Electronics and Its Worldwide Research
Abstract
:1. Introduction
- Microelectronics and Optoelectronics
- Power Electronics
- Bioelectronics
- Microwave and Wireless Communications
- Computer Science and Engineering
- Networks
- Systems and Control Engineering
- Circuit and Signal Processing
- Semiconductor Devices
- Artificial Intelligence
- Electrical and Autonomous Vehicles
- Quantum Electronics
- Organic Electronics
- Artificial Intelligence Circuits and Systems (AICAS)
- Industrial Electronics
- General
2. Materials and Methods
3. Results and Discussion
3.1. Community Establishment
3.2. Community Analysis
3.3. Author Analysis, Affiliations and Countries of Publication in Journal Electronics
3.4. Analysis by Document Format Published in Journal Electronics
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dragicevic, T.; Waheeler, P.; Blaabjerg, F. Artifical Intelligence Aided Automated Design for Reliability of Power Electronic Systems. IEEE Trans. Power Electron. 2019, 34, 7161–7171. [Google Scholar] [CrossRef]
- Baneira, F.; Doval-Gandoy, J.; Yepes, A.G.; López, Ó. Control Strategy for Multiphase Drives With Minimum Losses in the Full Torque Operation Range Under Single Open-Phase Fault. IEEE Trans. Power Electron. 2017, 32, 6275–6285. [Google Scholar] [CrossRef]
- Liu, H.; Pu, S.; Cao, J.; Yang, X.; Wang, Z. Torque Ripple Mitigation of T-3L Inverter Fed Open-End Doubly-Salient Permanent-Magnet Motor Drives Using Current Hysteresis Control. Energies 2019, 12, 3109. [Google Scholar] [CrossRef] [Green Version]
- Dubarry, M.; Baure, G.; Pastor-Fernández, C.; Fai, T.; Widanage, W.D.; Marco, J. Battery energy storage system modeling: A combined comprehensive approach. J. Energy Storage 2019, 21, 172–185. [Google Scholar] [CrossRef]
- Chen, K.; Häberlen, O.; Lidow, A.; Tsai, C.; Ueda, T.; Uemoto, Y.; Wu, Y. GaN-on-Si Power Technology: Devices and Applications. IEEE Trans. Electron Devices 2017, 64, 779–795. [Google Scholar] [CrossRef]
- Rahmani, S.; Mendalek, N.; Al-haddad, K. Experimental Design of a Nonlinear Control Technique for Three-Phase Shunt Active Power Filter. IEEE Trans. Ind. Electron. 2010, 57, 3364–3375. [Google Scholar] [CrossRef]
- Van Laerhoven, K.; Lo, B.P.L.; Ng, J.W.P. Medical Healthcare Monitoring with Wearable and Implantable Sensors. In Proceedings of the 3rd International Workshop on Ubiquitous Computing for Healthcare Applications, Nottingham, UK, 6–7 September 2004. [Google Scholar]
- Hassan, N.; Fernando, X. Massive MIMO wireless networks: An overview. Electronics 2017, 6, 63. [Google Scholar] [CrossRef] [Green Version]
- Montoya, F.G.; Alcayde, A.; Baños, R.; Manzano-Agugliaro, F. A fast method for identifying worldwide scientific collaborations using the Scopus database. Telemat. Inform. 2018, 35, 168–185. [Google Scholar] [CrossRef]
- Novas, N.; Alcayde, A.; El Khaled, D.; Manzano-agugliaro, F. Coatings in Photovoltaic Solar Energy Worldwide Research. Coatings 2019, 9, 797. [Google Scholar] [CrossRef] [Green Version]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. In Proceedings of the Third International ICWSM Conference, San Jose, CA, USA, 17–20 May 2009; pp. 361–362. [Google Scholar]
- Blaabjerg, F.; Dragicevic, T.; Davari, P. Applications of power electronics. Electronics 2019, 8, 465. [Google Scholar] [CrossRef] [Green Version]
- Andwari, A.M.; Pesiridis, A.; Rajoo, S.; Martinez-Botas, R. A review of Battery Electric Vehicle technology and readiness levels. Renew. Sustain. Energy Rev. 2017, 78, 414–430. [Google Scholar] [CrossRef]
