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Abstract: Android receives major attention from security practitioners and researchers due to
the influx number of malicious applications. For the past twelve years, Android malicious applications
have been grouped into families. In the research community, detecting new malware families
is a challenge. As we investigate, most of the literature reviews focus on surveying malware
detection. Characterizing the malware families can improve the detection process and understand
the malware patterns. For this reason, we conduct a comprehensive survey on the state-of-the-art
Android malware familial detection, identification, and categorization techniques. We categorize
the literature based on three dimensions: type of analysis, features, and methodologies and techniques.
Furthermore, we report the datasets that are commonly used. Finally, we highlight the limitations
that we identify in the literature, challenges, and future research directions regarding the Android
malware family.

Keywords: android malware family; malicious application; android security; android application;
machine learning; classification; smartphone

1. Introduction

Android Operating system has become the dominant mobile OS in the market capturing 86%
in 2017, Gartner [1]. Regarding Android malware, and based on McAfee’s report, the malware app
increased to 22 million in Q3 of 2017 [2]. Symantec also reported that one on every five Android apps is
malware [3]. This has put Android application security at risk and encourages researchers to increase
efforts on defending users from malicious developers.

As we investigate the scientific databases on Android malware, we found that most of the current
detection techniques are focusing on malware detection. Detecting malware in the sense of labeling
an application as one of two labels: benign or malware [4–27]. For example, in [26], they study
the dangerous permissions in malware. However, the number of malware samples and its variants
are rapidly increasing. Although malware detection is essential to anti-virus (AV) software, studying
malware families and identifying/categorizing a malware to its family is even more important.
Identifying malware families help AV companies and security researchers focusing more on family
(group level) than malware (member level). For example, in order to identify a malware family,
researchers analyze common static and dynamic characteristics in a large number of malware samples.
If malware families are identified, researchers can focus more on widely spread and highly threaten
families rather than in individual samples or less risky families. As a result, identifying the risky
families can help detection systems identifying more malware by recognizing its associate family
and seizing its effect on the users.
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In our survey, we focus on reviewing the literature for the past ten years based on what has been
published on the scientific databases regarding Android malware families. Our contributions are
stated below:

• We conduct a comprehensive survey of the state-of-the-art in Android malware families, which is
one of the first surveys in this topic.

• We introduce a novel taxonomy that categorizes all the related work in familial classification in
terms of the type of analyses, features, and techniques that has been used. The complete taxonomy
is shown in Figure 1 and Table 1.

• We highlight the limitations of the related works as well as future trends.

The rest of this paper is organized as follows: taxonomy and related work is discussed in Section 2.
The type of analyses that are applied is presented in Section 3. In Section 4, we discuss the techniques
that are implemented. In Section 5, we talk about the features that are used in the literature.
Furthermore, we discuss limitations and future directions in Section 6. Finally, conclusions are
presented in Section 7 of the paper.

Figure 1. Android malware families taxonomy.



Electronics 2020, 9, 942 3 of 20

Table 1. Taxonomy table of the literature.

Index Publication
Year Reference Analysis Features Technique

1 2020 Fang et al. [28] Static Static Image-reps-based
2 2019 Qiu et al. [29] Static Static Similarity-based and Machine Learning
3 2019 Zhang et al. [30] Static Static Signature-based and Machine Learning
4 2019 Zhiwu et al. [31] Static Static Visualization-based and Machine Learning
5 2019 Mirzaei et al. [32] Static Static Visualization-based
6 2019 Vega et al. [33] Static Static Visualization-based
7 2019 Vega et al. [34] Static Static Visualization-based
8 2019 Jiang et al. [35] Static Static Machine Learning
9 2019 Fasano et al. [36] Static Static Machine Learning

