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Abstract: With the characteristics of simple structure and low cost, the dendritic neuron model
(DNM) is used as a neuron model to solve complex problems such as nonlinear problems for
achieving high-precision models. Although the DNM obtains higher accuracy and effectiveness than
the middle layer of the multilayer perceptron in small-scale classification problems, there are no
examples that apply it to large-scale classification problems. To achieve better performance for solving
practical problems, an approximate Newton-type method-neural network with random weights for
the comparison; and three learning algorithms including back-propagation (BP), biogeography-based
optimization (BBO), and a competitive swarm optimizer (CSO) are used in the DNM in this experiment.
Moreover, three classification problems are solved by using the above learning algorithms to verify
their precision and effectiveness in large-scale classification problems. As a consequence, in the case
of execution time, DNM + BP is the optimum; DNM + CSO is the best in terms of both accuracy
stability and execution time; and considering the stability of comprehensive performance and the
convergence rate, DNM + BBO is a wise choice.

Keywords: neuron model; large-scale classification problem; dendritic neuron model (DNM); learning
algorithm; neural network

1. Introduction

Along with the arrival of the era of big data, the third wave of artificial intelligence (AI) has been
entered [1]. AI is being advanced for uniting IoT and robotics, not just as a research craze but through
technological advances in hardware.

Commercialized AI is used as a system of prediction or classification that has been confirmed with
high precision [2]. In general, it is difficult and indispensable to classify high quality data from vast
amounts of data that contain all the information. However, if the problem is solved using AI, the cost
can be greatly reduced. Moreover, the classification problems also exist in fields other than AI [3–5].
For example, in the field of gamma ray research in astronomy, cosmic rays can be observed through a
telescope [6]. Due to the complexity of radiation, measurements are currently made using Monte-Carlo
simulation. The ability to classify and detect gamma rays based on a limited set of characteristics
would contribute to further improvements in telescopy.

The neural network is a symbolic presence that can deal with nonlinear problems in the third
wave of AI [7,8]. In particular, with the deep learning of the middle layer of the multilayer perceptron
(MLP) [9,10], which uses nonlinear functions to network, the accuracy is improved with an increase in
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the amount of data used for learning. However, as the deepening of middle layer and the number of
processed data increase, the computing cost becomes huge. As a consequence, with the characteristics
of simple structure and cost saving, research into the dendritic neuron model (DNM) [11–16] is being
developed to achieve high-precision models. Unlike other neural networks, the DNM is a model
of one neuron, and much research indicates that the DNM has better performance than the MLP in
small-scale classification problems [17,18]. Additionally, it is proved that the model, with its excellent
metaheuristics, can obtain better classification accuracy by the previous optimization experiment for
weight and threshold for small-scale classification problems with the DNM.

In various neuronal models and neural networks, it is necessary to change the weight of bonding
strength between neurons in order to reduce the error in the desired output. However, as the neural
network with random weights (NNRW) cannot guarantee the convergence of errors to the desired
output, it is not considered to be a practical learning algorithm [19,20].

Generally, the learning algorithm is used to solve difficult optimization problems since the
weighted learning can be considered as an optimization problem. The most famous learning algorithm
in local exploration is the back-propagation (BP) [21–23], which computes the gradient using the chain
rule and has the advantage of low learning cost since the installation is simple. In addition, the method
of multi-point exploration, which is used as a model to classify according to natural phenomena and
laws, is documented [24]. For example, the gravitational search algorithm is a basic learning algorithm
to simulate physical phenomena [25–29], biogeography-based optimization (BBO) [30] is generally
used for simulating ecological concepts since the accuracy and stability are the most outstanding among
the models using representative metaheuristics [31], and some basic learning algorithms can simulate
the moving sample population of organisms such as particle swarm optimization (PSO) [32,33] and ant
colony optimization. Moreover, as a variant of PSO, the competitive swarm optimizer (CSO) [34,35] is
a simplified metaheuristics set that is suitable for both multi-point and local exploration. Compared to
the systems hat only conduct multi-point exploration or local exploration, the trap of the local optimal
solution and convergence rate can be balanced using the CSO.

Although the DNM has shown higher accuracy and effectiveness than the MLP in small-scale
classification problems, there are no examples that apply it to large-scale classification problems [36].
In this paper, the most famous learning algorithm using a gradient descent method with low computing
cost, BP; the high classification accuracy algorithm for small-scale classification problems, BBO; and the
especially low cost CSO algorithm are highlighted. The DNM is applied to large-scale classification
problems with the above three learning algorithms, respectively. Consequently, the learning algorithm
with BP is named DNM + BP, and DNM + BBO and DNM + CSO are named in a similar way. As a
comparison object, the approximate Newton-type method (ANE)-NNRW is selected since it was
applied to the same classification problem in the previous study. The ANE-NNRW is an NNRW
based on the forward propagation MLP that ensures the convergence of solutions by an approximate
Newton-type method [37].

Therefore, this study verifies the effectiveness of the DNM for large-scale classification problems,
very important information for studying the performance of DNM.

