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Abstract: A low-power dual-mode receiver is presented for ultra-high-frequency (UHF) radio
frequency identification (RFID) systems. The reconfigurable architecture of the tag is proposed to be
compatible with low-power and high-sensitivity operating modes. The read range of RFID system
and the lifetime of the tag are increased by photovoltaic, thermoelectric and RF energy-harvesting
topology. The receiver is implemented in a 0.18-µm standard CMOS process and occupies an active
area of 0.65 mm × 0.7 mm. For low-power mode, the tag is powered by the rectifier and the sensitivity
is −18 dBm. For high-sensitivity mode, the maximum PCE of the fully on-chip energy harvester is
46.5% with over 1-µW output power and the sensitivity is −40 dBm with 880 nW power consumption
under the supply voltage of 0.8 V.

Keywords: RFID; receiver; energy harvesting; cross-coupled voltage multiplier; charge pump;
ultralow-power circuits and systems

1. Introduction

With the emerging development of the Internet of things (IoT), wireless sensor networks (WSN)
are widely used, such as the wearable health monitoring system and environmental monitoring system.
Radio frequency identification (RFID) science has the advantages of standardization identification,
low cost and small form factor, there is growing interest in combining RFID and on-chip sensors into
smart sensor nodes [1–6]. However, read range is a big challenging topic for these applications.

The passive RFID tags, whose maximum read rage is limited within 12 m, are powered by the
RF energy radiated from the reader [1]. The read range becomes even worse when RFID tags are
equipped with sensors [2,3]. Semi-passive and active RFID tags powered by the external battery;
therefore, they are suitable for long read range and sensing. By using the same envelope detector
and backscatter topology as the passive tags, the conventional battery-assisted ultra-high-frequency
(UHF) RFID tags achieve maximum sensitivity of −26 dBm and the read range is around 30 m [4].
The receiver is always-on or turned on in each duty cycle. The power consumption of the receiver is
several microwatts; hence, the lifetime of the battery is limited.

In these years, the high-performance transceivers are proposed and implemented in RFID tags
to further extend the read range up to over 100 m [5–8]. However, the heterodyne receiver includes
a passive mixer and a local oscillator (LO) which consumes several hundred microwatts power [9].
The lifetime of the tag would be decreased to several weeks. To solve the power consumption issue
and avoid the use of LO, the direct envelope detector based receiver (ED-Rx) is a viable technique to
scale down the average current and to meet the system power requirement.
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For ED-Rx, there are tradeoffs between power consumption, sensitivity and data rate. In [7],
the ED-Rx consumes 1 µW at 930 MHz carrier frequency with a sensitivity of −55 dBm and a data
rate of 10 kbps. However, the high-Q impedance matching technique leads to a narrow frequency
band of these receivers, which will increase the design difficulty of the antenna. In addition, these
receivers are incompatible with the UHF RFID protocol. When implemented with backscatter circuits
and transmitter, the Q factor and passive gain will be decreased, and the sensitivity of the receiver will
be decreased to −30 dBm.

On the other hand, to break the limitation of the lifetime and eliminate the use of
battery, photovoltaic (PV) and thermoelectric (TE) are promising energy sources for RFID tags.
For millimeter-sized PV and TE cells, the output power is several microwatts and the output voltage is
0.2 V to 0.4 V in typical. To address these issues, recent efforts have been focused on the fully integrated
DC–DC boost converters that can undertake a tiny input voltage (VIN), while offering a high output
voltage (VOUT) and a high power conversion efficiency (PCE) [10–14].

In this study, a dual-mode UHF RFID tag is proposed. The PV and TE energy-harvesting topology
is adopted along with RF energy harvesting to eliminate the external battery. The reconfigurable
architecture of the receiver is introduced to be compatible with conventional passive RFID tags.
The receiver can operate in low-power (LP) and high-sensitivity (HS) modes according to the input
signal power. The proposed RFID system achieves low power consumption, long read range and
high integration.