10 2019 Blanc et al. [37] Static Static Machine Learning
11 2019 Xie et al. [38] Static Static Statistical-based and Machine Learning
12 2019 Turker et al. [39] Static Static Statistical-based and Machine Learning
13 2018 Atzeni et al. [40] Hybrid Dynamic and Static Signature-based
14 2018 Kim et al. [41] Hybrid Dynamic and Static Visualization-based and Machine Learning
15 2018 Fan et al. [42] Static Static Visualization-based and Machine Learning
16 2018 Sun et al. [43] Dynamic Dynamic Visualization-based
17 2018 Martin et al. [44] Dynamic Dynamic Machine Learning and Statistical-based
18 2018 Aktas et al. [45] Hybrid Dynamic and Static Machine Learning
19 2018 Garcia et al. [46] Static Static Machine Learning
20 2018 Calleja et al. [47] Static Static Evasion and Machine Learning
21 2018 Alswaina et al. [48] Static Static Machine Learning
22 2017 Massarelli et al. [49] Dynamic Dynamic Signature-based and Machine Learning
23 2017 Zhou et al. [50] Static Static Visualization-based and Similarity-based
24 2017 Chakraborty et al. [51] Hybrid Dynamic and Static Machine Learning
25 2017 Sedano et al. [52] Static Static Statistical-based
26 2016 Battista et al. [53] Static Static Signature-based
27 2016 Hsiao et al. [54] Dynamic Dynamic Visualization-based
28 2016 Gonzale et al. [55] Static Static Visualization-based
29 2016 Fan et al. [56] Static Static Visualization-based and Machine Learning
30 2016 Kang et al. [57] Static Static Similarity-based
31 2016 Malik et al. [58] Dynamic Dynamic Statistical-based
32 2016 Sedano et al. [59] Static Static Statistical-based

33 2016 Feng et al. [60] Hybrid Dynamic and Static
Visualization-based, Machine Learning,

and Signature-base
34 2015 Aresu et al. [61] Dynamic Dynamic Signature-based and Similarity-based
35 2015 Lee et al. [62] Static Static Signature-based and Similarity-based
36 2015 Li et al. [63] Static Static Visualization-based and Machine Learning
37 2015 Garcia et al. [64] Static Static Machine Learning
38 2014 Deshotels et al. [65] Static Static Visualization-based and Similarity-based
39 2014 Suarez et al. [66] Static Static Statistical-based and Machine Learning
40 2013 Kang et al. [67] Static Static Statistical-based and Machine Learning

2. Taxonomy and Related Work

In this section, we discuss the Android operating system, Android malware as well as the
related work.

2.1. Android and Malware

In this section, we discuss Android in general as an operating system. We address the main
components inside the app and define some technologies and fundamentals. Then, we discuss Android
malware and attacks they use to harm the user.

2.1.1. Android Operating System

Android is a Google product that is designed for smartphones and mostly written in Java language.
Android uses a Linux kernel to communicate with the hardware. The updated overall architecture of
the Android in [68] is shown in Figure 2.
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Figure 2. Android architecture.

Android contains four main components that form the building blocks of the app [69]:
Activities, Services, Broadcast receiver, and Content providers. Activity is a Java class (a single
screen) and entry point that the user interacts with. For example, in a phone app, contacts screen
is an instance of an activity that shows a list of contacts. Services are background processes that
process long-running jobs. An example of a service is running some updates for the application.
Broadcast receiver is a component that responds to system announcements or delivers broadcasts
to another or within the same app. An example of this component is when the user notified that
the battery is low. Finally, Content provider manages data stored in a database, i.e., SQLite, or in the file
system and allows other apps to query such data if they have the permissions. An example is a
content provider response to a user clicking on a person’s contact in a contact app. It is also important
to talk about an important message event called Intent. Intent is a message object that is used to
perform some operations such as starting an activity or a service, or delivering a broadcast message to
broadcast receivers. The intent object contains a set of information such as component name, action to
be performed, data type, category type, extras, and flag.

Android applications, either system or third-party app, communicate with the Android platform
via defined Application Programming Interfaces (APIs). Android framework provides a list of APIs
that a developer can call to extend the functionality of the hardware without direct use of lower layers
of the architecture. Such functionalities are managing user interface (UI) elements, accessing shared
data storage, and passing messages between application components. As in Linux, the Android app is
assigned a unique user id (UID) and group id (GID). Each app runs in a separate process to identify
and isolate each app’s resources from each other. Using UID, Android creates kernel-level application
sandbox to enforce kernel security.

Android application is compressed in an archive format file, like any other known formats such
as ZIP and JAR, called Android Application Package (APK). APK contains seven files: asset, lib,
meta-info, res, androidmanifest.xml, classes.dex, and resources.arsc. In this section, we limit our
discussion on two main files: the manifest file (Androidmanifest.xml) and the code file (classes.dex).

Android manifest. The manifest file is an XML format file that provides beforehand a set of information
about the app and declaration of the app components. Information such as the app’s package name
and version number, permissions required by the application, app entry points, and registered intents.