2. Model and Learning Algorithm

2.1. Dendritic Neuron Model

The DNM is a model that vests dendrite function to the existing single layer perceptron [38–40]
and is composed of four layers. Inputs x1, x2, . . . , xn in each dendrite are firstly transformed to their
corresponding outputs according to four connection instances in the synaptic layer, which possesses a
sigmoid function for received inputs. Secondly, all the outputs from the synaptic layer in each dendrite
are multiplied as new outputs of the dendrite layer. Thirdly, all the outputs in the dendrite layer
are summed to obtain an output of the membrane layer. Finally, this output of the membrane layer
is regarded as the input of the soma layer, which utilizes another sigmoid function to calculate the
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ultimate result of the DNM. The complete structure of the DNM is shown in Figure 1, and its details
are described as follows.Electronics 2020, 9, x FOR PEER REVIEW 3 of 23 
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Figure 1. Structure of the dendritic neuron model (DNM).

2.1.1. Synaptic Layer

A synapse connects neurons from a dendrite to another dendrite/axon or the soma of another
neural cell. The information flows from a presynaptic neuron to a postsynaptic neuron, which shows
feedforward nature. The changes in the postsynaptic potential influenced by ionotropic phenomena
determine the excitatory or inhibitory nature of a synapse. The description connecting the ith (i = 1, 2,
. . . , n) synaptic input to the jth (j = 1, 2, . . . , m) synaptic layer is given as

Yi j =
1

1 + e−k(wi jxi−θi j)
(1)

where Yij is the output from the ith synaptic input to the jth synaptic layer. k indicates a positive
constant. xi manifests the ith input of a synapse and xi ∈ [0, 1]. Weight wij and threshold θij are the
connection parameters to be learned.

According to the values of wij and θij, four types of connection instance are shown in Figure 2,
where the horizontal axis indicates the inputs of presynaptic neurons and the vertical one clarifies the
output of the synaptic layer. As the range of x is [0, 1], only the conforming part is required to be seen.
The four connection instances contain:

Figure 2a,b presents wij < 0 < θij or 0 < wij < θij, where the output is approximately 0 no matter
when the input transforms from 0 to 1;

Figure 2c,d presents θij < 0 < wij or θij < wij < 0, where the output is approximately 1 no matter
when the input transforms from 0 to 1;

Figure 2e depicts 0 < θij < wij, where the output is proportional to the input no matter when the
input transforms from 0 to 1;

Figure 2f depicts the inhibitory connection when wij < θij < 0, where the output is inversely
proportional to the input no matter when the input transforms from 0 to 1. It is worth noting that these
four connection instances are critical to infer the morphology of a neuron by specifying the positions
and synapse types of dendrites.

2.1.2. Dendrite Layer

The dendrite layer shows a multiplicative function of the outputs from synapses at various
synaptic layers [41]. A type of multiplicative operation can be achieved due to the nonlinearity of
synapses, i.e., constant 0 or 1 connection. That is why a multiplicative operation has been chosen to
use in this model when it comes to the dendrite layer. The multiplication is equivalent to the logic and
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operation since the values of inputs and outputs of the dendrites correspond to 1 or 0. The output
function for the jth dendrite branch is expressed as follows:

Z j =
n∏

i=1

Yi j (2)

2.1.3. Membrane Layer

The membrane layer collects the signals from each dendritic branch. The input received from a
dendrite branch is calculated with a summation function, which closely resembles a logic or operation.
Then, the resultant output is delivered into the next layer to activate the soma body. The output of this
layer is formulated as

V =
m∑

j=1

Z j (3)

2.1.4. Soma Layer

At last, the soma layer implements the function of soma body such that the neuron fires if the
output from the membrane layer exceeds its threshold. This process is expressed by a sigmoid function
used to calculate the ultimate output of the entire model:

O =
1

1 + e−ks(V−θs)
(4)

The parameter ks is a positive constant, and the threshold θs varies from 0 to 1.
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According to the multiplication of each dendrite, the DNM can be used as a neuron model and
solve complex problems such as nonlinear problems. In addition, in terms of the activation function of
synaptic layer and soma layer, the sigmoid function is used in reference to previous studies.

2.2. Back-Propagation

BP is a point gradient descent learning algorithm that uses chain law to calculate the gradient [42,43].
The construction of the neuron model depends on an effective learning rule. Its learning rule is obtained
by the least squared error between the real output vector O and the target output vector T, shown as
follows:

E =
1
2
(T −O)2 (5)

The error is decreased by correcting the synaptic parameters wij and θij in the DNM of the
connection function during learning. The updated equations are expressed as follows:

∆wi j(t) =
∑P

p=1
∂Ep
∂wi j

,

∆θi j(t) =
P∑

p=1

∂Ep
∂θi j

(6)

where η represents the learning rate, which is a user-defined parameter, and Ep is the mean square
error. Then, the updating rules of wij and θij are computed as follows:

wi j(t + 1) = wi j(t) − η∆wi j(t),
θi j(t + 1) = θi j(t) − η∆θi j(t)

(7)

where t is the number of the learning iteration. In addition, the partial differentials of Ep with regard to
wij and θij are defined as follows:

∂Ep
∂wi j

=
∂Ep
∂Op

∂Op
∂V

∂V
∂Z j

∂Z j
∂Yi j

∂Yi j
∂wi j

,

∂Ep
∂θi j

=
∂Ep
∂Op

∂Op
∂V

∂V
∂Z j

∂Z j
∂Yi j

∂Yi j
∂θi j

(8)

The detail parts of the above partial differentials are represented as follows:

∂Ep
∂Op

= Tp −Op

∂Op
∂V = ksxie

−ks(wijxi−θs)(
1+e−ks(wijxi−θs)