This study is an extended version of our study published in the IEEE 13th International Conference
on ASIC, 2019, Chongqing, China [15]. The chip is taped-out and the measurement results and
comparison table are added to this article. The study is organized as follows: Section 2 describes the
principle of the proposed RFID system. Sections 3 and 4 shows the circuits and simulation results of
energy harvester and receiver. Section 5 is the measurement results. Finally, the conclusion is drawn
in Section 6.

2. Proposed UHF RFID System

2.1. Link Budget

For passive RFID tags, the sensitivity and read range are mainly decided by the input RF power
which is delivered to the antenna. The input power could be calculated using the Friis equation and
the relationship of tag input power and distance between tag and reader is shown in Figure 1.
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Figure 1. Read range and operating modes of ultra-high-frequency (UHF) radio frequency identification
(RFID) system.

The maximum read range of passive-receiving mode is determined by the power consumption
of the tag and the sensitivity is typically between −15 dBm and −20 dBm. For backscatter operating
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mode, the RF signal is modulated and reflected back to reader. Typically, the output power of the
reader is 36 dBm and the maximum sensitivity of the reader is −80 dBm. Hence, the tag could operate
in backscatter-mode when input power is larger than −22 dBm by calculation.

For active-operating mode, the read range is increased by the active transmitter. The maximum
output power of the transmitter can be selected as −10 dBm by the tradeoff between read range and
power consumption. Therefore, the sensitivity of active-receiving mode should be −40 dBm and the
read range can achieve more than 150 m.

2.2. Architecture of RFID Tag

The architecture of the proposed self-powered RFID tag is shown in Figure 2. The dual-mode
ED-Rx, RF energy harvester, backscatter circuit and transmitter are connected to the RF port and
the input impedance is conjugate matched with a dipole antenna. The fully on-chip DC–DC boost
converter is connected to the off-chip PV and TE cell and harvests energy from the environment or the
human body.
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Depending on the power-supply mode, the ED-Rx can operate in high-sensitivity and
low-power-receiving modes, and the maximum sensitivity is over −40 dBm. It operates in
high-sensitivity receiving and active-transmitting mode in default when powered by PV and TE
harvester. Considering the energy is not sufficient during the night and for indoor environment,
the RF energy-harvesting topology is also adopted [14]. It powers the chip when the input RF signal is
larger than −20 dBm and the tag could switch to backscatter mode and low-power-receiving mode by
detecting the strength of received RF carrier. The low-power-receiving mode is fully compatible with
conventional passive RFID tags.

Due to the small amount of transmitting data, the operating time of active transmitter is within
1 ms. The microwatt energy harvester charges the off-chip storage capacitor and enables the milliwatt
transmitter in duty-cycle [16–18]. The power management circuits such as current source and
voltage references are designed in the subthreshold region and the power consumption is several
nanowatts [18–20].

3. Proposed Energy Harvesting Topology

3.1. Photovoltaic and Thermoelectric Energy Harvesting

The low-power photovoltaic and thermoelectric energy-harvesting topology is proposed to
eliminate the external battery. The fully integrated DC–DC boost converter is based on a 3-stage
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differential charge pump scheme as shown in Figure 3, which can deliver a high VOUT to power-up
other circuits. The charge pump is driven by a ring-oscillator-based clock generator when VIN is in the
range of 0.2 V to 0.3 V.

Due to the threshold voltage of MOSFETs is larger than VIN, the bootstrapped inverter is adopted
in the oscillator as the delay cell. The swing of the output clock signal is tripled (−VIN to 2VIN) and the
output drivability is enhanced at low supply voltage. Then, the output voltage can be boosted to over
1 V by the 3-stage charge pump.
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Figure 3. Schematic of proposed photovoltaic and thermoelectric energy-harvesting circuit.

