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Abstract: For performance-driven systems such as space-based applications, it is important to
maximize the gain of radio-frequency amplifiers (RFAs) with a certain tolerance against radiation,
temperature effects, and small form factor. In this work, we present a K-band, compact high-gain RFA
using an f T-doubler topology in a silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs)
technology platform. The through-silicon vias (TSVs), typically used for small-size chip packaging
purposes, have been effectively utilized as an adjustable matching element for input impedance,
reducing the overall area of the chip. The proposed RFA, fabricated in a modest 0.35 µm SiGe
technology, achieves a gain of 14.1 dB at 20 GHz center frequency, and a noise figure (NF) of 11.2 dB
at the same frequency, with a power consumption of 3.3 mW. The proposed design methodology can
be used for achieving high gain, avoiding a complex multi-stage amplifier design approach.

Keywords: extreme-environment electronics; f T doubler; heterojunction bipolar transistor (HBT);
radio-frequency amplifier (RFA); silicon-germanium (SiGe); through-silicon-via (TSV)

1. Introduction

The continuous and growing need for high-performance extreme-environment electronics includes
many applications, such as satellite systems, space exploration platforms, imaging systems, and energy
exploration [1,2]. Due to intense radiation exposure in the space environment, the electronic devices
suffer from different damaging effects, e.g., total ionizing dose (TID) effects, single event effects (SEE),
which eventually leads to operation failure or device breakdown. For low earth orbit (LEO) applications
such as small satellites or cubeSat, where TID is of primary interest, it is very important to build circuits
and systems with required radiation hardness for ensuring their reliability. Silicon-germanium (SiGe)
heterojunction bipolar transistors (HBTs) have garnered special attention from the space-electronics
community due to their superior characteristics for a wide range of temperatures (−180 ◦C to 200 ◦C) as
well as built-in tolerance against TID to multi-Mrad levels [3,4]. The built-in tolerance in SiGe HBTs are
mainly due to the thin emitter-collector spacer, thin base oxide, and very thin shallow trench isolation
between the collector-base junction [5].

A radio-frequency amplifier (RFA) is one of the main building blocks in radio frequency (RF)
transmitter and receiver systems. It is critical to boost the gain of RFAs for loss compensation and
signal conditioning while maintaining a compact form factor and low complexity. To improve the gain
of an RFA, various circuit topologies, such as a cascode configuration and Darlington structure, have
been proposed in the literature [6–10]. The cascode topology provides increased output resistance that
leads to a higher output voltage, and increased isolation between the input and output ports, which
simplifies the design of the matching network and reduces the Miller effect, at the cost of a higher power
supply. Darlington structure-based amplifiers improve the unity-gain frequency (f T) but suffer from
inequal collector currents, which may cause potential instability at low frequencies [11]. The problem
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of the inequal collector current of the Darlington pair structure can be removed by using a modified
f T-doubler cell. The use of f T-doubler topology has been successfully implemented in power-amplifiers
to have a high gain-bandwidth product [12,13]. Regarding the use of a SiGe-HBT f T doubler, it has been
shown that the f T-doubler cell can be modeled as a single transistor for circuit-design purposes [14,15].

In this work, we propose f T-doubler-based RFAs using a cascode configuration for improving
the gain or the usable bandwidth of the amplifier. The f T-doubler cell is used as the common-emitter
(CE) input stage, and a single SiGe HBT is used as the common-base (CB) cascode stage. Furthermore,
based on the findings in [16–18], we investigated the application of through-silicon vias (TSVs), which
potentially reduce the overall area and complexity of the system. A TSV, which can be modeled as
a very small resistor and an inductor in a series [19], also plays an important role in input matching
and noise optimization. The rest of the paper is organized as follows. In Section 2, we describe the
operation of the proposed f T-doubler-based amplifier, and in Section 3, the experimental results and
the relevant analysis are presented. Finally, Section 4 summarizes the paper.

2. Proposed f T-Doubler RF Amplifier with TSVs

In the proposed f T-doubler amplifier, the f T-doubler cell (the red box in Figure 1b) is used in
the input CE stage, and a single transistor is used as the cascode stage (Q4 in Figure 1b), whereas
the conventional cascode topology is shown in Figure 1a. The f T-doubler CE stage, which can be
modeled as a single transistor [14,15], is realized by using a modified Darlington pair, wherein two
transistors, Q1 and Q2, are connected in series, with an additional diode-connected transistor, Q3,
which adaptively adjusts the base-to-emitter voltage of Q2 for a different DC bias condition or a
large AC signal. In the proposed circuit, Q1 and Q2 are biased with the same (or almost similar)
currents so that the transconductance (gm) of both devices remain close to each other to maximize
RF performance. The higher gain of the proposed amplifier is achieved by the Darlington operation,
whose overall current gain of the f T-doubler cell is given by the product of current gain β1 and β2 of Q1
and Q2, respectively.