)2

∂V
∂Z j

= 1

∂Z j
∂Yi j

=
n∏

l=1andli
Yl j

∂Yi j
∂wi j

= kxie
−k(wijxi−θi j)(

1+e−k(wijxi−θi j)
)2

∂Yi j
∂θi j

= ke−k(wijxi−θi j)

(1+e−k(wijxi−θi j))
2

(9)

In the calculation of ∆wij(t) and ∆θij(t), the partial differential is obtained from input to output in
order and in reverse order.
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2.3. Biogeography-Based Optimization

BBO is a metaheuristics model of the speciation, extinction, and geographical distribution in
biogeography, whose characteristic takes the habitat as a solution and shares the suitability index
variables (SIVs) with other habitats directly [44]. The fitness values of other learning algorithms are
expressed as the habitat suitability index (HSI), implemented as follows:

1. Current rank of habitat Hi (i = 1, 2, . . . , n) produces the integer spectrum SIV.
2. The HSI of each habitat is calculated using the following equation:

HSI(Hi) =
1

2P

P∑
p=1

(Tp −Op)
2 (10)

where P is the total number of training samples, Tp is the target vector of the pth sample, and Op

is the actual output vector obtained by Hi.
3. The SIV is randomly selected and immigration to other habitats occurs according to the calculations

of the emigration rate µi and immigration rate λi.

µi =
Ei
m

λi = I
(
1− i

m

) (11)

where E is the emigration rate, and I is the maximum immigration rate. The case that E = I = 1 is
considered in BBO, and the relationship between λ and µ is established as the following formula:

λi + µi = E (12)

4. For each habitat Hi, the immigrated HSI and the probability, Psi, that it contains the Sth species of
habitat are updated.

Psi(t + ∆t) = Psi(t)(1− λi∆t− µi∆t) + Psi−1λi−1∆t + Psi+1µi+1∆t (13)

If t is sufficiently small, the following equation can be approximated:

Psi =


−(λi + µi)Psi + µi+1Psi+1 i = 0

−(λi + µi)Psi + λi−1Psi−1 + µi+1Psi+1 1 ≤ i ≤ n− 1
−(λi + µi)Psi + λi−1Psi−1 i = n

(14)

5. Species numbers are varied according to the mutation rate, Pmi, for non-elite habitats:

Pmi = Pmmax
1− Psi
Psmax

(15)

where Psmax is the maximum value of Psi, and Pmmax is the parameter.
6. Step 2 is returned to for the next iteration. The algorithm does not end until the termination

condition is satisfied.

2.4. Competitive Swarm Optimizer

The CSO is a kind of group intelligence that improves PSO to face large-scale classification
problems. It is a mechanism for comparing the evaluation results of different particles selected from the
population; only the failed particles are learned to update [45]. Therefore, in addition to the number of
updated particles being able to be reduced to 2/N, the excellent solutions in the search do not need to
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be saved, and it can be used for efficient search on large-scale classification problems. As with PSO,
the individual movement with speed will not be eliminated. The operating steps are shown as follows:

1. For N initial solutions, the particle position xi(i = 1, 2, . . . , N) and velocity vi(i = 1, 2, . . . , N) of
generated particles are calculated.

2. All solutions are evaluated.
3. The kth (k = 1, 2, . . . , 2/N) competition for generation t occurs as follows:

(a) The non-repeating particles Nk1 and Nk2 are randomly selected from the
undecided particles.

(b) The positions of selected particles of Nk1 and Nk2 are compared and evaluated to determine
the winning particle and the failing particle.

(c) A velocity vl,k is applied to the position xl,k of the failed particle to make it move.

vl,k(t + 1) = R1(k, t)vl,k(t) + R2(k, t)
[
xw,k(t) − xl,k(t)

]
+ ϕR3(k, t)

[
xk(t) − xl,k(t)

]
,

xl,k(t + 1) = xl,k(t) + vl,k(t + 1)
(16)

where R1(k, t), R2(k, t), and R3(k, t) are the random vectors of [0, 1], xk(t) is the average
position of the whole particles, and φ is the control parameter that sets the degree of
influence from the average position, which is recommended as the following conditions in
the previous study:{

ϕ = 0 N ≤ 100
ϕ ∈ [0.14 log(N) − 0.3, 0.27 log(N) − 0.51] otherwise

(17)

(d) Operations (a) through (c) are repeated until all the particles are decided.

4. Step 2 is returned to for the next iteration. The algorithm does not end until the termination
condition is satisfied.

3. Experiment

Three classification problems in our experiments are shown in Table 1 below. The most downloaded
open data sets in different fields of the UCI Machine Learning Repository are used [46], and the value
of the characteristic number does not contain the class. F1 classifies whether the cosmic ray received
by the Cherenkov telescope is a gamma ray or not, F2 classifies whether the space shuttle radiator
is abnormal, and F3 classifies whether the pixel is skin based on the RGB information of the image.
Furthermore, the characteristics of any classification problem are expressed by numbers with no data
error that contain negative numbers and decimal numbers. According to the input range of the synaptic
layer, each characteristic data set is standardized for the experiment.

Table 1. Details of the classification data sets.