Dalvik executable (DEx). The file Classes.dex contains a set of files (bytecodes). Those files
are a special type of bytecode called Dalvik Bytecode that are compiled from normal Java classes.
In Figure 3, we show the steps of converting Java classes and the generation of a DEx file [70].

Figure 3. Dexing Java classes into classes.dex.



Electronics 2020, 9, 942 5 of 20

2.1.2. Android Malware

In this section, we discuss the most recognized type of malware attacks in the literature such
as: repackaged, update attack, and drive-by download as listed in [71]. Furthermore, we discuss
the way that malicious payload is executed. Finally, we end by talking about malware families
and characteristics.

Attack techniques. One of the most common techniques is to piggyback a known app with
a malicious payload. This technique is known as repackaging as the malicious disassemble an app,
insert the malicious code (payload), and repack the app. Examples of such malware families are ADRD,
AnserverBot, and BgServ. [71]. An alternative way of the same technique is update attack. This is in order
to repackage the application when performing updates. A victim installs the modified app, without
the payload, to avoid detection. When it is time for the update, a payload will be installed with the new
version. Families such as BaseBridge, DroidKungFuUpdate, and Plankton are some examples of families
adopting this technique.

Another technique is called Drive-by download. In this technique, the victim installs an app that
advertises another app that is either standalone or repackaged malware. In addition, instead of
advertising, the download request can happen without user notification. This could happen when
the user grants certain permissions to the app to download when the user first installs the main
application. GGTracker, Jifake, Spitmo, and ZitMo are some of the families using this type of attack.

Obfuscation techniques. Some malware encrypts strings in the code. Strings such as method
name, class name, or URLs are encrypted via some obfuscators to avoid static analysis detection.
The obfuscated strings are hard to reverse engineer and then hard to read. Common Java obfuscators
are ProGuard [72] and DexGuard [73], which are widely used.

Activation techniques. This technique associated with Android events. BOOT_COMPLETED
event, for example, is triggered when the device finishes the booting process. Malware uses this event
to be notified when the device is up and running to activate the malicious process. Other events such
as SMS_RECEIVED that is triggered when an SMS is received is utilized by zSone family. Another
example is a ACTION_MAIN event that is triggered when an app’s icon that is clicked is adopted by a
DroidDream family.

There are many papers that contribute to detection such techniques such as [74–78]. For example,
Tian et al. [78] designed a repackaged detection technique. Their technique based on partitioning
the code into two levels, class-levels dependency graph (regions), and method-level call graphs.
They utilize machine-learning to recognize internal behavior using three types of features: permissions,
sensitive API calls, and user interaction.

Malware families. A family of malware is a group of malware that shares common characteristics
and behavior. Adopting an attack or malicious behavior by inserting a payload (or more than one
payload) requires using the same package names used for the attack. By frequent use of package
names (or other common characteristics), this becomes one identity (signature) of a group of malware
(family). For example, AnserverBot family, a popular malware family, uses com.sec.android.provider.drm
the package name in the code. Another example is that malware in DroidKungFu family contain
a package named com.google.ssearch [71]. Other common malware families are listed in Table 2 [79].
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Table 2. Common Android malware families.

Ackposts Counterclank FakeRegSMS JollyServ Photsy/Phopsy SpamBot
Acnetdoor Crusewind FakeTaoBao Jsmshider/Xsider Pincer Spitmo

Adsms Dogowar FakeTimer Kidlogger Pjapps SPPush
Airpush/StopSMS Dougalek FakeUpdate/Apkqug KMIN Placms SpyBubble

AnServer/Answerbot DroidDeluxe FakeVertu Ksapp Plankton SpyOO
Antares/Antammi DroidDream Find and Call/Fidall LeNa Podec Ssucl

Arspam DroidDreamLight Finspy Lien/ PoisonCake Steek/Fatakr
AVPass DroidJack/SandoRAT Fjcon Locker/SLocker Ransomware ProxyTrojan/NotCompatible/NioServ TapSnake/Droisnake

BackFlash/Crosate DroidKungfu Flexispy Loicdos Qicsomos Tascudap
Badaccents DroidSheep Fokange/Fokonge Loozfon Raden Tetus
Badnews DSEncrypt Foncy Lovetrap/Luvrtrap Repane TGloader/Stiniter
BankBot Extension/Monad Fonefee/Feejar Luckycat Roidsec/Sinpon TigerBot

