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Abstract: Physical unclonable function (PUF) is a primary hardware security primitive that is suitable
for lightweight applications. However, it is found to be vulnerable to modeling attacks using machine
learning algorithms. In this paper, multiplexer (MUX)-based Multi-PUF (MMPUF) design is proposed
to thwart modeling attacks. The proposed design uses a weak PUF to obfuscate the challenge of
a strong PUF. A mathematical model of the proposed design is presented and analyzed. The three
most widely used modeling attack techniques are used to evaluate the resistance of the proposed
design. Experimental results show that the proposed MMPUF design is more resistant to the machine
learning attack than the previously proposed XOR-based Multi-PUF (XMPUF) design. For a large
sample size, the prediction rate of the proposed MMPUF is less than the conventional Arbiter
PUF (APUF). Compared with existing attack-resistant PUF designs, the proposed MMPUF design
demonstrates high resistance. To verify the proposed design, a hardware implementation on Xilinx
7 Series FPGAs is presented. The hardware experimental results show that the proposed MMPUF
designs present good results of uniqueness and reliability.

Keywords: physical unclonable function; machine learning attacks; FPGA; hardware security

1. Introduction

Physical unclonable function (PUF) is a promising lightweight security primitive which uses
manufacturing process variations to generate a unique digital fingerprint for an electronic device,
e.g., application-specific integrated circuit (ASIC) or field programmable gate array (FPGA). Since
the manufacturer cannot estimate or control these variations, PUFs are inherently difficult to clone
and providing additional tamper-evident properties. Theoretically, no two outputs of the same PUF
designs are identical. The same n-bit input challenge generates a different n-bit response for different
devices. Such a security primitive provides several advantages over current state-of-the-art alternatives
and allows for higher security protocols and applications, e.g., key storage and device authentication.

Since the first PUF has been published [1], PUF architectures can be broadly categorized into Weak
PUFs and Strong PUFs as discussed in [2], based on the size of their CRP space which captures the
information about the underlying variation. Weak PUFs have a limited CRP space, and in the extreme
case only having a single output. Therefore, they are more suited to applications such as key storage
or for seeding a PRNG, where the response never leaves the chip and is only accessed as required.
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In contrast, Strong PUFs have many possible CRPs, whereby a large number of random challenges will
return a random response unique to the challenge, as well as the physical device. Previous research
also indicates that the random and unclonable bits of the weak PUF can be used as a key in a secure
encryption mechanism, e.g., advanced encryption standard (AES), and accomplish the practical design
of a strong PUF. In this case, the input and output to the AES can then be considered to be the CRPs of
the strong PUF [3]. A helper data must be used to ensure a 100% reliability for the Weak PUF. However,
it has been shown that both the helper data and the AES circuit are vulnerable to side channel attacks
(SCAs) [4].

Arbiter PUF (APUF) [5] is one of the most widely studied Strong PUFs. However, it has been
successfully broken by machine learning (ML)-based modeling attacks by building up a linear additive
delay model for each bit [6]. While some researchers have proposed modifications to improve its
resistance to modeling attacks [7,8], however, these have also been broken with a sufficient number of
CRPs [9,10]. Moreover, to date, these approaches have only been simulated for application-specific
integrated circuit (ASIC) and have not been proven in practice, and they are not suitable for FPGA.
While Arunkumar et al. [11] pointed out the properties that designers should consider when designing
ML resistant PUF designs, a practical and feasible implementation strategy has not been proven yet.
Obfuscating CRPs with some random noise is an efficient method to make mathematical modeling
more complex, such that it is difficult for modeling attacks to succeed, e.g., [12–15].

Since PUFs fit for the lightweight authentications of IoT applications, the excessively increased
hardware cost is impractical. On the other hand, the previous attacking techniques assume that an
adversary has an unlimited access to PUF structures to collect sufficient training CRPs from the PUF.
The adversary can break most of the existing PUF structures if he can obtain enough valid CRPs using
advanced methods such as approximate attack [16]. However, recent research in [17] has shown that
it is possible to prevent such machine learning attacks by restricting the number of accessed CRPs.
To address this challenge, multiplexer (MUX)-based Multi-PUF (MMPUF) design is proposed to thwart
modeling attacks. The proposed design uses a weak PUF to obfuscate the challenge of a strong PUF.
The most important property of the proposed PUF is that it can achieve the highest resistance to ML
attacks with the lowest hardware resource consumption. The main contributions of this paper can be
summarized as follow:

• We present a more accurate model for the previously proposed XMPUF design [18], and show
that the XMPUF is vulnerable to LR attack.

• We propose a new MMPUF design to further enhance its security against modeling attacks.
• A detailed mathematical analysis of the proposed MMPUF design is given. Compared with

the conventional APUF and XMPUF designs, the proposed MMPUF design has a higher
computational complexity and more difficult to attack.

• Three most widely studied ML-based modeling attacks are used to investigate the resistance
of the proposed MMPUF to modeling attacks. The experimental results demonstrate that the
proposed MMPUF has good resistance to these ML attacks.

• We validate the proposed MMPUF architecture with the design implemented on 22 Xilinx 7 Series
FPGAs. The proposed MMPUF design is the most lightweight MPUF design to the authors’
best knowledge.

