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Abstract: In this paper, we introduced and tested a new system based on a sensorized seat, to evaluate
the sitting dynamics and sway alterations caused by different cognitive engagement conditions.
An office chair was equipped with load cells, and a digital and software interface was developed
to extract the Center of Pressure (COP). A population of volunteers was recruited to evaluate
alterations to their seated posture when undergoing a test specifically designed to increase the
cognitive engagement and the level of stress. Relevant parameters of postural sway were extracted
from the COP data, and significant alterations were found in all of them, highlighting the ability of the
system to capture the emergence of a different dynamic behavior in postural control when increasing
the complexity of the cognitive engagement. The presented system can thus be used as a valid
and reliable instrument to monitor the postural patterns of subjects involved in tasks performed in
a seated posture, and this may prove useful for a variety of applications, including those associated
with improving the quality of working conditions.

Keywords: seated posture; cognitive engagement; stress level; load cells; embedded systems;
sensorized seat

1. Introduction

Modern lifestyle is more and more characterized by the fact that people are moving less and are
spending an increasing amount of time sitting [1–4]. This takes into account the time spent working
in front of a PC or using means of transportation to move from one place to another. Many leisure
activities are also performed while seated (e.g., reading a book, watching television).

A sedentary lifestyle is dangerous for many reasons. It may lead to the development of chronic
diseases (e.g., cardiovascular) [5,6] and may also affect psychological health [7]. Another problem
related to the increase of time spent sitting is that the position adopted on the chair is often incorrect,
thus creating health problems such as back pain [6] and headaches [7].

In recent years, people have become more aware of these problems. This is witnessed by the
commercialization of height-adjustable sit–stand desks, but also by the spread of many low-cost
devices such as smart watches (e.g., Fitbit trackers, Apple watches) and applications (e.g., Stand Up!
The Work Break Timer, Time Out) that push the users to perform micro-breaks every 20–30 min of
continuous sitting. In this regard, Sitting Posture Monitoring Systems (SPMS) have been introduced
in the community, with the objective of detecting and understanding the position of a person in the
seated position.

SPMS can rely on different technologies, which span from the use of wearable sensors [8–13],
to the use of cameras [14–16], and also to the use of optoelectronic systems [17]. In all the considered
cases, the aim is to provide the user with a minimally intrusive experience, so that the SPMS does not
interfere with the normal behavior.
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Among the available solutions, a state-of-the-art solution is that of equipping chairs with sensors
able to collect data on the posture of the user [18–21]: Ishac et al. in [18] presented a cushion to be used
in the backrest of the chair. The cushion is equipped with a pressure sensing array that allows the
measurement of the pressure at 9 different points. The lack of information about the pressure on the
seat reduces the amount of information that can be extracted.

Zemp et al. in [19] used an innovative approach based on machine learning to classify the data
collected by 16 pressure sensors located on different parts of a chair (armrest, seat and backrest).
While allowing an improved posture classification, the computational complexity of this algorithm is
quite high.

Similarly, Roh et al. in [20] inserted load cells in the frame of the chair to record data that are
processed through a machine learning approach. In this work, even if a dynamic evaluation of the
sitting posture is achieved, data are used only to classify postures and not to evaluate the dynamic
behavior of a subject in different conditions.

In a previous work [21], we equipped an office chair with textile sensors that allowed us to
recognize 8 different sitting positions. We experimented a limitation since the smart chair allows only
the detection of specific positions and not to monitor their evolution in time.

To evaluate the dynamic features of the seated position, we took inspiration from the use of force
plates in posturography: in that domain, a three-component force plate is generally used to record over
time where the Center of Pressure (COP) is located, by measuring and combining the vertical force
component and the two torque components applied on it [22]. The COP is defined as the application
point of the ground reaction force, and, in upright stance, it sways dynamically around an equilibrium
point even in absence of external disturbances [23], a phenomenon that is generally denoted as postural
sway. Postural sway is controlled by the Central Nervous System (CNS) in an autonomous way, and it
is strictly related to the human capability of standing [24]. Human standing position is influenced by
many disturbing factors (external, such as audio or visual stimuli, or internal, such as respiration or
cardiac activity [25,26]) that are continuously compensated by the CNS.