Basebridge FaceNiff Gamex Maistealer RootSmart/Bmaster Titan
BeanBot FakeAngry Gazon Malap RuFraud Tonclank

Beita FakeApp.AL Geinimi Mania Saiva Tracer
BgServ FakeAV GGTracker MMarketPay Samsapo TypStu
Biige FakeBank GingerBreak MobiDash SaveMe/SocialPath UpdtBot
Binv FakeDaum/vmwol GingerMaster/GingerBreaker MobileSpy/Godwon Scavir UpdtKiller

Booster FakeDefender Godwon MobileTx Scipiex Uracto
Boxer FakeDoc GoldenEagle/GlodEagl Mobinauten SeaWeth USBcleaver
Cajino FakeFlash GoneIn60Seconds Moghava Selfmite Uten

Carberp FakeInst GPspy Nandrobox Skullkey Uxipp
Cawitt FakeJobOffer HeHe Netisend Smack Vdloader
Cellspy FakeMarket HideIcon Nickispy SMSilence/SMSCatcher Walkinwat/Pirater
Chulli FakeMart HippoSMS Obad SMSpacem Waps/Simhosy

Code4hk/xRAT FakeNefix HongTouTou/Adrd Oldboot/MouaBad SMSreg Wroba/HijackRAT
Coogos FakeNotify Iconosys OpFake SMSsniffer YZHC

CopyCat FakePlay Imlog PDAspy SMSspy
Cosha FakePlayer Jifake Penetho Sndapps/Snadapps

ZertSecurity Zitmo/Citmo Zsone ZergRush Zeahache
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How anti-virus works. Malware signatures, as they have been manually analyzed or detected,
are saved in an AV database to be compared against files under scanning. When a match is found in
the file, the file (or app) is considered malicious, and it will be quarantined.

2.2. Android Malware Related Work

In this section, we review the survey papers on Android malware. Most of the surveys focus
on malware detection, including [80–88]. The most recent survey has reviewed papers on malware
detection while focusing on their approaches; they discussed the advantages and disadvantages of
each detection approaches and methods [81].

The following survey has proposed a taxonomy to categorize Android malware detection
techniques; they highlighted the trends and the challenges [83]. The following two survey papers have
provided an outline of the methodologies used in classifying malware based on work surveyed [82,87].
The authors in [84] have focused on the state-of-the-art papers in identifying malware behaviors based
on a diverse set of features; they highlighted the effective features in detecting malware. Yan and Yan
have surveyed the related work in dynamic malware detection; they focused on the performance
evaluation criteria on malware detection [85].

Souri and Hosseini have conducted a systematic survey on the state-of-the-art papers in utilizing
data mining techniques in malware detection; they categorize the techniques into signature-based
and behavioral-based. Furthermore, they discuss the importance of data mining techniques in malware
detection [86]. Riasat et al. have provided a comprehensive survey on the tools and methods used
on malware detection; they highlighted the various types of tools used in the research field [88].
Arshad et al. categorize the antimalware and penetration techniques proposed by state-of-the-art
research to protect the Android system; they highlighted their limitation and benefits [80].

The previous surveys on malware detection have focused on malware detection. In this survey,
our focus is on malware familial classification, detection, and analysis, which will introduce a baseline
for future work in this domain.

In order to conduct our review, we followed an exploratory research approach. We looked
into more than a thousand papers published in journals and conferences. To filter out the selected
papers, we considered keywords. The following respectable scientific databases are explored: IEEE
Xplore [89], ACM Digital Library [90], MDPI [91], ScienceDirect [92], Hindawi [93], Springer [94],
and arXiv [95], and we also used reputable literature search engines such as Microsoft Academic [96],
Semantic Scholar [97], and Google Scholar [98]. Keyword criteria for selecting a literature contain main
and optional keywords. Main keywords are Android malware and malware family. Optional keywords
are malware detection, familial classification, malware family identification, and malware family
categorization. We have classified the related work according to their type of analysis, techniques,
and features.

3. Analysis

In this section, we discuss the type of analysis followed by the state-of-the-art. They are static,
dynamic, and hybrid analysis.