• An experimental evaluation of this design shows the uniqueness result of 40.60%, which is much
better compared with the previous Multi-PUF designs. Moreover, the proposed MMPUF design
achieves good reliability results over temperature and voltage of 96% and 94%, respectively.

The rest of this paper is organized as follows. Section 2 reviews the related work of modeling
attack-resistant PUF designs. We present the mathematical models of both the Multi-PUF and XMPUF
in Section 3. In Section 4 we present the proposed MMPUF design and compare it with the XMPUF
design. The modeling attack results of the proposed MMPUF design are discussed in Section 5 and the
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hardware evaluation is presented in Section 6. We conclude with a summary and discussion of our
results and future work in Section 7.

2. Related Work

2.1. Modeling Attack-Resistant PUF Designs

One of the most widely known approaches for the improvement of the resistance of an APUF
design to ML attacks is to increase its non-linearity. Typical techniques include XOR gate-based
APUF [7] and lightweight APUF [8]. Non-linear APUFs based on Voltage Transfer Characteristics
(VTC) [11] and current mirrors [19] have been proposed specifically to thwart such modeling attacks.
Software and protocols-based solutions [20,21] have also relatively improved the resistance to ML
attack. However, most of these designs have been proven to be vulnerable to advanced and well
controlled ML attacks [22].

rMPUF and cMPUF in [23], based on an MPUF design, are among the recent improvements to
enhance the reliability. Figure 1a shows the conventional MPUF and Figure 1b illustrates the cMPUF.
In Figure 1, Ad

i represents the i-th Arbiter PUF connected to the MUX data input. AS
i represents the

i-th arbiter PUF connected to the MUX selection input. Rd
i and Rs

i represent the response connected to
the data input and the selection input, respectively. Though MPUFs in [23] have significantly improve
the resistant to ML attack, the hardware cost overhead also increased a lot. Moreover, the uniqueness
and reliability was based on the simulation and no FPGA implementation was provided.
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Figure 1. The structure of (a) (n, k)-MPUF, (b) (n, k)-cMPUF.

2.2. Weak PUF Based Multi-PUF Design

The concept of combining both Weak and Strong PUFs in a PUF design, named Multi-PUF,
to improve the quality of the overall response has already been studied [24–26]. In Reference [25],
the authors proposed a composite PUF by using smaller PUFs as design building blocks to build a
larger challenge-space PUF, as shown in Figure 2. However, it exhibits poor uniqueness results for
both RO PUF and APUF-based composite designs implemented on an FPGA, achieving a uniqueness
of less than 10% for the APUF (the ideal value for uniqueness is 50%).

Strong PUF

Weak PUF nWeak PUF 1 Weak PUF 2

f (·) f (·) f (·)
C1 CnC2

*C2
*Cn

*C1

1 bit response

Figure 2. The architecture of the previously proposed XMPUF design.

Obviously, the reliability of the Weak PUF is critical to the performance of the overall Multi-PUF
design. Some types of Weak PUF designs have demonstrated high reliability with/without
post-processing techniques, e.g., DRAM PUF [27], FPGA-based PUF ID generator [28], etc.
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The lightweight and reliable PUF ID generator design [28], which was referred to as PicoPUF, was
used to show the feasibility of the Multi-PUF design. In Reference [28], it has been presented that the
PicoPUF design can achieve almost 100% reliability through a lightweight post-processing. Generally,
any type of Strong PUF can be used to construct the Multi-PUF design, e.g., APUF [5] or FF-APUF [29].
In this scheme, the challenge to a Strong PUF is completely obfuscated by Weak PUFs. As an example,
the previously proposed XMPUF design [18], shown in Figure 3, is composed of n PicoPUF designs
and an n-stage APUF design. The response of the ith PicoPUF is XORed with the challenge bit ci to
mask the original challenge bit and a new challenge bit c∗i is generated. c1, c2, ..., cn is the challenge
input into the Multi-PUF and c∗1 , c∗2 , ..., c∗n is the challenge generated from the PicoPUFs, which are used
as the challenges for the APUF.
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Figure 3. The XMPUF design with challenges XORed.

3. Mathematical Analysis of the Conventional Multi-PUF and XMPUF Designs

The conventional Multi-PUF design is shown in Figure 3, which is composed of two parts, Weak
PUFs and a Strong PUF. The output of the Weak PUFs will be combined with original challenge bits to
produce new challenges. The Weak PUFs can be considered to be a pre-processing circuit which is
used to mask the original challenges. Then, the new challenges are sent to the Strong PUF. In most
conventional Multi-PUF designs, the Strong PUF is based on an APUF, whose mathematical model
can be separated into two parts, the pre-processing circuit and APUF models.

3.1. Mathematical Model of Conventional Multi-PUF Design

The mathematical model of the APUF in the previously proposed XMPUF design can be
represented as Equation (1). The challenge vector C∗ = (c∗1 , c∗2 , ..., c∗n) is generated from n Weak
PUF designs, where c∗i is the output of the ith Weak PUF.

