reason can be analyzed in Section 5.7.

Figure 2. Impact of the structure loss on the classification accuracy for citation networks on the (a)
Cora, (b) Citeseer, and (c) PubMed datasets.
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5.7. Experimental Results’ Analysis

In our experiments, we compared the proposed method with eight methods, which contained
two kinds of base-line methods (multi-GCN [6], GCN [27] for multi-views, GCN [27] for View 1 and
View 2 in Section 5.3), two kinds of structure fusion generalization methods (PF-GCN and SPF-GCN in
Section 5.4), and six kinds of state-of-the-art methods (GAT [33], StoGCN [34], DGI [35], LGCN [24],
DGCN [25], and multi-GCN [6] in Section 5.5). These methods could utilize the graph structure mining
based on graph convolutional networks for semi-supervised classification by different ways. In contrast
to other methods, the proposed SF-GCN and SPF-GCN methods focused on the complementary
relationship of multiple structures by the consideration of their commonality and specificity. Moreover,
the proposed SPF-GCN method could not only capture the optimization distribution of the fusion
structure, but also emphasize the interactive propagation between the different structures. From the
above experiments, we could observe several points as follows.

• The performance of SF-GCN was superior to that of the base-line methods (multi-GCN [6],
GCN [27] for multi-views, and GCN [27] for View 1 and View 2 in Section 5.3). GCN [27]
constructed a general graph convolutional architecture by the first-order approximation of spectral
graph convolutions for greatly improving the computation efficiency of graph convolutional
networks and also provided a feasible deep mining framework for effective semi-supervised
classification. For using multiple structures, GCN for multi-views could input a sparse
block-diagonal matrix, each block of which corresponded to the different structures. Therefore,
the relationship of each block (the different structure) was ignored for GCN, and this point lead to
the poor performance (for some times, the performance of GCN for multi-view was worse than
that of GCN for View 1) of GCN for multi-views. In contrast, multi-GCN [6] could capture the
relationship of the different structures to preserve the significant structure of merging the subspace.
However, multi-GCN [6] neglected optimizing the fusion relationship of the different structures,
while the proposed SF-GCN focused on finding these relationships by jointly considering the
commonality and specificity loss of multiple structures for obtaining better performance for
node classification.

• SPF-GCN showed the best performance in structure fusion generalization experiments,
whereas the performance of SF-GCN was better than that of SP-GCN. The main reason was that
SF-GCN emphasized the complementary information by the optimizing fusion relationship of the
different structures, while SP-GCN tended toward the interactive propagation by the diffusion
influence between the different structures. The complement fusion played a more important
role than the interactive propagation because of the specificity structure of individual view data,
but both fusion and propagation could contribute the multiple structure mining for enhancing
the performance of node classification.

• The performance improvements of SPF-GCN compared with six kinds of state-of-the-art methods
were respectively different. A similar performance of SPF-GCN was shown in the comparison
with LGCN and DGCN on Cora and PubMed. Except these situation, the better improvement of
SPF-GCN could be demonstrated for other methods. The main reasons were that LGCN could
emphasize neighboring nodes’ feature fusion for the stable node representation and DGCN could
correlate the local and global consistency for complementing the different structures. The proposed
SPF-GCN was expected not only to capture the structure commonality for complementing the
different information, but also to preserve the structure specificity for mining the discriminative
information. Therefore, the proposed SPF-GCN could improve the classification performance
in most experiments. In the least, the proposed SPF-GCN had a similar performance as the
best performance of other methods in all experiments. In addition, the proposed SPF-GCN was
based on GCN frameworks, so it had an efficient implementation like GCN. In the experiments,
the computation efficiency of the proposed SPF-GCN was higher than that of the state-of-the-art
methods (the details of the computation efficiency are in Section 4.2).
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• The structure showed the distribution of the data and was very important for training the GCN
model. The incomplete structure could evaluate the robustness of the related GCN model.
We selected the classical GCN, the state-of-the-art DGCN, SF-GCN, and SPF-GCN for the robustness
test. The proposed SPF-GCN showed the best performance on the three datasets. On Cora,
the performance of GCN was better than DGCN, while the performance of GCN was worse than
DGCN on Citeseer and PubMed. This showed that local and global consistency for fusing graph
information in DGCN tended toward the unstable characteristic because of the tight constraint of
incomplete structure consistency. The loose constraint of GCN for incomplete structure correlation
led to the worse performance. The proposed SPF-GCN could compromise these constraints for
balancing the incomplete structure information by optimizing the weight of multiple structures
and also connect the different structures for complementing the different information. Therefore,
the proposed SPF-GCN obtained the best performance in the experiments.