- Wei, Q.; Shi, G.; Song, R.; Liu, Y. Adaptive Dynamic Programming-Based Optimal Control Scheme for Energy Storage Systems. IEEE Trans. Ind. Electron. 2017, 64, 5468–5478. [Google Scholar] [CrossRef]
- Hafez, A.Z.; Yousef, A.M.; Harag, N.M. Solar tracking systems: Technologies and trackers drive types—A review. Renew. Sustain. Energy Rev. 2018, 91, 754–782. [Google Scholar] [CrossRef]
- Rivera-Barrera, J.P.; Muñoz-Galeano, N.; Sarmiento-Maldonado, H.O. Soc Estimation for Lithium-ion Batteries: Review and Future Challenges. Electronics 2017, 6, 102. [Google Scholar] [CrossRef] [Green Version]
- Masih-tehrani, M.; Ha, M.; Esfahanian, V.; Safaei, A. Optimum sizing and optimum energy management of a hybrid energy storage system for lithium battery life improvement. J. Power Sources 2013, 244, 2–10. [Google Scholar] [CrossRef]
- Umair, M.; Mansoor, M.; Hashmi, K.; Boudina, R.; Khan, A.; Yuning, J.; Tang, H. Electrical Power and Energy Systems Renewable energy source (RES) based islanded DC microgrid with enhanced resilient control. Electr. Power Energy Syst. 2019, 113, 461–471. [Google Scholar]
- Ji, Y.; Yang, Y.; Zhou, J.; Ding, H.; Guo, X.; Padmanaban, S. Control strategies of mitigating dead-time effect on power converters: An overview. Electronics 2019, 8, 196. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, S.; Xin, A.; Jan, M.U.; Abdelbaky, M.A. Applied sciences Improvement of Power Converters Performance by an Efficient Use of Dead Time Compensation Technique. Appl. Sci. 2020, 10, 3121. [Google Scholar] [CrossRef]
- Johnston, S.J.; Cox, S.J. The raspberry Pi: A technology disrupter, and the enabler of dreams. Electronics 2017, 6, 51. [Google Scholar] [CrossRef] [Green Version]
- Burd, B.; Divitini, M.; Armando, F.; Perez, F.; Russell, I.; Tudor, L. Courses, Content, and Tools for Internet of Things in Computer Science Education. In Proceedings of the ITiCSE-WGR’17, Bologna, Italy, 3–5 July 2017; pp. 125–139. [Google Scholar]
- Kurkovsky, S.; Williams, C. Raspberry Pi as a Platform for the Internet of Things Projects: Experiences and Lessons. In Proceedings of the ITiCSE’17, Bologna, Italy, 3–5 July 2017; pp. 64–69. [Google Scholar]
- Scilingo, E.P.; Valenza, G. Recent advances on wearable electronics and embedded computing systems for biomedical applications. Electronics 2017, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Yu, X.B. Capacitive Biopotential Measurement for Electrophysiological Signal Acquisition: A Review. IEEE Sens. J. 2016, 16, 2832–2853. [Google Scholar] [CrossRef]
- Linz, T.; Kallmayer, C.; Aschenbrenner, R.; Reichl, H. Fully Integrated EKG Shirt based on Embroidered Electrical Interconnections with Conductive Yarn and Miniaturized Flexible Electronics. In Proceedings of the International Workshop on Wearable and Implantable Body Sensor Network (BSN’06), Cambridge, UK, 3–5 April 2006; pp. 20–23. [Google Scholar]
- Greco, A.; Valenza, G.; Citi, L.; Scilingo, E.P. Arousal and Valence Recognition of Affective Sounds Based on Electrodermal Activity. IEEE Sens. J. 2017, 17, 716–725. [Google Scholar] [CrossRef]
- Von Borell, E.; Langbein, J.; Després, G.; Hansen, S.; Leterrier, C.; Marchant-forde, J.; Marchant-forde, R.; Minero, M.; Mohr, E.; Prunier, A.; et al. Heart rate variability as a measure of autonomic regulation of cardiac activity for assessing stress and welfare in farm animals—A review. Physiol. Behav. 2007, 92, 293–316. [Google Scholar] [CrossRef] [PubMed]
- Haddad, P.; Servati, A.; Soltaninan, S.; Ko, F.; Servanti, P. Breathable Dry Silver/Silver Chloride Electronic Textile Electrodes for Electrodermal Activity Monitoring. Biosensors 2018, 8, 79. [Google Scholar] [CrossRef] [Green Version]