∆ = W ·Φ(C∗)T (1)

and Φ(C∗) = (ϕ1(c∗), ϕ2(c∗), ..., ϕk(c∗), 1) is a feature vector,

ϕi(c∗) =
k

∏
j=i

(1− 2c∗j ) (2)

The new challenge bit c∗i can be represented as:

c∗i = f (ci, xi) (3)

Hence, Equation (2) can be transformed into Equation (4).

ϕi(c∗) =
k

∏
j=i

(1− f (cj, xj)) (4)
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Equation (4) indicates that ϕi(c∗) is a function of both the original challenge bit ci and output of
ith Weak PUF xi.

Equation (4) can be considered into two cases depending on ϕi(c∗). The first case is when ϕi(c∗)
is as follows:

ϕi(c∗) = u(ci, ci+1, ..., cn) · v(xi, xi+1, ..., xn) (5)

where u(·) is a function of the original challenge C, and v(·) is a function of the output of Weak PUF.
In this condition, Equation (1) can be transformed as

∆ = W ·Φ(C∗)T

=
(
ω1, ω2, ..., ωk, ωk+1

)
·
(

ϕ1(c∗), ϕ2(c∗), ..., ϕk(c∗), 1
)T

= ωk+1 +
k

∑
i=1

ωi · v(xi, xi+1, ..., xn) · u(ci, ci+1, ..., cn)

= θk+1 +
k

∑
i=1

θi · u(ci, ci+1, ..., cn)

= (θ1, θ2, ..., θk, θk+1) ·
(
u1(c), u2(c), ..., uk(c), 1

)T

= Θ ·U(C)T

(6)

where θi = ωi · v(xi, xi+1, ..., xn), for i = 1, 2, ..., k; and θk+1 = ωk+1. Equation (6) presents that the
delay difference can be represented by the product of two items, Θ and U(C)T . Θ are the parameters
of APUF and Weak PUF, which can be revealed by machine learning algorithms. U(C)T includes the
information from the original challenge, C. Θ ·U(C)T = 0 determines a separating hyperplane. Hence,
the process of attacking this is the same as that of the conventional APUF as shown in [6,9,30].

The second case is that ϕi(c∗) is a function of both the original challenge C and outputs of Weak
PUF. Due to this, the ϕi(c∗) can be written as follows:

ϕi(c∗) = g(ci, ci+1, ..., cn; xi, xi+1, ..., xn) (7)

In this condition, Equation (6) can be expressed as

∆ = W ·Φ(C∗)T

=
(
ω1, ω2, ..., ωk, ωk+1

)
·
(

ϕ1(c∗), ϕ2(c∗), ..., ϕk(c∗), 1
)T

= ωk+1 +
k

∑
i=1

ωi · g(ci, ci+1, ..., cn; xi, xi+1, ..., xn)

(8)

Equation (8) shows a non-linear classification, which makes linear classifier invalid, e.g., LR.

3.2. Mathematical Model of the Previous XMPUF Design

The XMPUF design, an example of the Multi-PUF design, is composed of n PicoPUF designs
and a n-stage APUF design. The mathematical model for the output of the XMPUF design is the same
as the Multi-PUF design as Equations (1) and (3). For the XMPUF design, XOR operation is used as an
obfuscation function, f (·), to generate a challenge c∗1 , c∗2 , ..., c∗n from an original challenge c1, c2, ..., cn.
At the ith stage, the challenge c∗i is defined as Equation (9).

c∗i = ci ⊕ xi (9)
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where ci is the ith bit of the original challenge and xi is the ith output bit of the PicoPUF. ci ⊕ xi in
Equation (9) can be transformed to Equation (10).

ci ⊕ xi = ci + xi − 2ci · xi (10)

Hence, the output of the XMPUF design in Equation (1) can be represented as

ϕi(c∗) =
k

∏
j=i

(1− 2c∗j )

=
k

∏
j=i

(
1− 2(cj + xj − 2cj · xj)

)
=

k

∏
j=i

(1− 2cj)(1− 2xj)

=
k

∏
j=i

(1− 2cj) ·
k

∏
j=i

(1− 2xj)

(11)

Equation (11) can be simplified as the product of two continuous product items. ∏k
j=i(1− 2xj)

only contains the output of the ith PicoPUF xi, which means it is independent of the original challenge.
A new variable ai is defined as

ai =
k

∏
j=i

(1− 2xj)

Then Equation (11) can be rewritten as follows:

ϕi(c∗) = ai

k

∏
j=i

(1− 2cj) (12)

Hence, the delay model of the XMPUF can be derived as follows:

∆ = W ·Φ(C∗)T

=
(
ω1, ω2, ..., ωk, ωk+1

)
·
(

ϕ1(c∗), ϕ2(c∗), ..., ϕk(c∗), 1
)T

= ωk+1 +
k

∑
i=1

ωi · ϕi(c∗)

= ωk+1 +
k

∑
i=1

ωi · ai
( k

∏
j=i

(1− 2ci)
)

= θk+1 +
k

∑
i=1

θi · ϕ(ci)

= Θ ·Φ(C)T

(13)

where θi = ωiai, for i = 1, 2, ..., k and θk+1 = ωk+1. Due to a separate hyperplane Θ · Φ(C)T = 0,
the parameters vector of the output of the XMPUF design can be calculated by the LR modeling attack,
which will be discussed later.
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4. The Proposed MMPUF Design

4.1. Circuit Design

The proposed MMPUF design, shown in Figure 4, is proposed to prevent the modeling attacks.
Instead of using XOR gates, MUX is used as the function f (·) of the previously proposed XMPUF
design to obfuscate the challenge. At each stage, a MUX selects one of two responses from two
PicoPUFs by 1-bit of the original challenge and outputs the response as a 1-bit new challenge.
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Figure 4. The proposed MMPUF design with MUXs.