• The proposed SPF-GCN was expected to mine the commonality and the specificity of multiple
structures. The commonality described the similarity characteristic of structures by the Grassmann
manifold metric, while the specificity narrated the different characteristics of the structures by
spectral embedding. In the proposed method, the commonality was constructed based on the
specificity. Therefore, we only executed the ablation experiment for preserving the specificity
loss by deleting the commonality loss from the total loss. This experiment obtained the following
performance: 82.6% on Cora, 71.5% on Citeseer, and 78.9% on PubMed. These results obviously
were worse than the performance of the proposed SF-GCN and SPF-GCN, which could balance
the commonality and specificity for mining the suited weight of multiple structures.

6. Conclusions

We proposed structure fusion based on graph convolutional networks (SF-GCN) to address
the multi-view data diversity and complexity for node classification. SF-GCN could not only adapt
spectral embedding to preserve the specificity of the structure, but also model the relationship of the
different structures to find the commonality of multiple structures by the manifold metric. Furthermore,
the proposed structure propagation fusion based on graph convolutional networks (SPF-GCN) could
combine the structure fusion framework with structure propagation to generate the complete structure
graph for improving the performance of node classification. Finally, the optimization learning of the
SF-GCN could obtain both the suitable weight for the different structure and merge the embedding
space. For evaluating the proposed SF-GCN and SPF-GCN, we carried out the comparison experiments
about the baseline methods, the different multi-graph fusion methods, the state-of-the-art methods,
and the the lost structure analysis on the Cora, Citeseer, and Pubmed datasets. The experiment results
demonstrated that SF-GCN and SPF-GCN could obtain promising results for node classification on
citation networks.

From the above, it was shown that structure information mining was important for recognizing
the data category. Especially, multi-graphs based on the observation data could provide rich
information for reconstructing the intrinsic structure of data. It could be used for social networks’
information analysis, knowledge networks’ information construction, and virus networks’ discovery
and discrimination. Since structure information mining is so important for structure recovery,
the structure may be directly learned from the original data in the future works.

Author Contributions: Conceptualization, G.L.; investigation, G.L., J.W., and F.Z.; methodology, G.L., K.L.,
and W.C.; project administration, G.L.; writing, original draft, G.L.; writing, review and editing, G.L. All authors
read and agreed to the published version of the manuscript.

Funding: This research was funded by NSFC (Program No. 61771386, Program No. 61671376, and Program No.
61671374) and the Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2017JZ020).

Acknowledgments: The authors would like to thank the anonymous reviewers for their insightful comments that
helped improve the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.



Electronics 2020, 9, 432 14 of 15

References

1. Veksler, O. Efficient Graph Cut Optimization for Full CRFs with Quantized Edges. IEEE Trans. Pattern Anal.
Mach. Intell. 2019.doi:10.1109/TPAMI.2019.2906204. [CrossRef]

2. Monti, F.; Bronstein, M.; Bresson, X. Geometric matrix completion with recurrent multi-graph neural
networks. Advances in Neural Information Processing Systems; Curran Associates, Inc.: New York, NY, USA,
2017; pp. 3697–3707.

3. Ying, R.; He, R.; Chen, K.; Eksombatchai, P.; Hamilton, W.L.; Leskovec, J. Graph convolutional neural
networks for web-scale recommender systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, London, UK, 19–23 August 2018; ACM: New York,
NY, USA, 2018; pp. 974–983.

4. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized
spectral filtering. In Proceedings of the Advances in Neural Information Processing Systems, Barcelona,
Spain, 5–8 December 2016; Curran Associates, Inc.: New York, NY, USA, 2016; pp. 3844–3852.

5. Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural message passing for quantum chemistry.
In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August
2017; pp. 1263–1272.

6. Khan, M.R.; Blumenstock, J.E. Multi-GCN: Graph Convolutional Networks for Multi-View Networks, with
Applications to Global Poverty. arXiv 2019, arXiv:1901.11213.

7. Lin, G.; Zhu, H.; Kang, X.; Fan, C.; Zhang, E. Multi-feature structure fusion of contours for unsupervised
shape classification. Pattern Recognit. Lett. 2013, 34, 1286–1290. [CrossRef]

8. Lin, G.; Zhu, H.; Kang, X.; Fan, C.; Zhang, E. Feature structure fusion and its application. Inf. Fusion 2014,
20, 146–154. [CrossRef]

9. Lin, G.; Zhu, H.; Kang, X.; Miu, Y.; Zhang, E. Feature structure fusion modelling for classification. IET Image
Process. 2015, 9, 883–888. [CrossRef]

10. Lin, G.; Fan, G.; Yu, L.; Kang, X.; Zhang, E. Heterogeneous structure fusion for Target Recognition in
infrared imagery. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), Boston, MA, USA, 7–12 June 2015; pp. 118–125.