No. Classification Data Set Characteristic Number Total Data

F1 Magic gamma telescope data set 10 19,020
F2 Stat log shuttle data set 9 58,000
F3 Skin segmentation data set 3 245,057

Each classification problem is tested 30 times independently, and the accuracy of the expected
output is calculated according to the classification results. The formula of accuracy is shown in the
Equation (18) with TP (true positivity), FP (false positive), TN (true negative), and FN (false negative).

accuracy =
TP + TN

TP + FP + TN + FN
× 100% (18)
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Besides, the mean square error (MSE) is determined as the evaluation function of the solution that
is obtained through Equation (5) for DNM + BP, and Equation (19) for DNM + BBO and DNM + CSO:

MSE =
1

2P

P∑
p=1

(
Op − Tp

)2
(19)

The termination condition is set to reach the maximum generation number; for DNM + BP, it is
1000; and for DNM+BBO and DNM + CSO, it is 200, according to the ANE-NNRW. The population
number of BBO and CSO is 50.

In addition to the partition ratio of F2, which is specified by the data set, the learning data account
for 70% and the testing data account for 30%, referring to the previous study of the DNM as shown
in Table 2 [18], and the proportion in the ANE-NNRW is shown in Table 3. In order to make the
dimensions consistent, the maximum value of m is set based on the maximum value of m of the
interlayer in the previous study.

Table 2. Number and proportion of data sets in the DNM.

No. Learning Data Number (Proportion) Testing Data Number (Proportion)

F1 13,314 (70%) 5706 (30%)
F2 43,500 (75%) 14,500 (25%)
F3 171,540 (70%) 73,517 (30%)

Table 3. Numbers and proportions of data sets in the approximate Newton-type neural network with
random weights (ANE-NNRW).

No. Learning Data Number (Proportion) Testing Data Number (Proportion)

F1 19,020 (100%) 1300 (6.83%)
F2 43,500 (75%) 14,500 (25%)
F3 200,000 (81.6%) 45,057 (18.4%)

Moreover, considering the processing load of the DNM, the upper limit of m is 100. Table 4 shows
a list of m for the previous study and dimension D and m for this study. Due to the experimental load
and time, F1, F2, and F3 use different environments as shown in Table 5.

Table 4. Set value of m in the experiment.

No. Maximum Value m of ANE-NNRW Maximum Value m of DNM Maximum Dimension D of DNM

F1 1200 60 2 × 10 × 60 = 1200
F2 2000 100 2 × 9 × 100 = 1800
F3 1200 100 2 × 3 × 100 = 600

Table 5. Experimental environment of the DNM.

Item Computing Environment of F1 Computing Environment of F2 and F3

CPU 3.00 GHz Intel(R) Core(TM) i5-8500 3.00 GHz Intel(R) Core(TM) i5-7400
OS Windows 10 Education Windows 10 Pro

RAM 16.0 GB 8.00 GB
Software MATLAB R2018b MATLAB R2018b

According to the design of experiment, which is a statistical method for the effective analysis of
large combinations using orthogonal arrays based on Latin square, DNM + BP, DNM + BBO, and DNM
+ CSO are conducted under the above conditions, and the number of experiments can be greatly
reduced by the relationship between the factors and levels.

Each factor and level will be applied in the orthogonal array of L25 (56) since this experiment has
five factors and five levels. Tables 6 and 7 represent lists of factors and levels used in F1, F2, and F3.
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Table 6. Factors and levels of F1.

m k ks θs η

5 1 1 0.1 0.0001
15 5 5 0.3 0.0005
30 10 10 0.5 0.001
45 15 15 0.7 0.005
60 25 25 0.9 0.01

Table 7. Factors and levels for F2 and F3.

m k ks θs η

15 1 1 0.1 0.0001
30 5 5 0.3 0.0005
50 10 10 0.5 0.001
75 15 15 0.7 0.005

100 25 25 0.9 0.01

Table 8 applies to the parameters of F1, and Table 9 applies to those of F2 and F3. Moreover,
the numbers in Tables 8 and 9 are the combination numbers of the experimental parameters.

Table 8. Parameter combination of F1.

No. m k ks θs η

1 5 1 1 0.1 0.0001
2 5 5 5 0.3 0.0005
3 5 10 10 0.5 0.001
4 5 15 15 0.7 0.005
5 5 25 25 0.9 0.01
6 15 1 5 0.5 0.005
7 15 5 10 0.7 0.01
8 15 10 15 0.9 0.0001
9 15 15 25 0.1 0.0005

10 15 25 1 0.3 0.001
11 30 1 10 0.9 0.0005
12 30 5 15 0.1 0.001
13 30 10 25 0.3 0.005
14 30 15 1 0.5 0.01
15 30 25 5 0.7 0.0001
16 45 1 15 0.3 0.01
17 45 5 25 0.5 0.0001
18 45 10 1 0.7 0.0005
19 45 15 5 0.9 0.001
20 45 25 10 0.1 0.005
21 60 1 25 0.7 0.001
22 60 5 1 0.9 0.005
23 60 10 5 0.1 0.01
24 60 15 10 0.3 0.0001
25 60 25 15 0.5 0.0005
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Table 9. Parameter combination of F2 and F3.