3.1. Static Analysis

Static analysis is applied while the app is in a static state. It basically collects information
about the app such as the app’s name, size, permissions, code, and programing pattern. Some of
the information requires reverse engineering the app from machine code to a readable format to
analyze the code. The advantage of performing such analysis is that it is fastest and cheapest since
it doesn’t require executing the application nor does it require monitoring activities. A drawback of
the analysis is that many malware launch their attack at runtime. In addition, other malware use an
obfuscation technique or encrypted methods which cannot be read or decrypted unless the app is
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executed. A set of papers [28–39,42,46–48,50,52,53,55–57,59,62,63,65–67] used static analysis. Details
on the static features used by the papers were discussed in Section 4, Features.

3.2. Dynamic Analysis

This type of analysis (also known as behavioral analysis) performed during the execution of
an app. It monitors the inside and outside action, connections, calls, and clicks that happen while
the app is being executed. Such analysis has the advantage of detecting wide-range and sophisticated
malware. Malware families that are bound to an event that were mentioned earlier can only be
detected while the app is running. The disadvantage of such analysis is that it is time-consuming.
In addition, it requires a priori knowledge of the malware technique to monitor. Several papers
have applied dynamic analysis such as [43,44,49,54,58,61]. Details on the dynamic features used by
the papers were discussed in Section 4, Features.

3.3. Hybrid Analysis

Hybrid analysis is a combination of both static and dynamic analysis. Although hybrid
analysis has the advantage of covering both analyses, it has a major drawback. Such analysis
is a time-consuming process considering the huge number of malware samples to be detected
and analyzed. Papers such as [40,41,45,51,60] have used hybrid analysis and the details on the features
used were discussed in Section 4, Features.

4. Techniques

In this section, we discuss the techniques used by the state of the art to address the familial
malware problem. There are two main techniques used: model-based and analysis-based.

4.1. Model-Based

In a model-based technique, a model is created to classify malware into families. There are
four main categories of techniques used, which are machine learning, similarity analysis and image
processing, and evasion.

Machine learning. The literature use machine learning to classify malware samples into families.
In [31], the authors classify the malware using Deep Learning (DL) techniques. In [44], the authors

classify malware into families using classical machine learning such as Support Vector Machine (SVM)
and DL algorithms such as CNN and RNN. In [66], the authors use a Nearest Neighbor classifier (NN)
to classify malware into families. In [35], the authors preprocess the data and extract the sensitive
opcode sequence. For the minor families, they use the oversampling technique to overcome this
issue. To represent the semantic features of the sensitive opcode sequence, they use text mining
(i.e., Doc2Vec algorithm [99]). Finally, they train their model using nine machine learning algorithms
such as SVM and Randomforest. In [49], the authors feed the fingerprint to an SVM algorithm to classify
malware into families. In [63], the authors construct the feature vector and feed it to several machine
learning algorithms such as Randomforest. In [38], the authors used SVM to classify the samples
into families. In [67], the authors feed the features to several machine learning classifiers such as
Decision Tree and Association rules. In [47], the authors build a framework to train the classifier
algorithm with a set of samples to drive the heuristic search using a Genetic algorithm. In [42,56],
the authors use frequency graphs (FreGraph) as their features to be fed into several machine learning
algorithms such as SVM, Decision Tree, and Randomforest to classify the malware into families. In [37],
the authors feed the Android-oriented matrices to several machine learning algorithms such as SVM,
KNN, and Decision Tree. In [46], the authors apply machine learning algorithms to extract complex
features and used them to classify malware into families. In [39], the authors use three machine
learning techniques: standard classifier such as SVM, ensemble classifier, and Neural Network to
classify malware into families. In [48], Alswaina et al. use two models to perform familial classification.
The authors use the binary representation of the features and weighted importance. Then, they use six
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machine learning algorithms to predict malware families. In [45], the authors apply three filters to filter
the features. The dynamic and static features are combined and fed to machine learning algorithms,
such as Randomforest and KNN for classification. In [29], the authors apply Linear SVM, DT, and DL
algorithms. Fene et al. [60] utilize the SVM algorithm.

In [51], the authors use supervised algorithms such as Randomforest. Moreover, the authors use
unsupervised learning such as K-means and mean-shift due to unbalanced samples in each family.
They also propose ensemble clustering and classification techniques, which integrate the results
generated from the supervised and unsupervised algorithms. In [41], the authors optimize the weight
of features using community detection algorithms. They further classify the malware into families using
machine learning. In [30], the authors use the fingerprints to classify malware into families using online
passive-aggressive (PA) classifiers. Further details of PA can be found in [100]. In [36], the authors
extract features from the apps and create code metrics. Then, they binary classify (coarse-grain)
the samples. The malware is further classified into families (fine-grain).