11. Lin, G.; Fan, G.; Kang, X.; Zhang, E.; Yu, L. Heterogeneous feature structure fusion for classification.
Pattern Recognit. 2016, 53, 1–11. [CrossRef]

12. Lin, G.; Fan, C.; Zhu, H.; Miu, Y.; Kang, X. Visual feature coding based on heterogeneous structure fusion for
image classification. Inf. Fusion 2017, 36, 275–283. [CrossRef]

13. Lin, G.; Liao, K.; Sun, B.; Chen, Y.; Zhao, F. Dynamic graph fusion label propagation for semi-supervised
multi-modality classification. Pattern Recognit. 2017, 68, 14–23. [CrossRef]

14. Lin, G.; Chen, Y.; Zhao, F. Structure propagation for zero-shot learning. arXiv 2017, arXiv:1711.09513.
15. Lin, G.; Fan, C.; Chen, W.; Chen, Y.; Zhao, F. Class label autoencoder for zero-shot learning. arXiv 2018,

arXiv:1801.08301.
16. Lin, G.; Chen, Y.; Zhao, F. Structure Fusion and Propagation for Zero-Shot Learning. In Proceedings

of the Chinese Conference on Pattern Recognition and Computer Vision (PRCV), Guangzhou, China,
23–26 November 2018; pp. 465–477.

17. Lin, G.; Chen, W.; Liao, K.; Kang, X.; Fan, C. Transfer feature generating networks with semantic classes
structure for zero-shot learning. arXiv 2019, arXiv:1903.02204.

18. Yang, X.; Latecki, L.J. Affinity learning on a tensor product graph with applications to shape and image
retrieval. In Proceedings of the IEEE CVPR 2011, Providence, RI, USA, 20–25 June 2011; pp. 2369–2376.

19. Yang, X.; Prasad, L.; Latecki, L.J. Affinity learning with diffusion on tensor product graph. IEEE Trans.
Pattern Anal. Mach. Intell. 2012, 35, 28–38. [CrossRef] [PubMed]

20. Bai, S.; Zhou, Z.; Wang, J.; Bai, X.; Latecki, L.J.; Tian, Q. Automatic Ensemble Diffusion for 3D Shape and
Image Retrieval. IEEE Trans. Image Process. 2019, 28, 88–101. [CrossRef] [PubMed]

21. Li, Q.; An, S.; Li, L.; Liu, W. Semi-supervised Learning on Graph with an Alternating Diffusion Process.
arXiv 2019, arXiv:1902.06105.

22. Bai, S.; Bai, X.; Tian, Q.; Latecki, L.J. Regularized diffusion process for visual retrieval. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; AAAI
Press: Palo Alto, CA, USA 2017; pp. 3967–3973.

https://doi.org/10.1109/TPAMI.2019.2906204
http://dx.doi.org/10.1109/TPAMI.2019.2906204
http://dx.doi.org/10.1016/j.patrec.2013.04.011
http://dx.doi.org/10.1016/j.inffus.2014.01.002
http://dx.doi.org/10.1049/iet-ipr.2015.0082
http://dx.doi.org/10.1016/j.patcog.2015.10.013
http://dx.doi.org/10.1016/j.inffus.2016.12.010
http://dx.doi.org/10.1016/j.patcog.2017.03.014
http://dx.doi.org/10.1109/TPAMI.2012.60
http://www.ncbi.nlm.nih.gov/pubmed/22392704
http://dx.doi.org/10.1109/TIP.2018.2863028
http://www.ncbi.nlm.nih.gov/pubmed/30080147


Electronics 2020, 9, 432 15 of 15

23. Bai, S.; Zhou, Z.; Wang, J.; Bai, X.; Jan Latecki, L.; Tian, Q. Ensemble diffusion for retrieval. In Proceedings of
the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 774–783.

24. Gao, H.; Wang, Z.; Ji, S. Large-Scale Learnable Graph Convolutional Networks. arXiv 2018, arXiv:1808.03965.
25. Zhuang, C.; Ma, Q. Dual graph convolutional networks for graph-based semi-supervised classification.

In Proceedings of the 2018 World Wide Web Conference on World Wide Web, Lyon, France, 23–27 April 2018;
International World Wide Web Conferences Steering Committee: Geneva, Switzerland, 2018; pp. 499–508.

26. Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral networks and locally connected networks on graphs.
arXiv 2013, arXiv:1312.6203.

27. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016,
arXiv:1609.02907.

28. Chen, J.; Ma, T.; Xiao, C. Fastgcn: Fast learning with graph convolutional networks via importance sampling.
arXiv 2018, arXiv:1801.10247.

29. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the
Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran
Associates, Inc.: New York, NY, USA, 2017; pp. 1024–1034.

30. Dai, H.; Kozareva, Z.; Dai, B.; Smola, A.; Song, L. Learning steady-states of iterative algorithms over graphs.
In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018;
pp. 1114–1122.

31. Liu, Z.; Chen, C.; Li, L.; Zhou, J.; Li, X.; Song, L.; Qi, Y. Geniepath: Graph neural networks with adaptive
receptive paths. arXiv 2018, arXiv:1802.00910.

32. Van Tran, D.; Navarin, N.; Sperduti, A. On Filter Size in Graph Convolutional Networks. arXiv 2018,
arXiv:1811.10435.
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