β fT doubler ≈ β1 × β2 (1)

The amplified collector current enters the emitter of the CB transistor and exits the collector with a
unity current gain in an ideal case. The collector current is converted to a voltage by the load impedance
at the collector of the CB transistor. Due to the high output resistance of the cascode topology, the
overall impedance is determined by the output collector inductor (LC).
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In (2), ܮா, ݃, ܴ, and ߱ are emitter inductance, transconductance, base resistance, and the 
operation frequency, respectively. We can see that if the degeneration inductance (ܮா) increases, the 
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Figure 1. (a) Schematic and micrograph of the conventional through-silicon vias (TSV)-integrated
unity-gain frequency (f T)-doubler amplifier; (b) the schematic of the proposed TSV-integrated cascode
Silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) amplifier (biasing is not shown).

A TSV provides a low-loss electrical connection from the top side of the silicon substrate to the
backside, and it is used to present a direct path to ground, eliminating a bonding wire and its parasitics.
For simplicity, a TSV can be modeled as a negligible small resistance in series with an inductance [18].
At high frequencies, this inductance associated with a TSV can be used to design impedance matching
and optimize noise figure. TSVs can form an array of shapes to adjust the effective resistance and
inductance, and as a result, the number of TSVs can be selected based on the required inductance for
design optimization [16]. Although, due to the resistance and the inductance associated with TSVs
at the emitter of the CE transistor, the gain of the amplifier can be degraded theoretically, typical
resistance will be much smaller than a few ohms, which can be ignored in the small-signal equivalent
circuit of the f T doubler, as shown in Figure 2.
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Figure 2. Equivalent small-signal model of the proposed TSV-integrated RF f T-doubler amplifier.

For simplification of calculation, if we consider the small-signal model where Rπ is very high and
Cµ is very small, the effective Gm with degeneration inductance is [20],

Gm =
gm

ω0(gmLE + CπRB)
(2)

In (2), LE, gm, RB, and ω0 are emitter inductance, transconductance, base resistance, and the
operation frequency, respectively. We can see that if the degeneration inductance (LE) increases,
the effective Gm decreases, so does the gain of the amplifier.
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2.1. Input and Output Matching

The input and output matching networks affect the bandwidth and the power transfer between
stages. In the proposed RFA, the input matching is accomplished using a series inductor (LB) and
degeneration inductance (LE) in the TSV, achieving a higher gain and lower noise figure simultaneously.
For input matching, the imaginary part of the input impedance should be zero, and the real part should
be equal to 50 Ω. The input impedance of the amplifier can be found from Figure 2 and is derived
as follows:

Zin = [

1 + sLE
Rπ + s2LECπ + gmsLE +

sLE(sCµ−gm)(
1+

sCµ
R0

)
1

Rπ + sCπ + sCµ −
sCµ(sCµ−gm)(

1
R0

+gm

) + sLB + RB] (3)

where Rπ, Cµ, LB, and R0 are input resistance from base to emitter, base-to-collector capacitance,
base series inductor for input matching, and the output resistance of the amplifier, respectively.
Because of the complexity associated with (3), it is difficult to separate the real and the imaginary part
with intuitive meanings for matching network design. If we simplify the small-signal model where
Rπ = ∞, r0 = ∞, and Cµ = 0, then the simplified expression would be

Zin = sLB + sLE +
1

sCπ
+ RB +

gmLE

Cπ
(4)

From (4), it can be realized that the value of LE of a TSV can be adjusted to achieve the 50 Ω real
input impedance. This will eliminate the use of an extra on-chip emitter inductor or transmission line,
which reduces the overall chip area as well. The output matching was straightforward, where collector
inductor (LC) and output capacitor (Co) are tuned to resonate at the operation frequency.

2.2. Noise Figure Calculation

The overall noise figure (NF) of the amplifier will heavily depend upon the noise performance of
the input stage (i.e., f T-doubler cell) in the proposed amplifier since the noise contribution from the
cascode CB stage is relatively smaller [21]. The main noise sources of a SiGe HBT is the noise generated
at the base due to the base resistance and the base-emitter shot noise, whereas for the inductive
degenerated amplifiers, the contribution of the collector-to-emitter noise is relatively smaller [22].
The NF of the proposed amplifier can be calculated by using the simplified small-signal noise model,
as shown in Figure 3.
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The NF of the proposed amplifier under impedance-matched conditions can be derived as
follows [20,23,24],

NF = 1 +
RB

RS
+

qIB

2kTRS

[
(RB + RS)

2 +ω2
0(LB + LE)

2
]

(5)

Here, q, k, T, and IB are electron charge, Boltzmann constant, absolute temperature, and the base
bias current, respectively. The NF of the proposed f T-doubler RFA will be degraded from that of
conventional cascode amplifiers because RB in the f T-doubler cell is almost twice of that of single
HBTs [14]. From (5), it is shown that by optimizing the number of TSVs, LE can be adjusted for
balancing both input matching and noise performance.