Similarly, while seated, the human body is subject to a number of disturbances and, also in
this condition, the CNS modulates the activity of muscles to maintain the equilibrium of the upper
body segments (e.g., upper trunk, head, upper limbs) [27]. Correspondingly, in a seated position it is
possible to determine where the Upper body Center of Pressure (UCOP) is located over a period of
time, in order to evaluate, for example, if, in the presence of different external stimuli, or during task
execution, a different way of swinging can be identified and to what it can be associated.

In both cases the equilibrium can be affected by different cognitive load levels of the task that
a subject is performing. Different levels of cognitive load can be associated with variations of the
electroencephalogram (EEG) signal [28]. In [29] the authors show that the EEG signal can be used to
monitor different levels of stress. Moreover, it is known that an increase of cognitive load induces
increasing levels of stress [30].

Among the techniques used to increase the cognitive load, the analysis of the EEG signals has
proven that the Stroop Test activates brain areas related to attention [31]. Since this test can be a valuable
tool to induce different cognitive loads on subjects, it has been used in the experiments presented in
this work and it will be detailed in the following.

Anyway, EEG-based techniques require complex setup to record this type of signals. For this
reason, EEG is not the most convenient means to monitor the level of stress in common daily life
activities, such as in workplaces. Among the possible alternatives, it has been demonstrated that
both eye movements and postural sway can be associated to different levels of cognitive involvement:
in [32], 16 volunteers were asked to perform visual tasks while standing and they highlight the presence
of a synergic relation between recorded eye and body movements for high precision tasks; moreover,
even if some categories of trained people (e.g., activities that requires more equilibrium such as
dancing) are in general more stable, everybody has a tendency to swing more when a demanding task
is required [33], and this evidence makes space for the possibility to monitor cognitive load through
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the variations in postural sway. Following along this line, in [34], a Nintendo Wii balance board was
selected to analyze the postural sway of older adults with no cognitive disability while performing
predefined tasks in a home environment. In this case also, postural sway has been correlated to the
cognitive status of the examined subjects.

In this work, the seated postural sway was analyzed using an innovative instrumented chair able
to collect in a non-invasive way the instantaneous position of the UCOP. To test its validity, we asked
subjects to perform a task sequence with increasing levels of cognitive engagement. As demonstrated
in [21], increasing levels of cognitive engagement modify the posture that, starting from a relaxed
seated condition will reach a stressed one, but up to now this was not quantified by the amount of
seated postural sway associated with the observed modifications in posture.

2. Materials and Methods

2.1. Instrumented Chair Design

To evaluate the seated postural sway, a new instrumented chair has been designed and realized
starting from previous experiences [21,35,36], where pressure sensors have been used to determine
static postures of the users. In this work, an office chair was equipped with a set of four force sensors
placed under its Load Plane (LP, i.e., where the pelvis loads up the chair). This set up was used to
extract the instantaneous position of the UCOP mediolateral and anteroposterior coordinates (i.e.,
XUCOP and YUCOP), under the hypothesis that the remaining body segments (thighs, legs, foot) do not
concur to loading the seat.

In analogy to posturography in an upright stance, the required dynamic components to calculate
the UCOP coordinates are: the resultant vertical force applied on LP Fz, that is the force component
acting along the perpendicular Z axis; and the two torques Mx and My applied around the orthogonal
axes identified on the load plane, identified as X and Y (Figure 1).
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Considering that Mx and My are defined as the vector product of Fz and the distance of its point
of application on LP from each axis, the values of the UCOP coordinates, XUCOP and YUCOP, can be
obtained as:

XUCOP =
My

Fz
; YUCOP = −

Mx

Fz
. (1)
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To evaluate these three dynamic components, four load cells can be inserted in the positions
{A,B,C,D} of the LP (Figure 1) and the four force components {FA, FB, FC, FD} can be measured.
Consequently, Fz can be obtained as:

Fz = FA + FB + FC + FD. (2)

Each load cell produces a voltage output VP that in linear conditions results:

FP = kPVP (3)

where P = {A,B,C,D} represents the position and kP is a proportionality constant.
If FZ is applied in the center of the LP (i.e., XUCOP = 0, YUCOP = 0) the four load cells are equally

loaded and the torques applied around the X and Y axes are equal to zero, so it results:

kAVA = kBVB = kCVC = kDVD = 0.25× Fz. (4)

Considering that four load cells with the same features are used (thus the proportionality constant
is the same for all the load cells), the previous equation can be approximated by:

Fz = Kz(VA + VB + VC + VD) = KzVFz (5)

with KZ the common constant of proportionality for the Fz measurement.
When FZ is applied on a point that does not lie on one or both axes, one or both torque components

are applied on the LP.
For example, when Fz is applied in a generic point on the x axis different from zero, a Mx component

results on the LP; in this case the four load cells are loaded in a different way and it results that:

Mx =
l
2
[(kBVB + kCVC) − (kAVA + kDVD)] (6)

where l is the distance between A and B (or between C and D).
This equation represents the sum of each torque contribution given by the force reactions, due to

Fz solicitation, applied in the four P positions. Since the hypothesis of using load cells with the same
features still holds, the previous equation can be approximated by:

Mx =
lKz

2
[(VB + VC) − (VA + VD)] = Kx[(VB + VC) − (VA + VD)] = KxVMx (7)

with Ky a general constant of proportionality.
With similar considerations, it is possible to write that:

My = Ky[(VC + VD) − (VA + VB)] = KyVMy. (8)

It is then possible to measure Fz, MX and My if the three parameters {Kx, Ky, Kz} and the four
voltage values {VA, VB, VC, VD} are known. This computation allows to compute the UCOP coordinates,
XUCOP and YUCOP.

Each force component can be measured by a load cell and, after the signals are acquired,
the mechanical quantities values can be calculated combining the digitalized data. These equations are
valid in ideal conditions, where the cross-talk effect among channels (i.e., the influence of a specific load
on all output channels, given by multiple factors) is neglected. In real conditions, every mechanical
quantity is obtained taking in account cross-talk effects and properly modifying the given equations
with a corrective factor; this is usually achieved by a calibration procedure that will be described in
the following.
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Using a normal office chair, four commercial load cells were placed in the four corners of its seat,
to realize an instrumented system, where an LP can be identified, with the features described above.
A custom frame was realized and used to partially replace the chair frame to obtain four areas of where
to place the load cells (Figure 2). The custom frame was designed in order not to flex during dynamic
solicitation, and not to affect the measures performed with the load cells.
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chair structure; (b) second part of the new frame fixed under the seat; (c) load cells housing.

The load cells used in this project are the FX1901 class (Measurement Specialties Inc.,
TE Connectivity Group, USA), while the specific used model (FX1901-0001-0100-L) is a 1% load cell
device with full scale ranges of 100lb compression (about 45kg). These devices, specifically designed
for force sensing in "smart" consumer and medical products, use micro-machined piezoresistive strain
gauges, showing a ratiometric span of 20 mV/V.

To place the load cells under the LP, a specific adaptor was designed and realized by means of
a 3D printing process. A Stratasys Objet30 Prime was used: this machine allows polyJet 3D printing
that allows the realization of high-resolution components by jetting microscopic layers of liquid
photopolymer onto a build tray and instantly curing them with UV light. This accuracy in realization,
comparable with a high accuracy machining of metal alloy, was necessary to couple the 4 load cells
with the flat surface of the metal frame where they have been housed. In Figure 3, one of the realized
adaptors is shown: the load cell is fixed to the lower part of the adaptor and is covered by a two-piece
top part. This part presents a cylindrical element that is in contact with the load-sensitive part of the
load cell and with the top part of the custom chair frame, thus transmitting directly to the load cell the
force applied on the LP.