For the switched capacitor charge pump, the clock is used to control the MOSFET switch MP and
MN to charge and discharge the capacitor CC in each cycle. The voltage is increased by 3VIN for each
boost stage due to the bootstrapped clock. For the proposed 3-stage boost charge pump, the output
voltage VOUT is derived in

VOUT = 10VIN − 3(VMOS + 3VL) (1)

VL =
Iclk

2 fOSCCB
+

IOUT
2 fOSCCC

(2)

where the VL is the voltage drop on the bootstrap capacitor CB and charge pump capacitor CC due to
the current of delay cell Iclk and the output current IOUT. fOSC is the frequency of clock signal, VMOS is
the total voltage drop on the transistors. The PCE is defined by the ratio of the output DC power POUT
to the total input power PIN, which is derived in

PCE =
POUT
PIN

=
VOUT

2

VINIINRL
(3)

and the high PCE can be achieved by selecting a larger fOSCCC product to reduce the voltage drop VL

across the capacitor. In this design, CC = 20 pF and fOSC = 2.5 MHz are selected considering chip area
and PCE. The VL and VMOS are 20 mV and 100 mV by simulation. When VIN is 0.2 V and the load is in
the range from 0.5 MΩ to 1.7 MΩ, the total PCE can reach more than 40%.

3.2. RF Energy Harvesting

The core of RF energy harvester is the rectifier which supplies DC power by rectifying the input
RF signal from the antenna. The 3-stage differential cross-coupled rectifier is adopted, and the circuit is
shown in Figure 4.
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The rectifier performance is evaluated by the term of sensitivity and power conversion efficiency
(PCE). Sensitivity is defined as the minimum input RF power required to generate a specific DC output
voltage, and PCE is the ratio of the DC output power to the RF input power [16]. Circuit topology,
device parameters, carrier frequency, the amplitude of input RF signal, and the output loading
conditions affect the PCE and sensitivity of the rectifier. The input impedance of receiver Zt is mainly
decided by the rectifier. Zt is capacitive and should be conjugate matched with the inductive impedance
of RFID tag’s dipole antenna.

When operating in LP mode, the receiver is powered by the rectifier with the on-chip MOSFET
capacitor. Assuming the power consumption of the whole system is several microwatts, the simulation
of output voltage and PCE versus input power for different stages and load resistance is adopted and the
results are shown in Figure 5. When the output voltage is larger than 1 V, the 3-stage scheme achieves
−18.5 dBm and −17 dBm sensitivity for 5-µW and 10-µW output power, respectively. The maximum
PCE is more than 40% for LP mode according to simulation results.
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4. Proposed Dual-Mode Receiver

4.1. Architecture of Proposed Dual-Mode Receiver

The architecture of the proposed receiver is shown in Figure 6. The receiver can operate in
low-power (LP) mode and high-sensitivity (HS) mode. When operating in LP mode, the circuit is
powered by the 3-stage rectifier with an on-chip MOSFET capacitor. When the energy provided by the
PV/TE energy harvester is sufficient, the receiver operates in HS mode and the receiver’s sensitivity
is increased.
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Figure 6. Architecture of proposed dual-mode direct envelope detector based receiver (ED-Rx).

The MOSFETs of the RF detector are operating in the sub-threshold region in order to reduce
power consumption. It detects the envelope from the incident RF signal due to the exponential transfer
function of MN and MP. Then, the envelope is switched to the intermediate frequency (IF) amplifier.
The first stage is buffer with high pass filter (HPF), and the gain of the second stage amplifier is 20 dB
and the bandwidth is 150 kHz which is from 5 kHz to 200 kHz. The demodulator circuit is based on
low-pass filter (LPF) and comparator, the hysteresis value of comparator is optimized considering
mismatch and noise [9].

4.2. Envelop Detector with Voltage Bias

The proposed envelop detector is shown in Figure 7. The voltage bias is turned off and the circuit
can extract the envelope of the received OOK modulated RF signal without power consumption in
LP mode.
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The amplitude of the input RF signal and the amplitude of the envelope detector’s output signal
versus input RF power are shown in Figure 8. The output amplitude of the passive envelope detector is
over 100 mV when the input power of RF signal is larger than −18 dBm, which is easy to demodulate.
But for input power less than −18 dBm, the amplitude of the output envelope signal is almost zero [20].

When operating in HS mode, the envelope detector is biased by an internal voltage reference and
buffer. The sensitivity is improved, and it becomes more suitable for operating at low input power.
With an input power from −40 dBm to −20 dBm, the amplitude of the output envelope signal is from
10 mV to 100 mV, which cannot meet the needs of the demodulation circuit in the subsequent stage.
The signal is appropriately amplified and then demodulated. The bias voltage is generated by VBE of a
BJT device Q1 and voltage divider (M10~M13). The CTAT type bias voltage can compensate the worse
sensitivity of the envelope detector at low temperature.
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Figure 8. (a) Amplitude of the input RF signal versus input RF power; (b) amplitude of the envelope
detector’s output signal versus input RF power.