- Garrett, D.C.; Rae, N.; Fletcher, J.R.; Zarnke, S.; Thorson, S.; Hogan, D.B.; Fear, E.C.; Member, S. Engineering Approaches to Assessing Hydration Status. IEEE Rev. Biomed. Eng. 2018, 11, 233–248. [Google Scholar] [CrossRef] [PubMed]
- Naranjo-hernández, D.; Callejón-leblic, A.; Seyedi, M.; Gao, Y.; Lu, C.; Vasi, I. Past Results, Present Trends, and Future Challenges in Intrabody Communication. Wirel. Commun. Mob. Comput. 2018. [Google Scholar] [CrossRef] [Green Version]
- Bassoli, M.; Bianchi, V.; De Munari, I. A plug and play IoT Wi-Fi smart home system for human monitoring. Electronics 2018, 7, 200. [Google Scholar] [CrossRef] [Green Version]
- Scacchi, W. Understanding the requirements for developing open source software systems. IEE Proc. Softw. 2002, 149, 24–39. [Google Scholar] [CrossRef] [Green Version]
- Saqlain, M.; Piao, M.; Shim, Y.; Lee, J.Y. Framework of an IoT-based Industrial Data Management for Smart Manufacturing. Sens. Actuator Netw. 2019, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Quang, H.; Ngo, T.; Nguyen, T.P.; Nguyen, H. Monitoring Data Collector to Predict Livestock’s Habits Based on Location and Auditory Information: A Case Study from Vietnam. Agriculture 2020, 10, 180. [Google Scholar]
- Abdul-ghani, H.A.; Konstantas, D. A Comprehensive Study of Security and Privacy Guidelines, Threats, and Countermeasures: An IoT Perspective. Sens. Actuator Netw. 2019, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- Santa, J.; Sanchez-Iborra, R. Vehicular systems technologies: Challenges and trends across transportation means. Electronics 2019, 8, 1214. [Google Scholar] [CrossRef] [Green Version]
- Talavera, E.; Díaz Alvarez, A.; Naranjo, J.E. A Review of Security Aspects in Vehicular Ad-Hoc Networks. IEEE Access 2019, 7, 41981–41988. [Google Scholar] [CrossRef]
- Contreras-Castillo, J.; Guerrero-ibañez, J.A. Internet of Vehicles: Architecture, Protocols, and Security. IEEE Internet Things J. 2017, 5, 3701–3709. [Google Scholar] [CrossRef]
- Kessels, J.T.B.A.; Koot, M.W.T.; Van den Bosch, P.P.J.; Kok, D.B. Online Energy Management for Hybrid Electric Vehicles. IEEE Trans. Veh. Technol. 2008, 57, 3428–3440. [Google Scholar] [CrossRef]
- Rostami, A.; Member, S.; Cheng, B.; Member, S.; Bansal, G.; Sjöberg, K.; Gruteser, M.; Kenney, J.B. Stability Challenges and Enhancements por Vehicular Channel Congestion Control Approaches. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2935–2948. [Google Scholar] [CrossRef]
- De Souza, A.M.; Pedrosa, L.L.C.; Botega, L.C.; Villas, L. itsSAFE: An Intelligent Transportation System for Improving Safety and Traffic Efficiency. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; pp. 1–7. [Google Scholar]
- Ge, X.; Li, Z.; Li, S. 5G Software Defined Vehicular Networks. IEEE Commun. Mag. 2017, 55, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Greco, A.; Lanata, A.; Vanello, N. Data processing and wearable systems for effective human monitoring. Electronics 2019, 8, 1003. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Lopez, O.; Amezquita-Sanchez, J.P.; De-Santiago-Perez, J.J.; Rivera-Guillen, J.R.; Valtierra-Rodriguez, M.; Toledano-Ayala, M. A New Methodology Based on EMD and Nonlinear Measurements for Sudden Cardiac Death Detection. Sensors 2019, 20, 9. [Google Scholar] [CrossRef] [Green Version]
- Babaeizadeh, S.; Gregg, R.E.; Helfenbein, E.D.; Lindauer, J.M.; Zhou, S.H. Improvements in atrial fibrillation detection for real-time monitoring. J. Electrocardiol. 2009, 42, 522–526. [Google Scholar] [CrossRef]
