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Abstract: Object-detection methods based on deep learning play an important role in achieving
machine automation. In order to achieve fast and accurate autonomous detection of stacked electronic
components, an instance segmentation method based on an improved Mask R-CNN algorithm
was proposed. By optimizing the feature extraction network, the performance of Mask R-CNN
was improved. A dataset of electronic components containing 1200 images (992 × 744 pixels) was
developed, and four types of components were included. Experiments on the dataset showed the
model was superior in speed while being more lightweight and more accurate. The speed of our
model showed promising results, with twice that of Mask R-CNN. In addition, our model was
0.35 times the size of Mask R-CNN, and the average precision (AP) of our model was improved by
about two points compared to Mask R-CNN.

Keywords: autonomous detection; electronic components; deep learning; instance segmentation;
Mask R-CNN

1. Introduction

In the industrial assembly field, plug-in electronic components are often manually inserted due to
their complicated shape and fragile nature. Because of the massive workload, low efficiency, and high
cost, it is difficult to ensure the assembly quality. With the rapid development of the electronics industry,
the higher demand for assembly speed and accuracy of plug-in electronic components is prioritized.
Traditional manual assembly does not satisfy the development needs of the electronic industry anymore.
Therefore, the automatic assembly of electronic components has become an inevitable trend.

Detecting the category and location of some objects is a necessary condition for automatic assembly.
For human beings, recognizing and grabbing some specific objects in a stacked scenario is an intuitive
behavior. However, for robots, finishing a series of motions smoothly, including identifying, locating,
and grasping an object, is not an easy task. With the development of convolutional neural networks,
object-detection methods based on deep learning have been greatly improved in speed and accuracy
compared with traditional detection methods [1–5]. The self-adjusting ability of deep neural networks
can effectively enhance the robots’ autonomy in terms of object detection. Among all detection
methods, instance segmentation can identify object contours at the pixel level and achieve higher
location accuracy [6]. Differing from semantic segmentation, instance segmentation mostly focuses on
the differences among the instances. In recent years, instance segmentation, as a critical technology
of artificial intelligence, has been widely used in the medical field, the engineering field, and so
on. He et al. [6] put forward the Mask R-CNN algorithm and used it for human pose estimation.
The average precision of segmentation on the COCO dataset can reach 64.7%. Hang et al. [7] proposed
a mammography quality detection and segmentation system based on the Mask R-CNN algorithm,
which can effectively detect the quality of mammography without human intervention. Dai et al. [8]
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implemented the segmentation of prostate and intraprostatic lesions based on Mask R-CNN, which is of
considerable significance to help radiologists in clinical practice. Chiao et al. [9] utilized Mask R-CNN
to segment the ultrasound breast images for lesion detection and diagnosis of benign and malignant,
which provides a non-invasive method for breast-lesion detection. Furthermore, to analyze the
environment inventory, Xu et al. [10] used the method of instance segmentation to segment trees from
the urban scenes, while the accuracy of semantic labeling of trees reaches around 0.9. Bert De et al. [11]
proposed a loss function with two terms to determine the entity to which the embedded pixel belongs
by the intra-cluster pull and intra-cluster push forces. This method uses the pixel embedding to solve
the problem of semantic instance segmentation at the pixel level and promotes the development of
autonomous driving technology. These research works indicate that instance segmentation possesses
the ability to generate a high-quality segmentation mask for each object.