The difference between XMPUF and MMPUF designs is the pre-processing circuit, i.e., the function
f (·). Note, it has the probability to generate the same response from two different PicoPUFs for some
stages, e.g., both are 0 s or 1 s. Hence, the PicoPUFs with different responses are selected to avoid
this problem.

4.2. Mathematical Analysis

The new challenge, c∗1 , c∗2 , ..., c∗n generated from the PicoPUF circuits, is composed of the original
challenge, a MUX and two PicoPUFs. The output of the delay model for the proposed MMPUF
design can be described the same as Equations (1) and (3). Compared to the XMPUF design, the only
difference is the operation of the function f (.). For the XMPUF design, an XOR is used. For the
proposed MMPUF design, a MUX is used and can be described as follows:

c∗i = ci · xi + (1− ci) · yi (14)

where xi, yi ∈ {0,1} are the outputs of two PicoPUFs and ci ∈ {0,1} is the ith bit of the original challenge.
According to Equation (3), the parameter ϕi(c∗) of the proposed MMPUF design can be expressed

as follows:

ϕi(c∗) =
k

∏
j=i

(1− 2c∗j )

=
k

∏
j=i

(
1− 2

(
cj · xj + (1− cj) · yj

))
=

k

∏
j=i

(
1− 2yj + 2cj · (yj − xj)

)
(15)

Compared to Equation (11), Equation (15) is different in the form of Equation (5). There is no
separate hyperplane to form the decision boundary, as it is difficult to find a function f (·) to map
k-dimension vector (c1, c2, ..., ck) into a linear space. Therefore, the machine learning methods, e.g., LR,
are difficult to model such non-linear architecture.
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When the outputs of two PicoPUFs are the same, i.e., yj = xj, both outputs are 0 s or 1 s. Hence,
Equation (15), can be represented as Equation (16):

ϕi(c∗) =
k

∏
j=i

1− 2yj =
k

∏
j=i

1− 2xj (16)

It shows that ϕi(c∗) only depends on the output of PicoPUFs.
While the output is different, the relation between xi and yi can be expressed as yi = 1− xi. As a

result, Equation (15) can be simplified as:

ϕi(c∗) = −
k

∏
j=i

(1− 2cj) ·
k

∏
j=i

(1− 2xj) (17)

These two different circumstances can lead to different simulation modes. However, only the
Secure Data Base (DB) at the register process will know the results of the PicoPUFs and this will partly
obfuscate the relationship between challenges and responses for an adversary to collect sufficient
valid CRPs.

Therefore, this will not affect the resistance of the proposed MMPUF to ML attacks since both
the combinations (the same or different outputs of two PicoPUFs) will contribute to the final results.
As can be seen from the results in Section 5, the proposed MMPUF decreases the successful prediction
rates of CMA-ES attacks around 20% compared with XMPUF due to the obfuscation effects.

5. Machine Learning Attack Results

Machine learning-based modeling attacks, used to build theoretical models for target circuits,
have been commonly employed to model the behavior of delay-based Physical unclonable function
(PUF) designs on FPGAs and ASICs [6,8–10]. The basic idea is to use the known CRPs to train the
proposed model and predict the unknown response of a given challenge. Hence, to fairly compare
with other works, we build and analyze the proposed MMPUF design through a theoretical model to
comprehensively evaluate the modeling attack resistance of the proposed MMPUF design in different
conditions, e.g., noise. The hardware implementation is used to verify PUF metrics (e.g., uniqueness
and reliability, etc.) and prove the practicability and feasibility of the proposed MMPUF design
on FPGA.

5.1. LR Attack Results

In this work, we use an open source implementation of LR with RProp programmed by
Ulrich et al. [6] in Python, which are available from [31].

5.1.1. Results for the XMPUF Design Using Different Feature Vectors

As discussed in Section 3.2, the delay difference ∆ of the XMPUF design can be expressed
as Θ · Φ(C)T . It is necessary to transform the challenge vector C = (c1, c2, ..., ck) to feature
vector Φ(C) = (ϕ1(c), ϕ2(c), ..., ϕk(c), 1) to build up an accurate delay model since there is no linear
relationship between challenge vector C = (c1, c2, ..., ck) and delay difference ∆. Figure 5 presents
the LR modeling results on the XMPUF design using two feature vectors, C and Φ(C), respectively.
Dataset A is the result which uses feature vector Φ(C), while Dataset B is the result which uses feature
vector C. It has been shown that the LR achieves almost 100% attacking accuracy by applying the
feature vector Φ(C). In a contrast, it is difficult for the LR to train and figure out an accurate model by
directly applying the feature vector C.
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Figure 5. The prediction rates of LR attack on a 64-bit XMPUF designs using different feature vectors.