No. m k ks θs η

1 15 1 1 0.1 0.0001
2 15 5 5 0.3 0.0005
3 15 10 10 0.5 0.001
4 15 15 15 0.7 0.005
5 15 25 25 0.9 0.01
6 30 1 5 0.5 0.005
7 30 5 10 0.7 0.01
8 30 10 15 0.9 0.0001
9 30 15 25 0.1 0.0005

10 30 25 1 0.3 0.001
11 50 1 10 0.9 0.0005
12 50 5 15 0.1 0.001
13 50 10 25 0.3 0.005
14 50 15 1 0.5 0.01
15 50 25 5 0.7 0.0001
16 75 1 15 0.3 0.01
17 75 5 25 0.5 0.0001
18 75 10 1 0.7 0.0005
19 75 15 5 0.9 0.001
20 75 25 10 0.1 0.005
21 100 1 25 0.7 0.001
22 100 5 1 0.9 0.005
23 100 10 5 0.1 0.01
24 100 15 10 0.3 0.0001
25 100 25 15 0.5 0.0005

4. Results

By calculating the average accuracy, the optimum parameters used in this experiment are selected
as shown in Tables 10–12, respectively.

Table 10. Optimum parameters of the DNM + back-propagation (BP).

No. m k ks θs η Average Accuracy (%)

F1 60 5 1 0.9 0.005 82.40
F2 75 10 1 0.7 0.0005 90.96
F3 75 10 1 0.7 0.0005 83.76

Table 11. Optimum parameters of the DNM + biogeography-based optimization (BBO).

No. m k ks θs Average Accuracy (%)

F1 45 1 15 0.3 81.69
F2 100 15 10 0.3 92.40
F3 50 1 10 0.9 97.44

Table 12. Optimum parameters of DNM + competitive swarm optimizer (CSO).

No. m k ks θs φ Average Accuracy (%)

F1 60 1 25 0.7 0.05 82.34
F2 75 10 1 0.7 0.05 96.76
F3 50 1 10 0.9 0 95.04
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The average accuracy and standard deviation of each problem and learning algorithm are shown
in Table 13. It is clearly that DNM + BP in F1, DNM + CSO in F2, and DNM + BBO in F3 have the
highest accuracy.

Table 13. Average accuracy and standard deviation of each learning algorithm.

No. Learning Algorithm Learning’s Average Accuracy (%) ± Standard Deviation Test’s Average Accuracy (%) ± Standard Deviation

F1
DNM + BP 81.91 ± 1.66 81.78 ± 1.60

DNM + BBO 79.92 ± 1.62 79.65 ± 1.67
DNM + CSO 80.09 ± 2.10 80.03 ± 2.13

F2
DNM + BP 90.70 ± 3.30 90.68 ± 3.32

DNM + BBO 91.53 ± 2.93 91.49 ± 2.90
DNM + CSO 94.53 ± 2.55 94.54 ± 2.58

F3
DNM + BP 80.53 ± 4.83 80.49 ± 4.84

DNM + BBO 97.72 ± 0.72 97.70 ± 0.75
DNM + CSO 95.95 ± 0.77 95.98 ± 0.77

The results of the ANE-NNRW as the comparison object are shown in Table 14, and the accuracy
of the previous paper is recorded as a percentage [19]. Obviously, the accuracy of the DNM is higher
than that of the ANE-NNRW in all problems. They also prove that the DNM has the advantage
of high accuracy even if the data required for learning are not as much as for the ANE-NNRW,
which corresponds to Tables 2 and 3.

Table 14. Highest accuracy of each problem with the ANE-NNRW.

No. Learning’s Average Accuracy (%) Test’s Average Accuracy (%)

F1 67.16 61.46
F2 79.24 79.16
F3 79.28 79.46

Table 15 summarizes the average execution time and optimum parameter m, which is in deep
relation to dimension D. The execution time of the DNM is larger than that of the ANE-NNRW as
shown in Table 15 [19].

Table 15. Average execution time and optimum parameter of each learning algorithm.

No. Learning Algorithm Average Execution Time (sec) Optimum Parameter m

F1

ANE-NNRW 27.3
DNM + BP 1276.8 60

DNM + BBO 1629.7 45
DNM + CSO 2158.4 60

F2

ANE-NNRW 35.89
DNM + BP 5485.2 75

DNM + BBO 12454.0 100
DNM + CSO 9284.5 75

F3

ANE-NNRW 271.0
DNM + BP 6369.1 75

DNM + BBO 8805.1 50
DNM + CSO 8795.7 50

Even in DNM + BP, which has the lowest computational cost in the experimental method,
the execution time of the 200th generation is at least four times that of the ANE-NNRW. One of the
reasons for this is that the DNM is more time-consuming than the MLP, which is also mentioned in
the case of small-scale classification problems. Additionally, the ANE-NNRW is a calculation method
based on the pure propagation MLP; it is considered that a similar result should appear for this
large-scale classification problem. Secondly, the ANE-NNRW is an efficient way to solve the large-scale
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problem; the data set segmentation is performed. Besides, the computational cost is less by learning
with random weighting to ensure convergence.

According to the average execution time of DNM+BBO and DNM + CSO in F2 and F3, as the
optimum parameter m of DNM + BBO is higher than that of DNM + CSO, there is a large difference
of more than 3000 seconds between the two methods in F2. Similarly, because the value of m is the
same in F3, the difference is about 10 seconds since DNM + BBO has more order of solution updates.
In addition, the difference between DNM + BBO and DNM + CSO in F1 can also be considered as the
difference between m, but it is not as great as in F2. Therefore, DNM+CSO is better than DNM + BBO
in terms of the execution time of the learning algorithm.