In general, instance segmentation includes two kinds of methods: detection-based methods and
segmentation-based methods. The detection-based methods focus on generating region proposals
and predicted bounding boxes, then masking the objects in the predicted bounding boxes [12].
Hariharan et al. [13] proposed a method of simultaneous detection and segmentation (SDS). By using
the R-CNN algorithm to extract features of each region, this method can generate a rough estimate of
the mask based on the bounding boxes, combined with the region proposals, and eventually obtain
a fine mask. To improve the accuracy of detection and segmentation, they further proposed a pixel
descriptor called hypercolumn, which can calculate the vector of activations of all the convolutional
layer pixels above a specified pixel. By embedding the pixel descriptor into the classifier, the mAP
(mean average precision) raises from 50.3% to 56.5% on the PASCAL VOC 2012 verification set [14].
Dai et al. [15] replaced the pixel-category classifier in fully convolutional networks (FCN) [16] with the
relative-position classifier of the pixel object instance, and the local correlation of the image was used
to estimate the instance. On this basis, they designed a convolutional feature masking (CFM) method
that extracts segmented features directly from feature maps instead of from original images [17].
The mAP increases from 56.5% to 61.5% on the PASCAL VOC 2012 validation set. To further improve
accuracy, they divided the instance segmentation task into three sub-tasks: distinguishing instances,
estimating masks, and classifying objects. After that, the multi-task network cascades (MNCs) [18]
method was used to enhance the information flow among sub-tasks to accomplish fast and accurate
instance-aware semantic segmentation. The mAP can reach 63.5% by using this method. Li et al. [19]
put forward a fully convolutional instance-aware semantic segmentation (FCIS) instance segmentation
method, which could make the mAP reach up to 65.7%. This method accomplished the detection
and segmentation of the two sub-tasks by executing the inside score maps and outside score maps
in parallel. The fully connected layers were replaced with a softmax classifier, thus reducing the
possibility of overfitting. Based on FCIS, feature maps of different scales were used by Pham V Q et al.
to generate score maps, which were fused with skip structure to produce segmentation results. Bayesian
inference was put in to optimize the segmentation results, further increasing the mAP to 67.3% [20].
Another instance segmentation method is segmentation-based. Compared with the detection-based
methods, the segmentation-based methods, on the contrary, first get a pixel-level segmentation map
from an input image, then identify the object instances based on this segmentation map obtained [12].
Pinheiro [21] estimated the probability that an object is wholly contained in an image patch by using
the object-proposal method, while the segmentation masks and correlation scores are generated
simultaneously by giving the image input patch. Based on this approach, they further proposed a
method called SharpMask [22]. Firstly, a coarse mask encoding was output in the feedforward process,
and then a module which fuses the features extracted from the lower layer in the way of top-down
was used to refine segmentation. To obtain the feature map with higher resolution, path enhancement
was used in these references [12,23,24] to strengthen the information flow between network layers.
The verification of these improved methods was performed on public datasets. These research works
indicate that instance segmentation is an effective object-detection method, which can immensely
improve the accuracy.
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Compared with the bounding boxes of object detection, instance segmentation can get a more
definite edge of an object. In the meantime, instance segmentation possesses better performance
than semantic segmentation in labeling different instances among the same kind of objects.
Generally speaking, the classification task is only to identify an image containing some objects,
but when segmenting some instances, it will become a more complex procedure. Especially in a stacked
scenario with multiple overlapping objects, it is necessary to not only classify diverse objects but also
determine the boundaries, divergence, and relationships among all objects.

Nicholas et al. [25] used action primitives to touch multiple objects simultaneously. Object detection
and grasp planning can be performed in a cluttered environment with multiple objects. Guo et al. [26]
proposed a shared convolutional neural network that can detect target objects from stacked objects in
real-time. Zhang et al. [27] put forward a multi-task convolutional neural network for automatic robotic
grasping, focusing on object detection problems in the case of different object-stacking situations,
which is suitable for grasping tasks in multi-object stacking scenarios. However, due to the small size
of the electronic components, these multi-object detection methods are not available. In the case of
stacked electronic components, accurately detecting their categories and locating their positions for
the subsequent grasping operation has come to be an inevitable problem in need of urgent solutions.
Instance segmentation can effectively detect all the objects from an input image, and at the same time,
generate a high-quality segmentation mask for each instance to get a delicate position of the detected
object [6].