5.1.2. The Prediction Rates of The XMPUF and MMPUF Designs

To predict the Multi-PUF designs using LR, a group of tests with different numbers of training
samples is carried out. In Figure 6, the prediction rates for the conventional APUF, the previously
proposed XMPUF and the proposed MMPUF designs are presented in different numbers of training
samples from 500 to 100,000, as well as different numbers of stages from 16 to 128.
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Figure 6. The prediction rates of the LR attacks for different PUF designs in various bit lengths:
(a) 16 bit length, (b) 32 bit length, (c) 64 bit length, (d) 128 bit length.
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In Figure 6, it can be seen that both the conventional APUF and XMPUF designs are successfully
predicted. However, for the MMPUF design, the prediction rate is far less than the former two,
which means the proposed MMPUF design demonstrates good resistance to the attacks using LR.

Figure 7 gives the prediction rate of three PUF designs with training sample sets size of 100,000.
It can be seen that with a large sample size, the conventional Arbiter PUF and the XMPUF design
can be successfully predicted with high reliability with stages from 16 to 256, while the prediction
rate of the MMPUF design is less than 59%. The prediction rate of the MMPUF design is significantly
decreased with the number of stages increased and is stable in a small range.
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Figure 7. The prediction rates of LR attacks on 64-bit PUF designs (σn = 0) by using 100,000 CRPs
and applying different challenge bit lengths.

5.1.3. Results on Both the MMPUF and XMPUF Designs Affected by Noise

In a practical circuit, there exists various environmental variations, such as temperature or voltage,
to affect the output of a PUF. We assume the noise is a variable which obeys the Gaussian distribution
of norm (0, σn). In Reference [10], Becker et al. presented an equation to describe the delay difference
affected by environmental noise:

∆D = ∆DPUF + Dnoise = W ·Φ(C)T + Dnoise (18)

and

r =

{
1, i f ∆DPUF + Dnoise > 0

0, i f ∆DPUF + Dnoise < 0
(19)

They pointed out that if the ∆DPUF is greater than the Dnoise, the noise term is unlikely to change
the sign of ∆D, and if the delay difference ∆DPUF is close to zero, the chance that the response bit
changes due to Dnoise is much higher. Based on this fact, in this work, the same noise is added to the
model, but different from [10], it is more reasonable that Dnoise should affect every stage of the PUF,
which results in Equation (20):

∆D = (W + Dnoise) ·Φ(C)T (20)

Theoretically, there is no difference between Equations (18) and (20); however, Equation (20) is
closer to the practical situation.

Table 1 gives the prediction rates of three structures with the number of stages, 128, under the
influence of noise. These noises have the same mean value but with different variance. When σn = 0,
this means the circuit is in an ideal environment without noise.

It can be seen that the prediction rates of both the conventional APUF and XMPUF decreased
slightly with increasing variance of the σn. With a larger sample size of CRPs, the prediction rate is still
very low as shown in Figure 8.
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Figure 8. The prediction rates of LR attacks on 64-bit XMPUF and MMPUF designs affected by noise.

Table 1. Prediction Rates Affected by Noise.

Type No. CRPs (×103)
Gaussian Distribution of norm (0, σn)

σn = 0 σn = 0.1 σn = 0.25 σn = 0.5

APUF

1 90.6% 88% 86.2% 81%
5 98.77% 97% 94.63% 88.9%
20 99.49% 97.63% 94.61% 89.64%
40 99.67% 97.8% 94.84% 89.87%
80 99.79% 97.95% 94.7% 89.69%

100 99.82% 97.88% 94.77% 89.85%

XOR APUF

1 88% 87.4% 86.4% 84.8%
5 87.2% 86.6% 83.8% 84.6%
20 50.8% 50.35% 50.2% 50.4%
40 87.2% 86.6% 83.8% 84.6%
80 50.8% 50.35% 50.2% 50.4%

100 50.8% 50.35% 50.2% 50.4%

XMPUF

1 90.4% 86.9% 86.2% 83.8%
5 98.25% 95.55% 94.08% 88.03%
20 99.51% 97.46% 94.61% 88.58%
40 99.63% 97.71% 94.84% 88.8%
80 99.77% 97.89% 94.9% 88.59%

100 99.82% 97.96% 94.96% 88.6%

MMPUF

1 52.24% 51.57% 53.9% 50.36%
5 51.07% 54.21% 51.64% 53.44%
20 51.88% 53.12% 50.31% 52.61%
40 50.63% 53.65% 53.77% 50.31%
80 51.48% 52.34% 50.26% 52.98%

100 53.57% 55.23% 53.02% 51.47%

There are some differences between our experiments and Ulrich’s. In Ulrich’s experiment, errors
were inserted to CRPs directly. In our experiment, we add the noise to the delay element at each
PUF stage.

For the MMPUF design, the prediction rate is not affected by the noise as the prediction accuracy is
around 50%. It is clear that if the prediction of an algorithm is close to 50%, it means that this algorithm
cannot estimate the model for the reason that the probability of random guessing is also 50%.