Evading detection. In this technique, the goal is to evade detection or elude classifiers into
misclassification. In [47], the authors build a framework to alter the malware to perform an attack
and misclassify the results.

Similarity analysis. Literature computes the distance between any malware and the family.
In [61], the authors use the token-subsequence algorithm to extract and generate signatures from

each family based on network traffic analysis. In [57], the authors represent opcode as a vector of
binary and frequency to compute the similarity between the malware and families. In [50], the authors
evaluate their approach by performing similarity analysis. In [65], the authors perform two tests.
The first test is used to binary classify malware. In the second test, they apply the agglomerative
clustering algorithm to cluster the apps into families. To evaluate their model, they compute
the distance between the malware and the clusters’ centroids to validate which family the sample
belongs to. In [62], the authors cluster the families based on the most frequent key terms used by each
family. Then, they use the dictionary search method for classification. In [29], the authors use TF-IDF
to represent the frequency of the features.

Image representation. Some literature classifies the malware to malware families based on image
representation. In [28], the authors convert the DEX file into an image and plain text. Then, they
extract the color and the texture feature from the image. For the three features: color, texture, and text,
they feed them into the feature Fusion algorithm to classify malware into families.

4.2. Analysis-Based

In the analysis-based technique, an analysis is carried to analyze and construct features to observe
families’ characteristics. There are three sub techniques under this approach, which are signature-based,
statistical analysis, and visualization analysis.

Signature-based. They construct a signature for each family to identify the families. In [61],
the authors use a multi-step clustering approach: First, they apply coarse-grained clustering and then
apply fine-grained clustering. In [30], the authors construct the fingerprint of the malware families
using n-grams analysis and features hashing. In [49], the authors generate a fingerprint for each
family. In [62], the authors construct a signature of each malware family based on the collected
features. Feng et al. [60] propose an approximate signature matching algorithm to generate signature
for malware families.

Statistical analysis. They applied statistical tools to analyze and identify the family’s
characteristics and the important features. In [66], the authors use statistical analysis and text mining to
extract the features. In [44], the authors use Markov chain to represent the features. In [38], the authors
eliminate unimportant features using the frequency-based approach. In [67], the authors compute
the bytecode frequency. In [39], the authors apply a feature ranking algorithm to identify the most
important features.
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Visualization analysis. They visualize the characteristics of families using graph mining and PCA.
In [31], the authors extract DFG and CFG. Then, they encode the graphs into a matrix. In [41],
the authors represent the features using a network graph. In [50], the authors collect the sensitive API
calls and then construct graphs based on sensitive API calls. Then, they characterize malware families
based on the subgraph isomorphism. In [63], the authors construct a short and long APIs dependency
path to perform context and constant analysis. In [65], the authors disassemble the app into Smali files.
Then, they create class dependency graph (CDG) to group the classes into modules to identify which
module contains malicious code. In [42,56], the authors use community detection, subgraph matching,
and subgraph clustering to generate the FreGraph. Feng et al. [60] utilize an inter-component call
graph (ICCG) to represent the communication in the app to construct the features.

5. Features

In this section, we discuss the types of features used by works of literature to classify malware
into families. They are classified into static and dynamic features.

5.1. Static Features

Static features are any features that can be recognized or utilized without the execution of
the application. Some examples of static features are package name, application size, permissions,
and list of APIs.

A set of papers [33,34,48,52,55] uses features that are related to malware installation such as
repackage and update, payload activation such as on booting and receiving calls, and privilege
escalation attack such as asroot and exploid families [71]. Moreover, in [33,34,52], they include other
features related to financial charges such as SMS and phone calls. Vega et al. in [33,34], also include
features related to personal information stealing such as phone number.

In [29,32,35,38,39,42,46,47,50,56,59,60,63–65], a subset of sensitive or suspicious API calls
are utilized in their feature set. Permissions used in the app are included as features
in [29,38,39,48,59]. Moreover, in [35], sensitive opcode sequence, actions, and strings are utilized in
their features. Garcia et al. [46,64] added native code-based to their set of features.