Until now, the relative research on instance segmentation has been rarely published, especially in
the assembly field of electronic components. The diversity of electronic components poses challenges in
the investigation process. The key to the realization of autonomous detection of electronic components
is to enhance the generalization ability of instance segmentation methods, such as the robustness
of detection and recognition in complex scenarios, and the balance between samples. In this paper,
an instance segmentation method based on an improved Mask R-CNN algorithm was proposed to
detect stacked and occluded electronic components. The experiments were performed on a dataset of
electronic components. The results were analyzed and discussed.

2. Dataset

2.1. Image Collection for the Dataset

Three kinds of datasets, which were training set, validation set, and testing set, were included in
this study. Three hundred images (744 × 992 pixels) were collected for building the dataset. Four types
of plug-in electronic components were included: tantalum capacitor, resistor, electrolytic capacitor,
and potentiometer. Their shape features were representative in the electronic assembly field, as shown
in Figure 1.

Figure 1. Plug-in electronic components used in the dataset. (a) Tantalum capacitor. (b) Resistance.
(c) Potentiometer. (d) Electrolytic capacitor.
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2.2. Data Augmentation

The number of images in the dataset was augmented to prevent overfitting, enhance the
generalization ability, and improve the robustness of the model. In this work, 1200 images were
obtained by using four data-augmentation methods, which were flipping, rotating, random cropping,
and color jittering (see Figure 2). The number of images in the training set, validation set and testing
set was 600, 240, and 360, respectively. The composition of the training set, validation set, and testing
set is shown in Table 1.

Figure 2. Four data-augmentation methods. (a) Random crop. (b) Flip. (c) Rotation. (d) Color jittering.

Table 1. The composition of training, validation, and testing sets.

Class
Training Set Validation Set Testing Set

Number of Objects Number of Objects Number of Objects

Electrolytic Capacitor 365 120 204
Resistance 329 168 180

Tantalum Capacitor 340 130 220
Potentiometer 343 174 210

2.3. Image Annotation

Images were annotated with the VGG Image Annotator (VIA), which is an open-source annotation
tool developed by the Visual Geometry Group. In the labelling process, a total of 2783 targets in 1200
images were labelled (examples of labelling can be seen in Figure 3). We used polygons from the
VIA to label the region shapes. The region attribute was set to “electronic.” The identities of the four
types of electronic components were 1, 2, 3, and 4, respectively, and the corresponding descriptions
were “Capa,” “Resis,” “Tcapa,” and “Poten.” We show the corresponding labels for the four types of
electronic components in Table 2.

Table 2. The corresponding labels for four types of electronic components.

Class Identity (id) Description

Electrolytic Capacitor 1 Capa
Resistance 2 Resis

Tantalum Capacitor 3 Tcapa
Potentiometer 4 Poten
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Figure 3. Examples of labelled images.

3. Structure

Mask R-CNN [6] is an extension of Faster R-CNN [1]. By adding a mask branch, masks can be
generated to cover the objects based on the location and classes of the detected objects. As shown in
Figure 4, Mask R-CNN is a two-stage architecture. In the first stage, the region proposal network (RPN)
is used to generate object region proposals and determine the foreground and background of input
images. In the second stage, convolutional neural network extracts features from candidate proposals,
classifies the proposals, and generates bounding boxes and masks for possible objects. With the
development of instance segmentation methods, the accuracy of detection is constantly improved.
However, the improvement of accuracy does not necessarily make the network more advantageous in
terms of speed and model size. As accuracy increases, the complexity and computational burden also
increase. In many real-world applications such as automatic drive and robotics, detection tasks need to
be performed in a timely manner on a computationally limited platform. Our goal was to optimize the
network, reduce the calculation parameters, and speed up the detection while ensuring accuracy.