On the other hand, for DNM + BP and DNM + CSO, there is a difference of at least 1000 seconds
in the execution time between F1 and F2 under the same m, which is caused by the difference in the
number of data and features.

As the DNM calculates m and the number of features using Equation (1), it is confirmed that
the execution time approximately follows the calculated amount for the model. Consequently,
the execution time increases due to the increase in the number of data. In the same problem, it is
desirable that a smaller value of m can reduce the time. However, the m of DNM + BP in F2 and
F3 obviously shows that the difference in execution time cannot be determined by the number of
data alone.

Therefore, for improving the precision, it is necessary to set an upper limit, split data, and process
in parallel to reduce the load of a large-scale problem since the DNM varies in precision according to
the set parameters.

Furthermore, the upper limit of m is set as 100 in this experiment, but both of the optimum
parameters m of DNM + BBO and DNM + CSO in F3 are 50, half of the upper limit, with a high
accuracy of classification as shown in Table 13. Therefore, for large-scale classification problems, DNM
learning by metaheuristics may not require an extremely large number of m for problems with a small
number of features. As a reference for parameter determination in the application of the DNM to
large-scale problems, this will be clarified in the future.

The average convergence graph of each generation of MSE obtained by experiments are shown
in Figures 3–5. Figure 3a presents the DNM + BBO and DNM + CSO convergence graphs of F1,
and Figure 3b presents the DNM + BP convergence graph of F1. In a similar way, the convergence
graphs of F2 and F3 are shown in Figures 4 and 5, respectively.
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It is clearly that the values of each learning algorithm converge to the end generation number and
that DNM + BBO converged first in all cases. In order to reduce the computation, the CSO only updates
the solution of particles equal to half of the population numbers. The BBO of the same multi-point
search keeps the elite habitat and changes the solution in each generation, and the number of new
candidate optimum solutions produced in one generation is larger than that with the CSO. As a new
solution is derived from a candidate optimum solution at a certain point in time, the convergence rate
of the higher quality solution will be accelerated. Therefore, it is considered that BBO is more suitable
than the CSO to obtain a small MSE with a smaller number of generations.

Furthermore, the MSE does not change greatly due to the local solution of F3 in Figure 5b,
indicating that BP with a feature that tends to trapped in the local solution has the shortcoming of
the problem orientation not being significant compared with that with the multi-point search method,
with which it is easy to escape from the local solution.

The stability of each method in F1, F2, and F3 is illustrated by the box-plots of Figures 6–8,
respectively. In the case of the minimum MSE of each problem, F1 is DNM + CSO, and F2 and F3 are
DNM + BBO. Besides, for the maximum MSE of each problem, F1 is DNM + BBO, and F2 and F3 are
DNM + BP.

However, for the comprehensive consideration, it can be seen that DNM + BP in F1, DNM + CSO
in F2, and DNM + BBO in F3 record the best stability. Moreover, the average values of MSE for the end
conditions in each problem and method are shown in Table 16. It shows that the method with excellent
stability in each problem is also superior to other methods in terms of the average MSE.
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Furthermore, the average of standard deviation of accuracy and the standard deviation of each
method for the tests are shown in Table 17 below. Although DNM + BP has the best stability in F1,
both the average value and standard deviation are the highest, which indicates that DNM + BP has a
large deviation according to the different problems. To the contrary, DNM + BBO and DNM + CSO
have more stability that is not easily affected by these three problems of this experiment.
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Table 16. Average MSE at end condition.

No. Learning Algorithm Average MSE

F1
DNM + BP 7.04 × 10−2

DNM + BBO 7.24 × 10−2

DNM + CSO 7.15 × 10−2

F2
DNM + BP 4.01 × 10−2

DNM + BBO 3.27 × 10−2

DNM + CSO 3.09 × 10−2

F3
DNM + BP 9.78 × 10−2

DNM + BBO 1.09 × 10−2

DNM + CSO 1.78 × 10−2

Table 17. Average of standard deviation of accuracy and standard deviation of each method for
the tests.

Learning Algorithm Average of Standard Deviation ± Standard Deviation

DNM + BP 3.25 ± 1.62
DNM + BBO 1.77 ± 1.08
DNM + CSO 1.83 ± 0.95

As a consequence, in terms of the convergence and stability of MSE, it is better to adopt a multi-point
search method, especially DNM + BBO with the advantage in terms of the convergence rate.

Figures 9–11 depict the receiver operating characteristic (ROC) of each method in F1, F2 and F3,
respectively. Furthermore, the average value of area under curve (AUC) in each problem and method
is shown in Table 18.
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Table 18. Average area under curve (AUC) for each problem and method.

No. Learning Algorithm Average AUC

F1
DNM + BP 0.868

DNM + BBO 0.835
DNM + CSO 0.847

F2
DNM + BP 0.500

DNM + BBO 0.501
DNM + CSO 0.501

F3
DNM + BP 0.542

DNM + BBO 0.981
DNM + CSO 0.967

According to Figures 9 and 11, DNM + BP in F1 and DNM + BBO in F3 obtain the highest
classification accuracies. On the other hand, the three methods overlap on the diagonal line in Figure 10,
and the results are similar to those in the case of random classification since the value of AUC is very
close to 0.5, as shown in Table 18.