The output noise of the envelope detector is shown in Figure 9. By calculating the signal-to-noise
ratio of the output port of the envelope detection circuit, the sensitivity of the receiver can be estimated
in the most direct way [8]. The output signal-to-noise ratio can be calculated by

SNROUT,ED = SED,OUT
2/σEO,BB

2 (4)

PSensitivity by SNR =
√

2·SNRmin·σEO,BB2/Kv2 (5)

For a 200 kHz baseband signal bandwidth, the output port noise power of the envelope detection
circuit σEO,BB

2 is approximately 9× 10−8V2, Kv is the amplitude ratio of envelope detector’s output
and input signal. Assuming the minimum amplitude of the output envelope signal is 10 mV, then the
SNR is calculated to be about 30 dB, and the receiver sensitivity estimated from the SNR is −35 dBm.
Considering the passive gain of impedance matching, the sensitivity of the receiver in HS mode is
estimated to achieve −45 dBm.
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4.3. IF Amplifier

The proposed envelope detector has high output impedance, the unity gain buffer is adopted
to drive high pass filter (HPF) in HS mode. Then, the IF signal is further amplified by the baseband
amplifier (BB Amp). The unity gain buffer circuit and baseband amplifier are shown in Figure 10.Electronics 2020, 9, x FOR PEER REVIEW 8 of 14 
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Figure 10. Schematic of proposed IF amplifier.

The input MOSFETs M1 and M2 of the buffer are designed in minimum size to reduce the parasitic
capacitance. The PMOS input baseband amplifier is adopted because the DC output voltage of HPF is
zero [20].

The simulation results of the gain and phase margin of the proposed IF amplifier is shown in
Figures 11 and 12. As shown in Figure 11a, the high pass cutoff frequency is decided by C1 and R1,
fC = 1/(2πR1C1) which is 5 kHz. The open-loop gain of second stage amplifier is 30 dB. The simulation
result at tt corner shows that the phase margin is larger than 60◦ when gain reduced to 0. Moreover,
the phase margin can guarantee the stability of the IF amplifier with corner and temperature variation.
The closed-loop gain is decided by the ratio of R2 and R3, AV, close loop = 1 + R2/R3 which is 20 dB as
shown in Figure 12a. The cascade scheme of HPF and baseband amplifier results in a band pass filter
feature. The 3-dB frequency of baseband amplifier is 200 kHz.
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4.4. Demodulator

The demodulator circuit is based on a low-pass filter (LPF) and a hysteresis comparator, as shown
in Figure 13. Because the low-pass filter has a smaller cutoff frequency, and in order to reduce the area
of the circuit, the MOS capacitor with larger unit capacitance is used instead of the conventional MIM
capacitor. The calculation of the low-pass filter cutoff frequency is fC = 1/(2πRCMOS). In this design,
the typical values of total resistance and capacitance are 500 kΩ and 10 pF.
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Figure 13. Schematic of proposed demodulator including low-pass filter and comparator.

The demodulation and digitization of the signal is achieved by the comparator. Therefore,
the comparator needs to be designed as a hysteretic comparator structure because of the slowly
changing input signals and noisy environments. As shown in Figure 13, positive feedback is introduced
in the circuit through the source-level cross-coupling structure of the M4 and M5 [21].

Due to the fully differential structure of the hysteretic comparator, the second-stage amplifier is
added and realizes the differential to single-ended output function through a current mirror M7. At the
same time, the gain of the comparator is further improved. The hysteresis range is designed as 40 mV
to provide good immunity to the fluctuations of noise and glitches.

5. Measurement Results

The dual-mode receiver and energy harvester were fabricated in standard 180 nm CMOS process
with a 0.455 mm2 active area, as shown in Figure 14. The chip was dominated by capacitors of the
rectifier and charge pump circuit.
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Figure 14. Measurement setup and microphotograph of the implemented chip.