Figure 4. The schematic architecture of Mask R-CNN. “Cls layer” denotes classification layer, “Reg layer”
denotes regression layer, “Conv” denotes convolution operation, and “Deconv” denotes deconvolution
operation, “NMS” denotes non-maximum suppression, “BBox regression” denotes bounding box
regression, “RoIAlign” denotes region of interest align. RPN: region proposal network.
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3.1. Backbone

Two backbones are proposed as feature extractors in Mask R-CNN: deep residual networks
(ResNets) [28] and feature pyramid networks (FPNs) [29]; each backbone corresponds to a mask head
architecture. To make the network lightweight, we optimized the feature extraction network of Mask
R-CNN. MobileNets [30], as one of the representatives of the lightweight neural network, can narrow a
model, decrease the number of parameters, and improve the detection speed of a model while ensuring
accuracy. Mask R-CNN is known for its high segmentation accuracy, and MobileNets can simplify the
model and enhance the speed of detection while ensuring detection accuracy. In order to achieve a
balance between accuracy and speed, we used MobileNets as part of the feature extractor of Mask
R-CNN for the instance segmentation of electronic components.

The architecture of MobileNets (see Figure 5a) is based on depthwise separable convolution,
which factorizes a standard convolution into a depthwise convolution and a pointwise convolution
(see Figure 5b). The depthwise convolution uses a single convolution kernel to each input channel.
The pointwise convolution uses a 1 × 1 convolution kernel to linearly combine the outputs of the
depthwise convolution. Each depthwise convolution and pointwise convolution is followed by a
batch normalization layer and the rectified linear unit (ReLU) [31] activation function. In addition,
two hyperparameters are introduced by MobileNets: width multiplier and resolution multiplier.
The width multiplier is used to control the number of channels for input and output, and the resolution
multiplier is used to control the resolution of the input. The use of these two hyperparameters greatly
reduces the computation load and expedites the speed of calculation.

Figure 5. The structure of MobileNets and depthwise separable convolution. (a) The schematic
architecture of MobileNets. (b) Depthwise separable convolution. “Avg Pool” denotes average pool,
“FC layer” denotes fully connected layer, and “BN” denotes batch normalization. ReLU: rectified
linear unit.
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Multi-feature fusion aims to aggregate features of different resolutions. In FPNs, different levels of
feature maps are efficiently fused through three ways of bottom-up, top-down, and lateral connection.
It is worth noting that FPNs use not only deep but also shallow feature maps to extract features,
which are very helpful for the detection of small objects like electronic components. Combining
MobileNets and the FPN, we developed an improved Mask R-CNN, which consistently achieves better
accuracy with much fewer parameters and faster speed than Mask R-CNN.

Firstly, the last average pooling layer, fully connected layer, and softmax layer of MobileNets are
deleted, then the structure of MobileNets is divided into five stages (see Table 3). Stage 1 contains a
standard convolution and a depthwise separable convolution. Both stage 2 and stage 3 include two
depthwise separable convolutions. Six depthwise separable convolutions are included in stage 4, and
two depthwise separable convolutions are included in stage 5. S1 to S5 represent the output of each
stage of MobileNets, respectively. The feature fusion of MobileNets and the FPN is shown in Figure 6.
The bottom feature layer obtains the same number of channels as the previous feature layer through
1 × 1 convolution. The upper feature layer gets the same length and width as the next feature layer
through upsampling. To obtain a new fusion layer, add the length, width, and the number of channels;
this fusion operation is shown in Figure 7. As a concrete example, the S4 layer gets the same number
of channels as the FPN-P5 layer, and after upsampling, the length and width of the FPN-P5 layer are
the same as that of the S4 layer. Finally, the two are added to get the fusion layer FPN-P4. Note that
the FPN-P2 to FPN-P5 layers are used to predict the bounding boxes, position regression, and masks of
objects, while the FPN-P2 to FPN-P6 layers are used to train the RPN, that is, the FPN-P6 layer is only
used in the RPN.

Table 3. Five stages of MobileNets after modification [30].