5.1.4. Results on the MMPUF Design with Different Numbers of MUXs

In Section 4.2, we mentioned that at some stages of MMPUF design, if the responses of two
PicoPUFs are the same value, half of the original challenge bits are unused. To counter this, we can
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decrease the number of MUXs in the MMPUF. More specifically, some stages will receive the original
challenge bits directly without MUXs and PicoPUFs. In our experiment, these stages without MUXs
are chosen randomly.

Figure 9 gives the prediction rate of the MMPUF design with different numbers of MUXs.
In particular, the top curve is the prediction rate for the conventional APUF design with a training
sample size from 500 to 100,000 and the number of MUX is 0. The curve which uses 128 MUXs is the
prediction rate for the MMPUF design.
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Figure 9. LR attack results on the MMPUF design with different numbers of MUXs.

It can be seen that the prediction rate of the MMPUF design decreases rapidly with an increasing
number of the MUXs. Even the PUF design with 8 MUXs, the prediction rate is only around 70%,
and with the number of MUXs beyond 32, the prediction rate is around 50%. The number of MUXs can
be selected depending on the need for application in practice. For security concerns, the PUF design
with small amount of MUXs is not recommended.

5.2. Attack Results Using SVM

To have a comprehensive analysis, support vector machines (SVM) attack is also used to evaluate
the proposed MMPUF design. SVM is one of the most popular ML technique which can learn a binary
classification pattern from a set of training examples [32,33].

Figure 10 shows the prediction rates for both the conventional APUF, XOR APUF, XMPUF
and MMPUF designs with training sample sets size from 1000 to 100,000, and assuming both 64-bit
and 128-bit challenges. It can be seen that the conventional APUF, XMPUF design can be successfully
predicted for both 64-bit and 128-bit designs. For the XOR APUF, it is resistant to SVM attack while the
training CRPs is less than 104. However, it can be accurately predicted when the training sets reach
to 104. For the MMPUF design, the prediction rate remains below 53.67% for a 64-bit MMPUF and
52.44% for a 128-bit MMPUF. Therefore, it is clear that the proposed MMPUF design is more difficult
to be attacked compared with several conventional APUF, XOR APUF and XMPUF design.
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Figure 10. The prediction rates of SVM attack on: (a) 64 bit and, (b) 128-bit MMPUF designs.

The final prediction rates and training time for the APUF, XOR APUF, XMPUF and MMPUF
are illustrated in Table 2. It can be seen from the table that the APUF and XMPUF are vulnerable to
SVM attack. Although the XOR APUF can be broken by the SVM attack, it needs more training CRPs
and training time, up to 3 h and 30 min. The training time for the 128-bit MMPUF of 10,000 CRPs
is about 23.54 s and the prediction rate always remains under 52.44%, which means the proposed
MMPUF presents a good resistance to SVM attack.

Table 2. Prediction Rates and Training Time for SVM Attack.

Type Prediction Rate (Average) Prediction Rate (Maximum) No. CRPs (×103) Training Time

APUF (64 bit) 99.21% 99.41% 6 7.55 s
XOR APUF (64 bit) 98.13% 98.25% 80 3:13 h

XMPUF (64 bit) 99.18% 99.22% 6 7.8 s
MMPUF (64 bit) 51.74% 53.67% 6 10.36 s

APUF (128 bit) 99.1% 99.17% 10 20.05 s
XOR APUF (128 bit) 96.56% 96.89% 100 3:30 h

XMPUF (128 bit) 99.07% 99.23% 10 21.65 s
MMPUF (128 bit) 50.32% 52.44% 10 23.54 s

5.3. Attack Results Using CMA-ES

For the reliability-based CMA-ES algorithm, we follow the work by Becker [10] and the source
code in MATLAB is adopted from [34]. A Gaussian distribution is employed to generate and simulate
a group of random numbers for the delay elements in the PicoPUF and the conventional Arbiter PUF.
To model the impact of noise, a variable is added to the delay difference of each APUF model with
Gaussian distribution of norm (0, σn).

Figure 11 shows the prediction rates for both the conventional APUF and the two Multi-PUF
designs with training sample sets size from 1000 to 10,000, and assuming both 64-bit and 128-bit
challenges. It can be seen that the conventional APUF and XMPUF design can be successfully predicted
for both 64-bit and 128-bit designs. However, compared with the conventional APUF, the prediction
accuracy of XMPUF design is lower for the reason that XMPUF design has higher complexity. For the
MMPUF design, even with 10,000 CRPs, the prediction rate is less than 75% for a 64-bit challenge.
Therefore, it is clear that the proposed MMPUF design is more difficult to be attacked compared with
the conventional APUF and XMPUF design. Similarly, for the MMPUF design, even with 10,000 CRPs,
the prediction rate is still less than 71% for a 128-bit challenge. These results indicate that the required
number of training samples grows by increasing the number of delay stages, i.e. , the bit length of
the challenge.
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Figure 11. The prediction rates of CMA-ES attack on: (a) 64 bit and, (b) 128-bit MMPUF designs.

The proposed MMPUF has better resistant to the CMA-ES attack than the conventional APUF
and XMPUF. It requires more efforts, an exponential number of CRPs, for modeling attacks. When the
number of training sets is increased to 42,000 for 64-bit MMPUF and 48,000 for 128-bit MMPUF,
the prediction rates can reach to 90%. As mentioned in the introduction section, the proposed MMPUF
can be deployed with the fault-tolerant protocol [17] to restrict the number of accessed CRPs.