Each load cell, as mentioned above, was realized using strain gauges that are assembled in a full
Wheatstone bridge configuration. As mentioned in its datasheet, a 4-wire connection is provided:
2 wires are used to supply the Wheatstone bridge {+Vin, −Vin}, while 2 wires are used to measure its
outputs {+Vout, −Vout}.

The four load cells were driven independently using four instrumentation amplifiers,
INA125 (Texas Instruments inc., USA). It is a high-accuracy instrumentation amplifier with a precision
voltage reference used to provide a complete bridge excitation and that can receive and amplify
differentially the bridge output. The gain was set using the dedicated single external resistor pin,
using the datasheet information (selectable gain from 4 to 10,000) in order to best fit the voltage range
of the adopted A/D converter. This last operation was performed using an Arduino Uno (Arduino
cc) board, that through an ATmega328P microcontroller provided the necessary function to acquire
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signals. A specific firmware was realized to acquire from four input channels of the Arduino board the
four INA125 output analog signals with a 100 Hz sampling frequency.
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The AD converter was managed by using a custom interface realized with Labview (National
Instruments, USA) that allows the connection with the Arduino board via USB. The designed and
realized Labview panel (i.e., Virtual Instrument, VI), allows the serial port connection to receive the
digitalized data that are converted from bit levels to mechanical quantities using proper calibration
coefficients. Moreover, the VI calculates in real time the UCOP coordinates and all data (i.e., Fz, Mx

and My together with XUCOP YUCOP) are saved in a file for further elaboration.
The mechanical quantities in real conditions, where cross-talk effects are present, are obtained

from the acquired voltage values according to the following equations:
Fz = a11VFz + a12VMx + a13VMy

Mx = a21VFz + a22VMx + a23VMy

My = a31VFz + a32VMx + a33VMy

⇒


Fz

Mx

My

 =


a11 a12 a13

a21 a22 a23

a31 a32 a33




VFz

VMx

VMy

 (9)

with


a11

a22

a33

 =


Kz

Kx

Ky

 and ai j a generic calibration coefficient, constituting the calibration matrix,

that is used to take into account the cross-talk effect. Since load cells’ primary transducers work in
their linear field, the calibration coefficients can be considered constant in the measurement range of
the load cells.

Calibration coefficients have been obtained by positioning a graduate flat surface on the chair LP
(Figure 4). The graduate surface has specific reference points that allow the application of controlled
loads on the chair LP; as an example, by using known loads it is possible to apply only the Fz component
or specific Mx and My, since the equidistant orthogonal axes from load cells couples are identified.
Thus, considering three different load conditions, and reading the correspondent voltage output, it is
possible to apply three times Equations (9) to obtain the calibration coefficients.
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2.2. Experimental Protocol

An experimental campaign has been designed and performed to extract the UCOP coordinates
while asking the volunteers seated on the chair to undergo a task sequence with increasing levels of
cognitive engagement defined through a dedicated test (i.e., Stroop test).

The Stroop test has been successfully employed for driving volunteers from a natural and relaxed
position on the seat of a chair to different ones associated with a stressing condition while increasing
the difficulty level of the performed task. Details of the designed Stroop test are given in the following.

2.2.1. Stroop Test

In the Strop test, a stress condition in the participants is induced, by asking them to perform
a series of similar cognitive tasks with an increasing level of difficulty and engagement [37]. In previous
works, it has been demonstrated that the increasing engagement in such kinds of tests gives rise to
a different level of stress in the participant [38] and as a consequence, a different sitting posture on the
chair is taken [21].