- Llosa, J.; Vilajosana, I.; Vilajosana, X.; Navarro, N.; Suriñach, E.; Marquès, J.M. REMOTE, a Wireless Sensor Network Based System to Monitor Rowing Performance. Sensors 2009, 9, 7069–7082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiore, L.; Fehr, D.; Bodor, R.; Drenner, A.; Somasundaram, G. Multi-Camera Human Activity Monitoring. J. Intell. Robot. Syst. 2008, 52, 5–43. [Google Scholar] [CrossRef]
- Padhy, S.; Tiwari, J.; Rathore, S. Emergency Signal Classification for the Hearing Impaired using Multi-channel Convolutional Neural Network Architecture. In Proceedings of the IEEE Conference on Information and Communication Techology (CICT), Allahabad, India, 6–8 December 2019; pp. 1–6. [Google Scholar]
- Okanoya, K. Sad music induces pleasant emotion. Front. Psychol. 2013, 4, 311. [Google Scholar]
- Ojha, T.; Misra, S.; Singh, N. Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Comput. Electron. Agric. 2015, 118, 66–84. [Google Scholar] [CrossRef]
- Soares, A.; Gomes, Á.; Antunes, C.H. Categorization of residential electricity consumption as a basis for the assessment of the impacts of demand response actions. Renew. Sustain. Energy Rev. 2014, 30, 490–503. [Google Scholar] [CrossRef]
- Shakouri, H.; Kazemi, A. Multi-objective cost-load optimization for demand side management of a residential area in smart grids. Sustain. Cities Soc. 2017, 32, 171–180. [Google Scholar] [CrossRef]
- Khan, P.W.; Byun, Y. A Blockchain-Based Secure Image Encryption Scheme for the Industrial Internet of Things. Entropy 2020, 22, 175. [Google Scholar] [CrossRef] [Green Version]
- Ball, J.E.; Tang, B. Machine learning and embedded computing in advanced driver assistance systems (ADAS). Electronics 2019, 8, 748. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Wang, J. Fast Dynamic Vehicle Detection in Road Scenarios Based on Pose Estimation with Convex-Hull Model. Sensors 2019, 19, 3136. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Yun, S.; Won, C.S.; Cho, K.; Um, K.; Sim, S. Calibration between Color Camera and 3D LIDAR Instruments with a Polygonal Planar Board. Sensors 2014, 14, 5333–5353. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Dai, Y.; Li, C.; Shu, J.; Li, D.; Yang, T. Visual Detail Augmented Mapping for Small Aerial Target Detection. Remote Sens. 2019, 11, 14. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Gong, L.; Yu, Q.; Li, X.; Xie, Y.; Zhou, X. DLAU: A Scalable Deep Learning Accelerator Unit on FPGA. IEEE Trans. Comput. Des. Integr. Circuitos Syst. 2017, 36, 513–517. [Google Scholar] [CrossRef]
- Becerra, V.M. Autonomous control of unmanned aerial vehicles. Electronics 2019, 8, 452. [Google Scholar] [CrossRef] [Green Version]
- Haibin, D.; Shan, S.; Bingwei, S.U.; Lei, Z. New development thoughts on the bio-inspired intelligence based control for unmanned combat aerial vehicle. Sci. China Technol. Sci. 2010, 53, 2025–2031. [Google Scholar]
- Mebarki, R.; Lippiello, V.; Siciliano, B. Nonlinear Visual Control of Unmanned Aerial Vehicles in GPS-Denied Environments. IEEE Trans. Robot. 2015, 31, 1004–1017. [Google Scholar] [CrossRef]
- Kurnaz, S.; Cetin, O.; Kaynak, O. Expert Systems with Applications Adaptive neuro-fuzzy inference system based autonomous flight control of unmanned air vehicles. Expert Syst. Appl. 2010, 37, 1229–1234. [Google Scholar] [CrossRef]
- Özbek, N.S.; Önkol, M.; Efe, M.O. Feedback control strategies for quadrotor-type aerial robots: A survey. Trans. Inst. Meas. Control 2016, 38, 529–554. [Google Scholar] [CrossRef]