Stage Type Filter Shape Stride Output

1
Conv 3 × 3 × 3 × 32 2

S1Depthwise Conv 3 × 3 × 32 1
Conv 1 × 1 × 32 × 64 1

2

Depthwise Conv 3 × 3 × 64 2

S2
Conv 1 × 1 × 64 × 128 1

Depthwise Conv 3 × 3 × 128 1
Conv 1 × 1 × 128 × 128 1

3

Depthwise Conv 3 × 3 × 128 2

S3
Conv 1 × 1 × 128 × 256 1

Depthwise Conv 3 × 3 × 256 1
Conv 1 × 1 × 256 × 256 1

4

Depthwise Conv 3 × 3 × 256 2

S4
Conv 1 × 1 × 256 × 512 1

Depthwise Conv 3 × 3 × 512 1
Conv 1 × 1 × 512 × 512 1

5

Depthwise Conv 3 × 3 × 512 2

S5
Conv 1 × 1 × 512 × 1024 1

Depthwise Conv 3 × 3 × 1024 2
Conv 1 × 1 × 1024 × 1024 1
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Figure 6. Data flow between MobileNets and the feature pyramid network (FPN).

Figure 7. Feature fusion operation.

3.2. RPN

The RPN takes an image as input and outputs a set of rectangular object proposals, each with
an objectness score [1]. It determines whether the anchor is the foreground or the background and
performs the first coordinate correction for the anchors belonging to the foreground. The structure
of the RPN is shown in Figure 8. The RPN uses sliding windows on shared convolutional feature
maps to generate k object boxes (k = 15 in this paper) with a preset aspect ratio and a scale for each
pixel, which are called anchor boxes. An anchor is centered at the sliding window in question and
is associated with a scale and aspect ratio [1]. In Mask R-CNN, the number of region proposals fed
to Region of Interest Align (RoIAlign) is very big, generally ranging from 100 to 300. In this case,
the number of segmentation maps to be learned is large, which makes it difficult to extract features in
the mask branch. To solve this problem, the threshold of non-maximum suppression (NMS) in the
RPN is increased from 0.5 to 0.7, and the intersection over union (IoU) threshold for NMS is fixed
at 0.7. The setting of anchors in Faster R-CNN contains three scales of anchor boxes, and each scale
corresponds to three aspect ratios. In order to adapt to the size requirements of electronic components
and obtain more precise region proposals, we used five scales with box areas of 322, 642, 1282, 2562,
and 5122 pixels, and three aspect ratios of 1:1, 1:2, and 2:1.



Electronics 2020, 9, 886 9 of 16

Figure 8. The structure of the RPN.

3.3. RoIAlign

Region of interest pooling (RoI-Pooling) is used to extract features from shared convolutional
layers, and the features are input into fully connected layers for classification in Faster R-CNN [1].
Nearest-neighbor interpolation, which is a quantization operation, is used by RoI-Pooling when
features are extracted from shared convolutional layers. Due to this quantization operation, the features
corresponding to each RoI are converted into a fixed dimension, and the RoI of output feature maps
after RoI-Pooling does not match the RoI of the input image. Different from RoI-Pooling, RoIAlign
uses bilinear interpolation instead of nearest-neighbor interpolation to calculate the pixel value of each
position and eliminate quantization operation. It firstly traverses region proposals and divides each
region proposal into k × k units, leaving the boundaries of each unit unquantified. Then, the values
of coordinates are calculated in each unit and the pixel values of positions are calculated by bilinear
interpolation, and finally, the max-pooling operation is performed. The detection accuracy for small
objects is more obvious owning to the elimination of the quantization operation.

3.4. Head Architecture

Two-head architectures are proposed in Mask R-CNN. We used one of them, as shown in Figure 9.
In the mask branch, deconvolution operation [32] is used to increase the spatial dimension of the
feature map. Finally, a mask of 28 × 28 × 80 is output.