The test used in this study is based on displaying some words on a screen that the participant
has to read in a predefined period of time: in particular, the selected words are the name of a color
(e.g., “blue”, “red”, “black”, etc.) and have been displayed written in black and white in a first phase
while in a colored form in a second phase of the test. To best achieve a variation of the cognitive
engagement and to increase the level of stress induced in the task, the phases are planned in order
to induce the Stroop effect: in the first phase of the test, the participant is instructed through written
indications to read the words displayed on the screen, while in the second phase he/she is invited to
read aloud the color of the word, regardless of the meaning of the word (this will be called PHA in
the following). Then the combinations (color–meaning) in the successive phases are: the name and
the color are matching (e.g., the word “blue” is displayed using a blue color, PHB in the following);
and the name and the color are not matching (e.g., the word “blue” is displayed using a red color,
PHC in the following). Different sets of words are displayed in sequence, giving a fixed time slot to the
participant to complete the reading of each set. In PHB, the task is very easy since the color of the
word corresponds to its meaning. In PHC, the task is more demanding, and the number of mistakes
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made by the participant increases (e.g., not all words in the set are read or the meaning of the word is
read instead of its color). This is mainly due to the time provided to the participants to complete the
task being limited. Moreover, the participant is warned of the errors he/she made, and this induces
a stressing condition that usually is maintained and growing till the end of the test.

In this work, a Stroop test consisting of 25 PowerPoint slides was realized and it was presented to
a population of volunteers while sitting on the designed chair. In particular, according to the results
obtained in [21], the test sequence (PHA, PHB, PHC) is described in the following and shown in
Figure 5:

(a) PHA: 6 sets of black and white words representing color names, that were included in the test to
make the participant familiar with the required task (i.e., the readings of words on a display in
a predefined time slot) (Figure 5a).

(b) PHB: 6 sets of colored words representing color names with a correspondence between the
adopted color and the meaning (Figure 5b).

(c) PHC: 12 sets of colored words representing color names with mismatching color and meaning
(Figure 5c).
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Within each phase, the word set presented to the volunteers has an increasing number of words
composing a slide that has been displayed in full screen mode. A fixed time delay for transition
between consecutive sets has been set according to [21] to be able to induce the Stroop effect. Moreover,
this choice allows for uniform test conditions for the whole population of participants, together with
the standardization of the adopted font size (96 pt.) for all the displayed words.

The adopted settings are reported in Table 1.

Table 1. Schedule of the Stroop test—in the first phase the words are in black and white, in the second
phase the color of words matches the word meaning, and in the third phase the color of words does not
match the word meaning.

Number of Words Per Set Number of Slides Time Per Slide [s]

PHA: Black and white words

3 2 2
4 2 2.5
5 1 3
6 1 3.5

PHB: Colored words with color
matching the meaning

3 2 2
4 2 2.5
5 1 3
6 1 3.5

PHC: Colored words with color
not matching the meaning

3 2 2.5
4 2 3
5 2 3.5
6 2 4
9 2 6

12 2 8
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2.2.2. Experimental Protocol

The tests have been presented to a group of 95 participants (61 males and 34 females), with age
of 29 ± 12 years (mean ± SD). All participants filled a form declaring their agreement to participate
in this scientific test. All volunteers had no visual impairments (i.e., none of them wore glasses or
contact lenses, all volunteers were checked for color blindness) and in general, were healthy with no
apparent or declared mobility problems (e.g., use of walking aids). Since the sets of words were written
in Italian, all the selected participants were native Italian speakers. The participants were recruited
among the population visiting the “Maker Faire 2019” (The European edition, Rome, Italy).