3. Measurement Results and Discussion

The proposed TSV-integrated f T-doubler RF amplifiers (RFAs) were designed and fabricated for
K-band operation, using a commercial 0.35-µm SiGe HBT technology [17], whose f T and the maximum
oscillation frequency (f max) are in the range of 30 GHz and 60 GHz, respectively [25,26]. The scattering
parameters (S-parameters) and the NF were measured using a network analyzer (Agilent PNA E8364B)
and a signal analyzer (Agilent PXA N9030A) with a noise source (Agilent N4002A), respectively.
For comparison purposes, three RFAs (on-chip conventional, TSV-integrated conventional, and the
proposed TSV-integrated f T-doubler RFAs) were characterized. The schematic and the chip micrograph
of the TSV-integrated conventional and the proposed f T-doubler RFAs are shown in Figure 1.

The measured S-parameter response of the proposed TSV-integrated f T-doubler RFA under a
fixed bias current of 1.1 mA is shown in Figure 4. For measurement purposes, the DC and RF probes
shared the ground potential through the on-chip ground mesh, but they were isolated from the TSV
ground, which was provided from the chuck of the probe station. The proposed RFA had a peak
gain of 14.11 dB at the center frequency of 20 GHz, and the 3-dB gain bandwidth was about 1.3 GHz.
The input and the output ports were matched around the peak gain frequency, showing broader input
matching due to the lower Q-factor from the small-base resistance than the output.
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Figure 5 shows the gain (S21) comparison of the three RFAs versus frequency. The TSV-integrated
conventional cascode RFA shows a slight degradation (0.8 dB) in gain compared with the on-chip
conventional RFA. This is due to the presence of large parasitics at the interface between the backside
of TSVs and the probe station chuck. Since the TSV-integrated f T-doubler RFA provides an additional
gain (or increased f T), it shows that the proposed approach is a viable solution for gain boosting
with compact size. The proposed RFA has a gain increase of 3.7 dB from that of the conventional
TSV-integrated amplifier. In addition, the stability (µ factor) of our proposed RFA was confirmed



Electronics 2020, 9, 772 6 of 9

over a wide range of frequency (10–30 GHz) and compared with the conventional cascode amplifiers
(Figure 6).
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The noise performance of the proposed RFA is shown in Figure 7. The NF of the proposed RFA
was degraded by 4.3 dB at 20 GHz from the conventional TSV-integrated cascode topology due to
a larger RB. Since the high-frequency metrics (f T and f MAX) of the given process was conservative,
however, the resulting lowest NF of the conventional cascode RFA as well as the proposed RFA was
inevitably high (6.5 dB and 10.4 dB, respectively) at 20 GHz compared with typical low-noise amplifiers
in a similar frequency range in the literature. With more advanced SiGe BiCMOS technologies [27],
it is expected that the NF will show a more significant improvement than the noise performance of the
RFA prototypes.
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In Table 1, the performance parameters of the proposed RFAs and the conventional cascode RFA
are summarized. The improved gain or extended frequency range of the proposed f T-doubler RFA
with the advantage of a reduced chip area was achieved with a tradeoff in NF and power consumption.
With the use of advanced scaled transistors, the performance of the f T-doubler-based amplifier can
certainly improve maintaining a reasonable NF performance.

Table 1. Performance Summary.

RFA Type fcenter (GHz) Gain (dB) NF (dB) PDC (mW)

On-chip conventional cascode 19.6 11.2 6.6 1.8
TSV conventional cascode 19.4 10.4 6.9 1.8
Proposed TSV f T-doubler 20.0 14.1 11.2 3.3

The fabricated RFAs were irradiated by an x-ray source for characterizing radiation-induced
degradations. The RFAs were still functional after exposure to a total dose of 1 Mrad (SiO2). The TID
x-ray irradiation results of the TSV-integrated conventional cascode and the proposed RFAs are
summarized in Table 2.

Table 2. X-ray Irradiation Results.

RFA Type Gain NF PDC

TSV cascode −2.3 dB +0.40 dB <+2%

f T-doubler cascode −2.9 dB +0.43 dB <+2%

4. Conclusions

This work presents an improvement in the gain of radio-frequency amplifiers (RFAs) for
high-performance applications by using the f T-doubler cell as an input stage. Whereas there is
a tradeoff in noise figure and power consumption in the proposed RFA, the peak gain increases
significantly, demonstrating extended usable frequency range. In addition, the use of TSVs as
impedance-matching elements enables the elimination of a transmission-line structure or a lumped
inductor, potentially reducing the overall chip area.

Author Contributions: Conceptualization, I.S.; methodology, I.S.; validation, M.A.R.S. and I.S.; formal
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