Figure 9. The head architecture we used in the improved Mask R-CNN [6]. RoI: region of interest.
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3.5. Loss Function

Since a mask branch is added, the multi-task loss function of Mask R-CNN can be expressed as:

Lfinal = LRPN-cls + LRPN-bbox + Lcls + Lbbox + Lmask

where LRPN-cls is the classification loss function in the RPN, LRPN-bbox is the position regression loss
function in the RPN, Lcls represents the classification loss function, Lbbox is the position regression loss
function, and Lmask is defined as the average binary cross-entropy. The new mask branch is k × k ×
m for each RoI output dimension, where m × m is the size of the mask, and k represents the number
of classes, thus a total of k masks generated. After the predicted masks are obtained, a per-pixel
sigmoid is used to classify the masks, and the obtained results are taken as one of the inputs of the
Lmask. Note that only pixels that are considered foreground are used to calculate Lmask. The overall
structure of the improved Mask R-CNN is shown in Figure 10.

Figure 10. The overall structure of the improved Mask R-CNN. RoIAlign: Region of Interest Align.

4. Experiments and Discussion

4.1. Implementation Details

We used the open-source Mask R-CNN library to complete the experimental research.
All experiments were performed on computers equipped with Intel Xeon(R) E5-1680 v4@3.40G
Hz CPU and the Quadro M5000 graphics processing unit through Pycharm, CUDA 9.0 and CUDNN
9.0 realized.

We trained a total of 44 epochs with 200 steps each. We used a mini-batch size of 1 image per GPU
and trained the model for 11k iterations, starting from a learning rate of 0.001. We used a weight decay
of 0.0001 and a momentum of 0.9. It took four hours of training on a single 1-GPU machine under
this setting.

The average precision (AP) is usually used to evaluate the performance of the object detector,
and the precision/recall curve is summarized by calculating the area under the curve. For a given
category, precision is used to account for the proportion of positive samples that are judged to be
true, and recall is used to indicate the proportion of positive samples that are judged to be true in the
classifier. The mAP is a performance metric for the algorithms that predict locations and categories of
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objects, and it refers to the average of multiple classes of APs. In this paper, we used the standard
COCO [33] metrics including AP, AP50, and AP75.

4.2. Training, Validation, and Test Results

We trained the improved network by using the weight file of COCO [33] in Mask R-CNN and
evaluated its accuracy by using the testing set. The training time in GPU mode was four hours.
The time required to evaluate an image of 744 × 992 pixels in GPU mode was 1.8 s. We recorded the
APs of four types of electronic components. It can be seen from Figure 11 that the AP of tantalum was
the highest, at 97.32%, and the AP of electrolytic capacitor, resistor, and potentiometer were 86.55%,
92.23%, and 96.36%, respectively.

Figure 11. Precision/recall curves of various electronic components. (a) Electrolytic capacitor.
(b) Resistance. (c) Tantalum Capacitor. (d) Potentiometer.

According to the method of sample-by-sample as the threshold dividing point, it can be seen from
Figure 11a that the precision value of the electrolytic capacitor appears to oscillate. This is because as
the threshold points are shifted to the left, the number of positive samples that are determined to be
positive increases, and the number of negative samples that are determined to be positive also increases.

4.3. Testing New Images

We used 14 new images for testing to understand the performance of the improved Mask R-CNN
in the instance segmentation of electronic components. These images were taken in a different
environment than the images of previous training and testing. The distance from the camera was 5 cm,
and the lighting conditions were different. The input image and output image are shown in Figure 12.
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Figure 12. Electronic component segmentation under different light intensity; new testing images (left)
and output of the improved Mask R-CNN (right). (a,b), detection of electronic components under
intense light. (c,d), detection of electronic components under weak-light or shadow conditions.

Figure 12a,b are the images of electronic components collected under intense light. Some electronic
components have the phenomenon of light reflection due to the problem of the surface material of
electronic components, which is a factor that affects the detection accuracy. From Figure 12a,b we can
see that the detection had a high success rate under intense light. Figure 12c,d shows the images of
electronic components collected under weak-light or shadow conditions. The resistance in Figure 12d
is not detected. Therefore, light intensity can affect the accuracy of detection, and the conditions for
detection still require an appropriate light intensity.