Since the chair was equipped only with force sensors on the seat, the backrest was removed, so the
chair was used like a stool in its use during the test. Each participant was invited to sit in a natural
position, without crossing their legs. Participants were not informed about the scope of the test before
conducting it, in order not to influence their behavior during its execution. Participants were briefly
instructed about the tasks to be conducted, and further detailed instructions (i.e., “read the word on
the slide” or “read the color of the words”) were provided during the displaying of the words sets
(i.e., at the beginning and at each phase transition of the test). The participants were asked to read
aloud as quick as possible the words’ meaning for the sets displayed in PHA and PHB, and the color of
each word regardless of its meaning for the sets displayed in PHC. After the conclusion of the test,
each participant was informed about the presence of the sensors under the seat and about the recorded
data. Moreover, participants were informed that they were part of a scientific study, and everybody
confirmed the given consensus to be part of the studied population. Nobody felt the presence of
sensors during the test or a feeling different than that of sitting on a normal stool. Recorded data were
stored in a database, together with the personal information of the volunteers (i.e., age and gender),
and associated to a code for each participant. A list matching the participant name and the code was
encrypted and stored in a different storage device from that of the database.

2.3. Data Analysis

From the acquired and calibrated dynamic data (i.e., Fz, Mx and My), the UCOP coordinates,
XUCOP and YUCOP, with respect to the chair origin were calculated for each phase according to Equation
(1), removed of their average value for each phase, and low-pass filtered through a third-order
zero phase Butterworth digital filter with a 20-Hz cut-off frequency. This produced, for each phase,
a 2D time series, {XUCOPA,YUCOPA}, {XUCOPB,YUCOPB} and {XUCOPC,YUCOPC}, respectively. Then,
the corresponding resulting distances RDA, RDB and RDC (i.e., the magnitude of the displacement of
the instantaneous position of UCOP from its mean value) were calculated. From these time series, in
agreement with the definitions given in [22], mean distance values (MD, MDX and MDY), RMS distance
values (RDIST, RDISTX and RDISTY), range values (RANGE, RANGEX and RANGEY), Mean Velocity
values (MVELO, MVELOX and MVELOY), the 95% confidence circle area value (AREA-CC), the 95%
confidence ellipse area value (AREA-CE) and the sway area value (SWAREA) were calculated for
every subject and for each phase. Moreover, for each parameter and for each phase, the mean value
and the standard deviation were calculated for all subjects. Pairwise t-tests were conducted with
phases as a grouping factor for all the calculated parameters. In order to verify whether there was
a significant difference in parameters among the three phases, a p-value < 0.05 was chosen, but also
different acceptable values of p (i.e., p < 0.01, p < 0.001 and p < 0.0001) were selected to indicate
different levels of statistical effect.

3. Results

The time trends of XUCOP, YUCOP and RD for one of the participants are displayed in Figure 6,
together with the plots of the corresponding stabilograms (i.e., XUCOP-vs-YUCOP plot). Different colors
are used in the figures to highlight differences among the three phases (green for PHA, red for PHB,
and black for PHC).
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stabilogram (d) for one of the participants.

In the displayed time series, the increase of the XUCOP and YUCOP range, together with the
calculated RD, is remarkable throughout the test from the least engaging part (PHA) to the most
demanding one (PHC). In addition, the stabilogram plot shows a significant increase in the swept area
in PHC as compared to PHA and PHB. This increment of the seated sway excursion demonstrates
that when volunteers are involved in a demanding cognitive task, there is a lower stability on the seat
with respect to the phases of the test where the task to be performed is simpler. This can be due to
the growing of a stressing condition that can cause a different position on the chair, as demonstrated
in [21], and can also induce a different dynamic behavior.

The results of the statistical analysis are shown in Table 2, together with the mean values of
the calculated parameters for all participants, and the corresponding standard deviations. For all
parameters, except the sway area, the difference between coupled distributions resulted highly
significant for PHA vs. PHC and PHB vs. PHC, thus validating the hypothesis that a different strategy
for controlling the sway is assumed by subjects when cognitive engagement increases. Moreover,
for the range parameters (i.e., RANGE, RANGEX and RANGEY), the difference between PHA and
PHB resulted significant: the difference is higher for the y coordinate (i.e., anteroposterior) and this
can be explained by the biomechanics of the hip. During a seated position, this joint has reduced
swinging along the mediolateral direction (i.e., x direction) with respect to the anteroposterior one (i.e.,
y direction), so when posture is not well controlled, a greater instability along y is found.
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Table 2. UCOP-based descriptive parameters computed for all the volunteers: for each parameter the mean and std values calculated over all participants have been
reported for each of the three phases of the test. For the same parameters, the p-value obtained from the multiple pairwise t-tests between phases have been calculated
and different level of significance have been assessed as reported in the following: * p < 0.05, ** p < 0.01, **** p < 0.0001.