Fasano et al. [36] and Blanc et al. [37] use a set of metrics generated from Smali files to measure
the quality code of the app to be used as features. However, in [35,53,57,62,67], code-based analysis
such as Java bytecode, bytecode frequency, opcode, or opcode sequence are used as features.

Other papers such as [31,66] use data-flow graph (DFG) and control-flow graph (CFG) as features.
In [28], the authors extract the texture, color, and text features from the DEX file. Zhang et al. [30] use
features extracted from DEX as n-gram and hash code.

Finally, some works of literature have applied a set of static features in addition to dynamic
features. In [51], the authors use 190 static features such as permissions. In [45], the authors use static
features such as the number of services and receivers. In [41], the static features such as permissions,
filename, and activity name are utilized. In the paper [40], a set of static features from the Android
manifest in addition to an APK file that is generated from Androguard [101] tool, a Python code to
reverse engineer Android files.

5.2. Dynamic Features

Features that require execution of the application are considered dynamic. For example, network
traffic, send/receive SMS, resource consumption, system logs, and I\O operations.

In [58], the author traced the system calls during the execution of the application. Aresu et al. [61]
utilize network traffic (HTTP) in their classification. Martin et al. [44] depend on the features that are
generated by a DroidBox [102] tool, an Android sandbox for dynamic analysis, which is represented as
operations and function of time. In [54], the authors record the API calls that are performed during
application execution. In [49], resources’ consumption is utilized as features for their classification.
In [43], the authors use sensitive and permission-related API calls.
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Finally, a group of literature works has applied a set of dynamic features in addition to static
features. In [51], the authors use around 2048 dynamic features logs such as file I/O, network usages,
and cryptographic usage. In [45], the authors use dynamic features that are generated using a DroidBox
tool [102] such as the number of open/closed connections and the number of sent/received network
packets. In [41], the dynamic features such as API call sequence are utilized. In [40], a set of dynamic
features uses DroidBox [102] and CuckooDroid [103]. Feng et al. [60] use suspicious API call behaviors
such as sendSMS API and data leakage.

6. Discussion

In this section, we highlight the datasets that have been used, the limitation of literature,
the general challenges related to malware families, and we also report future directions.

6.1. Experimental Datasets

There are many datasets used in the literature that contain a collection of Android malware
grouped into families such as: Android Malware Genome Project (Malgenome) [71], Drebin [104],
the AMD [105] Project, and AndroZoo [106]. Some papers collected the malware samples from
the Android market such as Anzhi, or a repository such as VirusTotal [107] and VirusShare [108].

The datasets differ in the number of samples and number of families. For example, AMD [105]
contains 4354 malware samples grouped in 42 families. While Drebin [104] has 5560 samples grouped
in 179 families, other datasets such as AndroZoo [106] contain many more samples and families, where
the number of samples is 10.7 million grouped into more than 3000 families.

In Figure 4, we show the number of publications that uses each dataset found in the literature.
Furthermore, Table 3 shows detailed information where the publications are included. The repository
category includes sites like VirusTotal, VirusShare, and Koodous, for which there is no fixed set to
be used as benchmarks. Collection category refers to either an unknown collection performed by
the author or sites such as HelDroid, FalDroid, and the Anzhi app market. As we see from the figure,
the most used datasets are Drebin [104] and Genome [71]. More details on the commonly used datasets
are reported in Table 4.

Figure 4. Dataset Reported by Publications, where the x-axis represents the number of publications
and the y-axis represents the datasets.
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Table 3. Dataset, number of publications and publication details

Dataset Number of Publications Publications

Drebin 18 [29–31,35–37,39,42–44,46,47,49,51,53,59–61]
Genome 16 [30,33,34,46,48,50,52,54,55,57,60,61,63,65–67]

Collection 6 [36,38,41,42,58,62]
Repository 6 [31,38,40,46,51,56]

AMD 3 [28,29,39]
UpDroid 2 [39,45]
Contagio 2 [31,61]

AndroZoo 1 [32]
Marvin 1 [31]

AndroMalShare 1 [50]

Table 4. Commonly used Datasets and their details.

Dataset No. of Samples No. of Families

AMD [105] 4354 42
Drebin [104] 5560 179

Malgenome [71] 1260 49
AndroZoo [106] 10.7M 3K+

6.2. Limitations

As we surveyed forty research papers, we summarize the limitations to the following: First, most
of the literature uses small datasets such as a a few numbers of families or a few malware samples for
studying families. Moreover, they use outdated or discontinues datasets such as Contagiodump [109]
and Malgenome Project [71]. In addition, several papers build their experiments on manually collected
data without testing their model on benchmarked data. Several papers lack the disclosure of the list of
features applied to reproduce the work.