5.4. Comparison

To demonstrate the security of the MMPUF design, Table 3 shows the prediction rates of different
types of PUF designs. For both 32-bit length and 64-bit length PolyPUF design [35], the prediction rates
are around 50%, while the attack model is Artificial Neural Network (ANN). The proposed MMPUF
design can achieve a prediction rate of 50% using LR. Hence, both the PolyPUF and MMPUF designs
exhibit good resistance to machine learning attacks. For the OB-PUF design [12], the prediction rate
can be up to 70% with a large sample size of CRPs by applying LR. The randomization level of RPUF
design [13] in Table 3 is 2, and with 200 CRPs, the prediction rate is up to 69%, while the attack method
is Compound Heuristic Algorithm [36]. Compound Heuristic Algorithm is an improving algorithm
based on ES. To compare with this, we give the results of the MMPUF which is attacked by CMA-ES.
In Table 3, the prediction rate of the MMPUF is 60.51% for a 64-bit length PUF design and 58.61% for
a 128-bit PUF design. The attack result of the MMPUF is close to that of RPUF, but MMPUF need
to consume more CRPs, which means it is more resistant to ML attack. Those results indicate that
the proposed MMPUF design demonstrates a significantly higher attack resistance than most of the
existing designs.
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Table 3. Comparison of Attacks between Different Types of PUF Designs.

Type Bit No. CRPs Prediction Attack
Length (×103) Rate Model

PolyPUF [35]

32
5 50.1%

ANN

50 50.03%
500 50%

64
5 50.02%

50 50%
500 50.01%

OB-PUF [12] 64
10 52.28%

LR20 63.27%
200 71.92%

RPUF [13]
32 0.1 75% Compound
64 0.2 69.1% Heuristic
128 0.2 64.2% Algorithm [36]

MMPUF

32
5 52.85%

LR

50 53.41%
100 53.66%

64
5 53.77%

50 55.39%
100 56.55%

MMPUF

32 1 74.1%

CMA-ES
64

1 60.51%
5 71.96%

10 74.18%

128
1 58.61%
5 70.33%

10 71.55%

6. Hardware Implementation and Performance Evaluation

As the proposed MMPUF design exhibits good resistance to LR machine learning attacks, it is also
expected to achieve good PUF metrics. In this work, the key metrics of uniqueness and reliability are
evaluated. The proposed MMPUF design is implemented on Digilent Nexys 4 boards that comprise
Xilinx Artix-7 FPGA. The proposed MMPUF design has been implemented on each of 11 Artix-7
FPGAs producing a total of 22 individual implementations for testing.

To present a comprehensive evaluation result and prove the practicability of the proposed MMPUF
design, we have also implemented and evaluated the design on five Xilinx Kintex-7 boards. Each board
implements two identical PUF instances. Hence, ten MMPUF instances in total are implemented on
Kintex-7 KC705 boards. Both Artix-7 and Kintex-7 are built using the same foundry process—TSMC
28 nm. The design of the fabric for the Artix-7 is tailored for lower cost, whereas the Kintex-7 are tuned
for higher performance. Typically, there is about a 15% speed penalty in using Artix-7 over Kintex-7.

6.1. Hardware Implementation

Strong PUFs, such as APUF, suffer from several quality issues in FPGA implementation. It is
difficult to achieve a high uniqueness and reliability which can limit their authentication performance
in practice. To demonstrate the proposed MMPUF design, it is important to choose an FPGA-based
APUF design that has a high uniqueness and reliability. The lightweight FF-APUF design [29] is
adopted. It has a higher uniqueness (∼40%) compared to the conventional APUF (∼9%) on Xilinx
7 series FPGA implementation. Moreover, a 64-stage FF-APUF achieves good reliabilities of 97.10%
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and 93.90% over a temperature range of 0 ◦C∼70 ◦C and±10% voltage variations, respectively. Hence,
the FF-APUF is used in the proposed XMPUF design.

To achieve a higher uniqueness result, a balanced placement and routing of the PUF design is
essential. Figure 12 shows the place and route for one stage of the FF-APUF design used in the proposed
MMPUF design. The routing of each delay path is balanced by a fixed routing setting in Vivado to
contribute equivalent delay time as other routing. The “FF” and “MUX” in Figure 12 represent the
hardware components of FF and MUX on Xilinx 7 Series FPGA used in the FF-APUF design.

Figure 13 shows the place and route of 1-bit PicoPUF design on Xilinx 7 Series FPGA. Note,
two additional buffers are employed to extend the delay paths. The “FF”, “BUF” and “MUX” represent
the hardware components of FF, buffer and MUX on Xilinx 7 Series FPGA used in the PicoPUF design.
The routing of delay paths are balanced by a fixed routing setting in Vivado to achieve two “identical”
delay paths.

FF
FF

FF
FF

MUX

MUX

MUX

Figure 12. Place and route for one stage of 1-bit FF-APUF design [29] in the proposed MMPUF design.

FF

FF

NAND

NAND

BUF

BUF

Figure 13. Place and route for 1-bit PicoPUF [37] in the proposed MMPUF design.