Measure
PHA PHB PHC p-values

Mean std Mean std Mean std PHA-PHB PHA-PHC PHB-PHC PHA-PHB PHA-PHC PHB-PHC

mean distance (mm) 1.95 1.30 1.66 1.44 4.72 4.14 0.1481 1.06 × 10−15 1.22 × 10−10 **** ****
mean distance x (mm) 1.16 0.74 1.07 1.06 2.84 2.83 0.5376 2.90 × 10−12 4.68 × 10−8 **** ****
mean distance y (mm) 1.30 1.05 1.03 0.93 3.14 2.85 0.0628 4.21 × 10−15 9.41 × 10−11 **** ****

rms distance (mm) 2.45 1.67 1.96 1.69 5.77 5.03 0.0457 6.38 × 10−16 4.18 × 10−11 * **** ****
rms distance x (mm) 1.59 1.03 1.40 1.35 3.81 3.61 0.2878 2.50 × 10−13 6.02 × 10−9 **** ****
rms distance y (mm) 1.77 1.44 1.30 1.10 4.14 3.74 0.0124 2.18 × 10−15 2.66 × 10−11 * **** ****

range (mm) 13.11 9.57 9.70 7.93 37.54 33.40 0.0082 7.41 × 10−20 2.25 × 10−13 ** **** ****
range x (mm) 10.25 7.17 8.14 7.12 28.72 27.62 0.0435 9.16 × 10−17 3.69 × 10−11 * **** ****
range y (mm) 10.72 8.82 7.30 5.20 29.89 26.80 0.0014 9.68 × 10−20 8.33 × 10−14 ** **** ****

mean velocity (mm/s) 11.33 5.47 10.78 5.84 4.72 2.97 0.5044 3.98 × 10−20 2.32 × 10−16 **** ****
mean velocity x (mm/s) 6.86 3.31 6.44 3.72 2.79 1.84 0.4176 1.55 × 10−19 3.48 × 10−15 **** ****
mean velocity y (mm/s) 7.48 3.92 7.22 4.30 3.18 2.07 0.6617 3.81 × 10−17 2.80 × 10−14 **** ****

95% confidence circle area (mm2) 6.19 2.11 5.35 2.09 9.20 3.86 0.0067 4.54 × 10−19 4.25 × 10−15 ** **** ****
95% confidence ellipse area (mm2) 66.36 94.90 47.43 79.17 433.16 732.97 0.1371 1.70 × 10−10 8.27E-07 **** ****

sway area (mm2/s) 10.36 13.32 7.45 10.19 11.75 18.59 0.0932 0.1145 0.0497 *
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Finally, significant differences can be observed in the RMS distance values (RDIST and RDISTY)
and in the 95% confidence circle area (mm2).

Figures 7–11 show the graphical representation of the calculated parameters’ distributions. For MD
values, it is noticeable that the increased engagement in PHC for the requested task significantly
increases the distance from the UCOP center in both sway directions (Figure 7). The same results can
be observed considering the RMS distances values (Figure 8). For both parameters, a greater excursion
in the y direction (i.e., anteroposterior) is noticeable.
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4. Conclusions 

In this paper, a new system to assess if engaging cognitive activities influence the postural sway 
of a subject seated on a chair is presented. The designed and realized system, based on a chair 
equipped with force sensors that allows the dynamics description of the examined motor act, 
provides the time trend of the volunteers’ position. These data can provide useful information on the 
adopted strategies in the seated postural control in subjects directed towards a complex cognitive 
task in a reduced amount of time. The obtained results show a significant difference in sway strategy 
and a coherent variation for a high number of examined volunteers, thus supporting the hypothesis 
that the higher demand the cognitive task has, the lower the stability in the seated posture. The 
realized system is based on the integration of sensors on a normal office chair, whose physical 
features are not modified. Moreover, the system is designed to be powered with batteries and can be 
improved by embedding a wireless transmission. All these features allow the use of the chair in a 
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As a future development, the system could be further validated by using additional techniques 
for cognitive load assessment, such as EEG analysis, testing the same setup in conditions similar to 
the ones presented in this work. 