In addition, during the testing process, it appeared the conditions that the electronic components
were not detected in a stacked scenario, and multiple similar electronic components were considered



Electronics 2020, 9, 886 13 of 16

as one object. In Figure 13a, instance segmentation does not perform well on pins of electronic
components. The thin characteristic of electronic components and cross placement are the reasons
for this test result. Improving the performance of instance segmentation on the pins of electronic
components is a meaningful direction for future research. In Figure 13b, the resistance in the middle of
the image and the electrolytic capacitor are detected as one object. However, in other images, these
electronic components can be successfully tested. The condition of false detection and missed detection
is rare compared with the overall detection success rate.

Figure 13. Electronic component segmentation in complex stacking scenarios; new testing images (left)
and output of the improved Mask R-CNN (right). (a): detection of pins of electronic components in the
case of cross placement. (b): the condition in which two objects are detected as one.

Despite some segmentation errors, the results demonstrate the superior performance of the
improved Mask R-CNN on segmenting stacked objects. These errors may be caused by lighting
problems, small amounts of training data, or overly complicated stacked scenes. Therefore, in future
research, we will enrich our database, which has more types of electronic components, more lighting
environments, and more images to improve the robustness and generalization of the model.

4.4. Comparative Study

In order to evaluate the performance of this method, it was compared with other methods under
the same dataset. For the Mask R-CNN method, either the FPN or ResNet was used as the backbone
network. In the feature extraction stage, the FPN and ResNet consumed a lot of time and slowed down
the segmentation due to their deeper network layers and more calculation parameters.

We reported our improved Mask R-CNN on the testing set for comparison. As shown in Table 4,
our improved Mask R-CNN with MobileNets-FPN trained on the dataset of electronic components
already outperformed Mask R-CNN. Trained and tested with images of 992 × 744 pixels, our method
outperformed the single model of Mask R-CNN with nearly two points under the same initial models.
At the same time, the improved Mask R-CNN method reduces the model size from 255.9 MB to 91.1 MB,
and the detection speed is twice that of Mask R-CNN, as shown in Table 5.
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Table 4. Comparison of mean average precision (mAP) results in instance segmentation.

AP AP50 AP75 Backbone

Mask R-CNN 60.53 82.48 64.53 ResNet-101
Cascade Mask R-CNN 64.74 89.65 68.47 ResNet-101

Ours 62.63 91.04 67.78 MobileNets-FPN

Table 5. Comparison of detection speed and model size.

Cascade Mask R-CNN Mask R-CNN Ours

Model size 615.7 MB 255.9 MB 91.1 MB
Test time per image 2.61 s 3.9 s 1.8s

The detection accuracy of Cascade Mask R-CNN reaches 64.74%, which is about two points higher
than our model. But the model size of Cascade Mask R-CNN is 615.7 MB, which is 6.7 times the size of
our model. Moreover, in terms of detection speed, the time to test per image is about 1.5 times that of
our model.

We show the detection accuracy of the four types of electronic components in Table 6. The detection
performance is better than Cascade Mask R-CNN and Mask R-CNN. The method proposed in this paper
can be effectively used for the detection and segmentation of the four types of electronic components
and can ensure the best detection accuracy and faster detection speed.

Table 6. Comparison of AP values in object detection.

Cascade Mask R-CNN (%) Mask R-CNN (%) Ours (%)

Electrolytic Capacitor 82.47 94.60 86.55
Resistance 92.35 68.18 92.23

Tantalum Capacitor 86.92 84.74 97.32
Potentiometer 92.62 91.09 96.36

mAP 88.64 84.65 93.12

5. Conclusions

We proposed an improved Mask R-CNN model. We investigated some of the important factors
leading to an efficient network. We then demonstrated how to optimize the feature extractor of Mask
R-CNN to build a smaller and faster model. Finally, we compared the improved Mask R-CNN to
popular models, demonstrating superior size and speed characteristics. The accuracy of instance
segmentation surpassed the Mask R-CNN by two points.

In this paper, the method was applied to the detection and segmentation of four types of electronic
components. In future research, we will increase the types of electronic components and the number of
images in the dataset to improve the robustness of this network.
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