The chip was connected to the PCB using bond wires. The measurement setup included an
Agilent signal generator (E4438C), Agilent oscilloscope (MSO9104A), network analyzer (N5242A) and
a digital multimeter (FLUKE). The losse caused by parasitic capacitance and inductance of cable, balun,
matching components (L1,2 = 23 nH with Q = 35) and bond wire were measured and calculated as
1.5 dB.

Figures 15 and 16 show the measured output voltage and PCE of the on-chip switched-capacitor
charge pump for variable input voltage (180 mV to 300 mV) and loads (0.5 MΩ to 2 MΩ). When the
load RL = 1 MΩ and input voltage VIN>210 mV, the output voltage VOUT > 1 V and the output power
was more than 1 µW. At VIN = 0.2 V, the maximum PCE increased to 46.5%.

Figure 17 shows the measured results of the rectifier’s output voltage and PCE for variable loads
RL = 100 kΩ and 200 kΩ. The measured S11 with frequency in 850 MHz to 1 GHz is shown in
Figure 18b. The value of S11 was smaller than −10 dB in range of 900 MHz to 940 MHz, which means
the RF port was impedance matched with the antenna. The sensitivity for 1 V output was −18 dBm @
200 kΩ, and the maximum PCE was over 57% @ 100 kΩ.
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The measured waveforms of the dual-mode receiver are shown in Figures 18a and 19a. The transient
waveforms of the input RF signal and demodulated baseband output in the minimum incident power
demonstrate the sensitivities were −18 dBm and −40 dBm for LP and HS mode, respectively.
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Figure 19. (a) Measured input signal and demodulated signal in HS mode; (b) bit error rate (BER) in
HS mode.

In the HS mode with 10 kbps and 200 kbps data rate, the receiver achieved −42 dBm and −40 dBm
sensitivity for the bit error rate (BER) <0.001 in 920 MHz as shown in Figure 19b.

The power consumption of each block is shown in Figure 20. The receiver’s total power
consumption were 230 nW and 880 nW for LP mode and HS mode, respectively. The energy harvester
could provide more than 1µW of energy in an indoor environment according to the measurement
resulted, so the energy was sufficient to the dual-mode receiver.
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The performance summary is shown in Table 1. The proposed dual-mode receiver achieved
relatively high sensitivity without high-Q topology and the proposed architecture was compatible
with fully passive operating mode. Furthermore, the RF/PV/TE energy-harvesting approach could
eliminate the requirement of battery and extend the lifetime effectively. In this design, small active
area, low power consumption and low voltage operation were obtained.



Electronics 2020, 9, 1042 13 of 14

Table 1. Performance summary and comparison with related works.

Parameter This Work [6] TIE’ 18 [8] Sensors J.’ 18 [9] ISSCC’ 18

Modulation OOK OOK OOK OOK

Carrier
Frequency 920 MHz 920 MHz 900 MHz 433 MHz

Process 180 nm CMOS Discrete 95 nm CMOS 130 nm CMOS

Area 0.455 mm2 >100 mm2 0.18 mm2 1.95 mm2

Energy
Harvesting RF/PV/TE None None None

Receiver
Architecture

Passive/Active ED +
IF Amp

Envelope
Detector

High-Q + Active
ED + IF Amp

High-Q + Passive
ED + Offset Control

Passive Voltage
Gain 8 dB Not Reported 25 dB 27 dB

Sensitivity −40 dBm @200 kbps
−39.5 dBm −55 dBm @10 kbps −71 dBm @200 bps

−42 dBm @10 kbps

Power
Consumption 880 nW >1 mW 1 µW 7.6 nW

6. Conclusions

A self-powered dual-mode receiver is proposed for UHF RFID system, achieving −18 dBm
sensitivity for low-power mode and−40 dBm/−42 dBm sensitivity with 200 kbps/10 kbps data rate for
high-sensitivity mode, respectively. The integration of tag is increased, and the battery is eliminated
due to PV and TE-energy-harvesting topology. It is suitable for low-voltage low-power wireless sensors
and implantable devices.
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