Although DNM + BBO and DNM + CSO differ to some degree in Figures 9 and 11, both of them
are convex curves to the upper left. In particular, the AUC of F3 is close to 1, which shows that their
classification accuracy is excellent. However, for DNM + BP, the best AUC is a convex curve to the
upper left in F1, while F3 is a curve that approximates the diagonal.

On the other hand, in Tables 13 and 18, the difference in accuracy between DNM + BBO and DNM
+ CSO in F1 and F3 is also reflected in the AUC. To the contrary, even though the difference in accuracy
of DNM + BP in F1 and F3 is only about 1%, the AUC is about 0.3. This is because the value of Op that
outputs the error classification result contains many values independent of the set threshold value of
DNM + BP in F3. As shown in Figure 5b, the DNM + BP in F3 is trapped in the local solution since it
fails to obtain the output with a higher classification accuracy.

As DNM + BP in F3 above, the value of Op that outputs the error classification result contains
many values independent of the set threshold value as shown in Figure 10, and the results are almost
arranged on the same diagonal by any method in F2. The data set is considered to be the reason for this.

Moreover, because the output range of the DNM is [0, 1], the upper limit of the classifiable class is
2. In this experiment, in order to classify in the DNM, all of the classes representing the abnormality of
F2 are unified as a non-anomaly class. It can be seen that the output with a high classification accuracy
is not available since the different data trends are aggregated in the class representing each abnormality.
Therefore, depending on the network of the DNM, etc., it is possible to expand the output range of the
DNM effectively for improvement.

In addition, the average rank of the methods in F1, F2, and F3 obtained by the Friedman test are
shown in Table 19. It is clear that DNM + BP in F1, DNM + CSO in F2, and DNM + BBO in F3 ranked
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the highest on average, that there is no difference in the average accuracy for each problem, and that
the result of this test is proved to be significant.

Table 19. Average ranks of methods in F1, F2 and F3.

No. Learning Algorithm Average Rank

F1
DNM + BP 1.4333

DNM + BBO 2.4333
DNM + CSO 2.1333

F2
DNM + BP 2.5

DNM + BBO 2.0667
DNM + CSO 1.4333

F3
DNM + BP 2.9

DNM + BBO 1.1
DNM + CSO 2

5. Discussion

According to Tables A1–A3 in the appendix, Table 20 shows the standard deviation of the average
accuracy of each method. It can be seen that the accuracy of DNM + BP is the most affected by the
combination of the parameters in F1 and F2. In the experiment for optimum parameter selection,
the stability is slightly poor. However, the result of DNM + BP in F3 shows that it is not affected by
the parameters and is trapped in the local solution with stability. In addition, the average accuracy of
the DNM + CSO test in F3 is 20.78% of No. 21 as shown in appendix in Table A3, which is the lowest
average accuracy among all methods.

Table 20. Standard deviation of average accuracy of each method for the tests.

No. Learning Algorithm Average Rank

F1
DNM + BP 15.65

DNM + BBO 2.04
DNM + CSO 1.75

F2
DNM + BP 21.15

DNM + BBO 2.72
DNM + CSO 2.53

F3
DNM + BP 1.06

DNM + BBO 4.86
DNM + CSO 14.49

Therefore, in terms of the stability of parameters, no matter which learning algorithm is used,
the accuracy will deviate according to compatibility with the problem and the combination of
parameters. Due to the nature of neural networks, it is difficult to predict the accuracy deviation
based on parameters and learning algorithms, so a variety of methods should be performed for
the experiment.

6. Conclusions

With the arrival of the era of big data, research into high-precision models with simple structures
and low cost for addressing complex problems is developing rapidly. As a neuron model, the DNM
has been proven to be more accurate than the MLP in small-scale classification problems. This study
focused on the application of the DNM in complex problems and verified its effectiveness in large-scale
classification problems. The DNM, as the model; BP, the most famous method for using the gradient
descent to calculate the cost; BBO, with a high classification accuracy for small-scale problems;
and CSO, which has the characteristic of low computational cost, were used as the learning algorithms
in this experiment.

The comparison results for the three large-scale classification problems with the ANE-NNRW
show that any learning algorithm using the DNM can achieve a higher accuracy than the ANE-NNRW.
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However, they lag behind the ANE-NNRW in terms of execution time. In order to improve this
situation, it is necessary to parallelize the parts of the DNM and reduce the computing cost.

Moreover, according to the applied three large-scale classification problems, the precision and
classification accuracy of each DNM method are different. This experiment compared each learning
algorithm in various aspects. In terms of execution time, DNM + BP is the optimum; DNM + CSO
is the best to ensure both accuracy stability and short execution time; and considering the stability
of comprehensive performance and convergence rate, DNM + BBO is a wise choice. In the future,
for seeking stability independent of the problem, we will attempt to expand the output range of the
DNM and employ it across a wider range of fields, e.g., Internet of Vehicles [47–50] and complex
networks [51–53]. In addition, recent advanced evolutionary algorithms, e.g., chaotic differential
evolution [54], can also be an alternative training method for the DNM.
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Appendix A

Table A1 shows the average accuracy of 30 replicate experiments for whole parameter combinations
in F1. Similarly, Table A2 is for F2, and Table A3 is for F3.

Table A1. Average accuracy of the learning and tests of each learning algorithm in F1.