Table 4 shows the hardware implementation consumption of the proposed MMPUF compared
with other lightweight PUF designs. For a fair comparison, only the security related components
are considered. All the PUF designs shown in Table 4 present a lightweight implementation without
requiring error-correction or cryptographic hash function. Moreover, the proposed MMPUF and the
PolyPUF designs are more lightweight than the others.

Table 4. Hardware Resource Comparison of the Primary Security Components.

Component Slender [38] NBPUF [15] PolyPUF [35] RPUF [13] Proposed MMPUF

physical unclonable function (PUF) 4× 128 4× 128 128 128 2× 128
LFSR 10 10 10 10 10

TRNG 128 128 N/A 128 N/A
Others N/A 25 75 128 N/A
Total 650 650 213 394 266

6.2. Uniqueness Results

Uniqueness measures inter-chip variation by evaluating how well a particular PUF circuit design
can be differentiated between k different devices. Ideally, a PUF circuit is expected to produce
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an average inter-chip HD of 50% by comparing the response from two devices supplied with the same
challenge. The uniqueness, representing the average inter-chip HD, is defined as:

Uniqueness =
2

k(k− 1)

k−1

∑
i=1

k

∑
j=i+1

HD(Ri,Rj)

n
· 100 (21)

where Ri and Rj represent N-bit responses from two PUF circuits Φi and Φj supplied with the same
challenge C.

Figure 14 shows a histogram of the uniqueness results for the proposed MMPUF design.
The uniqueness of the proposed MMPUF design achieves an empirical mean of 40.10% on Artix-7
FPGAs and 47.30% on Kintex-7 FPGAs. The uniqueness on Artix-7 FPGA is equivalent to the
uniqueness value of the FF-APUF design [29] while the result on Kintex-7 FPGA is better. The reason
may be that the Kintex-7 FPGA has higher performance and speed compared with Artxi-7 and this
could increase the uniqueness of the proposed MMPUF. Moreover, compared to the uniqueness
results from 5.44% to 10.82% achieved by the work [25] on Multi-PUF, the proposed MMPUF design
demonstrates a higher capability to differentiate between different devices.
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Figure 14. The uniqueness results for the proposed MMPUF design (a) Artix-7 FPGAs,
(b) Kintex-7 FPGAs.

6.3. Reliability Results

Ideally, a given PUF circuitry, implemented on any device should be able to perfectly reproduce its
output whenever it is queried with a challenge. However, environmental changes, such as temperature
and power supply voltage variations, as well as the natural properties of metastability in PUF circuits
induce noise in the responses. Therefore, reliability is used to quantify a PUF’s ability to reproduce
a response. For a device i, reliability is established as a single value by finding the average intra-chip
HD of s response samples, R

′
i, taken at different operating conditions compared to a baseline N-bit

reference response, Ri, taken at nominal operating conditions. The average intra-chip HD is estimated
as follows:

HDINTRA =
1
s

s

∑
t=1

HD(Ri, R
′
i,t)

N
· 100 (22)

where R(i, t)
′

is the t-th sample of R
′
i. The percentage figure of merit for reliability can be defined as:

Reliability = 100− HDINTRA (23)

Obviously, the ideal value for reliability is 100%.
The temperature is in a range of 0 ◦C ∼ 70 ◦C using a convection heat chamber while the core

supply voltage was varied by ±10% volts using a DC regulated power supply. A previously proposed
post-characterization methodology [28] is adopted to improve the reliability of the PicoPUF, which
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has been presented to achieve almost 100% reliability. Figures 15 and 16 show the reliability results
of both the FF-APUF and proposed MMPUF designs. The average reliability results of the proposed
MMPUF design on Xilinx Artix-7 FPGA over temperature and voltage experiments are 96% and 94%,
respectively. Due to the limitation of the evaluation board, the reliability of the proposed MMPUF
design over temperature variations on Kintex-7 FPGAs are carried out and is 96.65%. By using
the post-characterization for the PicoPUF design, the proposed MMPUF design achieves a similar
reliability result as the FF-APUF design. Hence, the proposed MMPUF design can achieve modeling
attack resistance without sacrificing reliability or uniqueness performance in practice.
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Figure 15. Reliability results considering temperature.
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Figure 16. Reliability results considering voltage.

7. Conclusions

In this paper, we propose a new MMPUF design which is resistant to modeling attacks by using a
Weak PUF to obfuscate the challenge of a Strong PUF design. A detailed analysis of the mathematical
model for the MMPUF design is presented. Three of the most widely employed machine learning-based
attack techniques, LR, SVM and CMA-ES, are used to analyze the resistance of the proposed MMPUF
design. Mathematical analysis and experimental results demonstrate that the proposed MMPUF
is resistant to these ML attacks. To evaluate the performance and feasibility of the proposed PUF
design, the MMPUF design is implemented on 22 Xilinx 7 Series FPGAs. The uniqueness metric for
both the proposed MMPUF design and XMPUF design exhibit good results of 40.10% and 40.60%,
respectively. The proposed MMPUF design achieves a similar reliability result as the FF-APUF design.
This significantly improves upon previous work on XMPUFs and illustrates the design’s feasibility for
implementation on an FPGA.
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