6.3. Challenges

Family naming. One of the challenges that we observe is that there are no naming schemes
(conventions) for the malware family. Naming a family is varied depending on the AV company.
Families such as BaseBridge (or adSMS), Smssend (or fakeplayer), and DroidDream (or DORDRAE) are
some of the families that have multiple names. One of the reasons is that one company names
a family based on different share characteristics than other companies. Characteristics such as
installation methods, activation, or the name of their malicious file name are discussed in [71,110,111].
Attempts have been made by [106,112,113] to establish naming standards. Sebastian et al. [114]
address the issue of inconsistent labeling (naming) of malware family and contribute the AVclass tool,
an auto-labeling, as an effort to unify labeling. In addition, Euphony is a system proposed by [106] to
unify different AV companies.

Imbalance Dataset. Some of the malware families contain hundreds of samples, while others
contain as little as one sample i.e., a DroidKungFuUpdate family in the Malgenome dataset [71].
The whole list is shown in Table 5. This cause identifies the characteristics of a family as challenging.
In case of standalone malware (not repackaged), the identification is almost impossible.
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Table 5. Malgenome dataset families with one sample.

Family

SMSReplicator
Walkinwat
Endofday
GGTracker

GamblerSMS
Lovetrap

Zitmo
CoinPirate
DogWars
NickyBot

DroidCoupon
DroidDeluxe

Spitmo
DroidKungFuUpdate

FakeNetflix
Jifake

6.4. Future Directions

Advanced machine learning. Malware families should be deeply analyzed and identified.
Deep learning technology has been adapted to address various research problems including
voice recognition, image processing, and text analysis. One of the advanced techniques of
Deep Learning is reinforcement learning, which can be utilized to better understand the families’
characteristics. Reinforcement learning has shown very promising results, especially in dynamic
analysis. Another technique that should be adopted is transferred learning, which can be utilized to
address the lack of samples in families.

Big data handling. Since the amount of malware is increasing exponentially, as it was reported by
GDATA that almost 9K of new malware programs are reported daily [115], a scalable solution should
be considered. For example, the AndroZoo [116] dataset has millions of samples that can be handled
using big data technologies. One of the most important tools are Hadoop [117] and Spark [118].
They can handle a huge amount of malware data with fast processing.

Crowdsourcing. Beside Big data technologies, a group of malware family analyzers can be
utilized to better identify and characterize the families. For example, a source can use a subset of
features, while other sources investigate other feature sets. A malware repository VirusTotal [107]
and VirusShare [108] are some examples.

Automated detection. The huge number of generated malware necessitate the call for automated
analysis and classification of malware family rather than performing such tasks manually [41,119].

7. Conclusions

Malware family detection and analysis have been a problem for many years. With the escalation
in the amount of malware, especially on Android devices, researchers have studied malware deeply
using various tools, such as machine learning, graph mining, image processing, and statistical analysis.
Most of the literature is focused on detecting malware rather than detecting families. Detecting
malware families can help us to better understand the characteristics of the malware family.

In this paper, we surveyed a total of forty research papers on Android malware familial detection,
classification, and categorization from various scientific databases. We classified the literature
according to their type of analysis, type of features, and the techniques applied. We further report
the datasets that have been used and include details about each of them. Moreover, we discussed
the limitations of the literature approaches, challenges faced by the researchers, and future trends for
the research community.
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Our findings show that most of the limitations circulate around the availability and the
size of benchmarked datasets. In addition, some common challenges are the lack of samples
and standardization of family naming. As for the future directions, investment in advanced artificial
intelligence techniques such as machine learning and big data technologies should be considered.
Moreover, crowdsourcing and automated detection should be utilized to better address malware
family identification problems.
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NN Nearest Neighbor or Neural Network
App Application
Malware Malicious Application
DT Decision Tree
DFG Data-Flow Graph
CFG Control-Flow Graph
CDG Class Dependency Graph
APK Android Application Package
DEX Dalvik Executable
PA Passive-Aggressive Algorithm
AV Anti-Virus
UI User Interface
UID, GID User, Group ID.
API Application Programming Interface
FreGraph Frequency Graph
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