No.
DNM + BP DNM + BBO DNM + CSO

Learning
(%) Test (%) Learning

(%) Test (%) Learning
(%) Test (%)

1 35.10 35.31 73.24 73.21 76.08 75.96
2 68.83 68.86 78.23 78.16 76.61 76.54
3 35.15 35.19 76.97 76.85 77.70 77.43
4 35.19 35.10 77.38 77.36 77.91 77.74
5 35.18 35.13 76.59 76.52 76.72 76.53
6 82.35 82.23 80.36 80.44 81.62 81.20
7 39.12 39.11 77.43 77.54 77.62 77.39
8 38.99 39.01 76.43 76.35 78.13 77.97
9 51.89 51.75 78.34 78.26 75.89 75.90
10 40.05 39.83 77.56 77.38 77.32 77.16
11 35.08 35.35 80.88 80.93 81.63 81.60
12 68.36 68.51 80.27 80.04 80.35 80.17
13 55.89 55.74 79.21 78.85 79.71 79.52
14 58.37 58.53 78.25 78.25 78.77 78.54
15 45.83 45.72 77.51 77.52 78.09 78.00
16 67.31 67.28 81.71 81.69 81.68 81.36
17 45.20 45.21 77.83 77.65 79.31 79.22
18 74.17 74.29 75.58 75.64 78.78 78.82
19 60.15 60.15 73.17 73.25 76.53 76.52
20 40.71 40.88 75.98 75.86 76.88 76.94
21 35.14 35.21 78.82 78.76 81.49 81.45
22 82.40 82.40 76.66 76.63 79.46 79.58
23 49.69 49.62 75.78 75.58 78.45 78.32
24 65.82 65.97 76.67 76.60 78.62 78.37
25 45.52 45.27 77.34 77.31 79.62 79.56
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Table A2. Average accuracy of the learning and tests of each learning algorithm in F2.

No.
DNM + BP DNM + BBO DNM + CSO

Learning
(%) Test (%) Learning

(%) Test (%) Learning
(%) Test (%)

1 78.60 78.59 79.81 79.76 83.67 83.64
2 86.38 86.35 89.05 89.04 96.06 96.10
3 54.30 54.34 90.15 90.11 94.47 94.50
4 23.65 23.66 86.87 86.83 95.63 95.56
5 21.45 21.27 87.43 87.48 94.61 94.58
6 85.11 85.12 86.05 86.09 93.44 93.49
7 67.93 67.79 90.67 90.70 94.80 94.80
8 29.71 29.72 88.15 88.19 95.78 95.81
9 72.49 72.49 88.77 88.84 94.75 94.73
10 60.92 60.80 87.12 87.08 92.82 92.90
11 69.00 68.95 90.75 90.73 96.08 96.05
12 78.79 78.77 92.09 92.07 94.83 94.78
13 76.87 76.99 91.02 91.03 95.29 95.36
14 88.00 87.94 88.87 88.88 93.15 93.17
15 66.77 66.59 89.57 89.51 96.02 96.00
16 78.60 78.59 91.40 91.34 94.76 94.74
17 65.27 65.19 91.88 91.83 95.76 95.74
18 90.97 90.96 88.03 87.99 93.19 93.20
19 85.29 85.31 88.61 88.55 95.33 95.32
20 77.19 77.30 91.47 91.43 96.38 96.37
21 25.21 25.23 92.11 92.13 95.68 95.69
22 89.08 89.19 87.52 87.63 92.48 92.49
23 75.43 75.38 90.42 90.50 95.60 95.58
24 80.27 80.30 92.41 92.40 96.01 96.01
25 66.58 66.59 91.66 91.64 96.23 96.24

Table A3. Average accuracy of the learning and tests of each learning algorithm in F3.

No.
DNM + BP DNM + BBO DNM + CSO

Learning
(%) Test (%) Learning

(%) Test (%) Learning
(%) Test (%)

1 79.25 79.24 78.62 78.60 91.47 91.48
2 79.26 79.22 97.20 97.19 94.64 94.63
3 79.25 79.23 96.36 96.37 94.30 94.30
4 79.25 79.23 95.82 95.82 93.96 93.99
5 79.24 79.27 96.05 96.05 94.22 94.22
6 79.26 79.22 96.10 96.11 93.71 93.74
7 79.25 79.24 96.86 96.86 94.44 94.43
8 79.24 79.26 96.60 96.59 93.81 93.62
9 79.25 79.24 95.59 95.57 93.29 93.30
10 82.20 82.18 95.83 95.82 93.32 93.33
11 79.23 79.29 97.43 97.44 95.05 95.04
12 79.23 79.28 96.97 96.95 93.91 93.93
13 79.26 79.22 95.55 95.56 92.82 92.78
14 79.26 79.22 96.18 96.17 91.66 91.66
15 79.25 79.24 96.62 96.61 93.46 93.49
16 79.25 79.25 90.67 90.66 88.38 88.37
17 79.25 79.23 93.37 93.39 93.02 93.02
18 83.76 83.76 96.55 96.54 92.85 92.84
19 79.25 79.25 96.37 96.37 93.00 93.01
20 79.25 79.25 96.30 96.30 91.23 91.24
21 79.26 79.22 79.70 79.78 20.79 20.78
22 79.24 79.27 96.65 96.65 91.11 91.14
23 79.26 79.22 97.09 97.11 90.89 90.93
24 79.24 79.25 95.20 95.17 91.84 91.82
25 79.23 79.27 92.22 92.20 91.50 91.48
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