The realized device will be completed with seat backrest sensing, in order to obtain a system 
that allows a complete analysis of the adopted posture. This can be very useful to monitor activities 
that require a prolonged seated time, and where the cognitive engagement is constant: in this case, 
the postural sway could be a useful indicator of global fatigue, thus giving important information on 
the correct time schedule of the performed working tasks and to prevent all the pathologies related 
to the adoption of improper seated postures. 
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Figure 11. Area Parameters distributions for each of the three phases PHA, PHB and PHC: (a) AREA-CC
distributions, (b) AREA-CE distributions and (c) SWAREA distributions.

These results are confirmed considering the range parameters distributions (Figure 9), where higher
values of the maximum and minimum coordinates result in the UCOP excursion during PHC. It is also
important to note that the range values in PHB are significantly lower than the ones in PHA: it can
be speculated that after the first phase of the test, the volunteers reach a stable position where they
feel comfortable both with the sitting posture and in performing the task. This condition is strongly
modified in PHC and, since the total duration of the test is chosen not to induce muscular fatigue,
the change of strategy in swaying can be explained by the increase in the difficulty of the task that
induces a higher cognitive engagement.

Considering the velocity parameters distributions (Figure 10), a significant decrease in the velocity
of the UCOP trajectory appeared in PHC, compared to both PHA and PHB. This evidence, together with
the assessed high excursion, can confirm a decreased capability in controlling equilibrium in the most
demanding condition: in fact, if the greater excursion would have been caused by an active rapid
movement, the velocity would not have decreased as shown. The decrease of these values can therefore
be explained by a reduced capability in controlling the UCOP trajectory and “corrective” actions
performed to remain in a seated equilibrium.

Finally, area parameters distributions (Figure 11) reveal a larger area swept by the UCOP trajectory
and a general instability achieved by subjects in PHC than in PHA and PHB, especially considering the
95% confidence circle and ellipse areas.

4. Conclusions

In this paper, a new system to assess if engaging cognitive activities influence the postural sway of
a subject seated on a chair is presented. The designed and realized system, based on a chair equipped
with force sensors that allows the dynamics description of the examined motor act, provides the time
trend of the volunteers’ position. These data can provide useful information on the adopted strategies
in the seated postural control in subjects directed towards a complex cognitive task in a reduced
amount of time. The obtained results show a significant difference in sway strategy and a coherent
variation for a high number of examined volunteers, thus supporting the hypothesis that the higher
demand the cognitive task has, the lower the stability in the seated posture. The realized system is
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based on the integration of sensors on a normal office chair, whose physical features are not modified.
Moreover, the system is designed to be powered with batteries and can be improved by embedding
a wireless transmission. All these features allow the use of the chair in a wide range of situations,
such as a smart working environment, where the device can provide useful information about the risk
related to working activities due to the task-induced cognitive load.

As a future development, the system could be further validated by using additional techniques
for cognitive load assessment, such as EEG analysis, testing the same setup in conditions similar to the
ones presented in this work.

The realized device will be completed with seat backrest sensing, in order to obtain a system
that allows a complete analysis of the adopted posture. This can be very useful to monitor activities
that require a prolonged seated time, and where the cognitive engagement is constant: in this case,
the postural sway could be a useful indicator of global fatigue, thus giving important information on
the correct time schedule of the performed working tasks and to prevent all the pathologies related to
the adoption of improper seated postures.
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