- Lu, L.; Member, S.; Li, G.Y.; Swindlehurst, A.L. An Overview of Massive MIMO: Bene fits and Challenges. IEEE J. Sel. Signal Process. 2014, 8, 742–758. [Google Scholar] [CrossRef]
- Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T.L. Massive MIMO for next generation Wireless Systems. IEEE Commun. Mag. 2014, 52, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Hassan, N.U.; Yuen, C. Green communications in smart cities. Electronics 2019, 8, 773. [Google Scholar] [CrossRef] [Green Version]
- Shafi, M.; Fellow, L.; Molisch, A.F.; Smith, P.J.; Haustein, T.; Zhu, P.; Member, S.; De Silva, P.; Tufvesson, F.; Benjebbour, A.; et al. 5G: A Tutorial Overview of Standards, Trials, Challenges, Deploymente, and Practice. IEEE J. Sel. Areas Commun. 2017, 35, 1201–1221. [Google Scholar] [CrossRef]
- Christodoulou, C.G.; Tawk, Y.; Lane, S.A.; Erwin, S.R. Reconfigurable Antennas for Wireless and Space Applications. Proc. IEEE 2012, 100, 2250–2261. [Google Scholar] [CrossRef]
- Peroulis, D.; Sarabandi, K.; Katehi, L.P.B. Design of reconfigurable slot antennas. IEEE Trans. Antennas Propag. 2005, 53, 645–654. [Google Scholar] [CrossRef] [Green Version]
- Ghaffar, A.; Li, X.J.; Hussain, N.; Awan, W.A. Flexible Frequency and Radiation Pattern Reconfigurable Antenna for Multi-band Applications. In Proceedings of the 4th Australian Microwave Symposium, Sydney, Australia, 13–14 February 2020; pp. 13–14. [Google Scholar]
- Zaidi, A.; Awan, W.A.; Hussain, N.; Baghdad, A. A Wide and Tri-band Flexible Antennas with Independently Controllable Notch Bands for Sub-6-GHz Communication System. Radioengineering 2020, 29, 44–51. [Google Scholar] [CrossRef]
- Koulamas, C.; Lazarescu, M.T. Real-time embedded systems: Present and future. Electronics 2018, 7, 205. [Google Scholar] [CrossRef] [Green Version]
- De la Piedra, A.; Braeken, A.; Touhafi, A. Sensor systems based on FPGAs and their applications: A survey. Sensors 2012, 12, 12235–12264. [Google Scholar] [CrossRef] [Green Version]
- Ricci, S.; Meacci, V. Data-adaptive coherent demodulator for high dynamics pulse-wave ultrasound applications. Electronics 2018, 7, 434. [Google Scholar] [CrossRef] [Green Version]
- Ricci, S.; Meacci, V.; Birkhofer, B.; Wiklund, J. FPGA-based system for in-line measurement of velocity profiles of fluids in industrial pipe flow. IEEE Trans. Ind. Electron. 2017, 64, 3997–4005. [Google Scholar] [CrossRef]
- Daniel, M.J.; Kumar, K.S. Recent Trends and Improvisations in FPGA. IOSR J. Electr. Electron. Eng. 2017, 12, 71–77. [Google Scholar] [CrossRef]
- Singh, S.; Saurav, S.; Saini, R.; Mandal, A.S.; Chaudhury, S. FPGA-based Smart Camera System for Real-time Automated Video Surveillance. In Proceedings of the International Symposium on VLSI Design and Test, Roorkee, India, 29 June–2 July 2017; pp. 533–544. [Google Scholar]
- Singh, S.; Mandal, A.S.; Shekhar, C.; Vohra, A. Memory Efficient VLSI Implementation of Real-Time Motion Detection System Using FPGA Platform. J. Imaging 2017, 3, 20. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Lee, E.; Hwang, Y.; Jang, S.; Korea, S. Low-Complexity Hardware Architecture of Traffic Sign Recognition with IHSL color space for Advanced Driver Assistance Systems. In Proceedings of the IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia) Low-Complexity, Seoul, Korea, 26–28 October 2016; pp. 1–2. [Google Scholar]
- Rodríguez-andina, J.J.; Member, S.; Valdés-peña, M.D.; Moure, M.J. Advanced Features and Industrial Applications of FPGAs—A Review. IEEE Trans. Ind. Inform. 2015, 11, 853–864. [Google Scholar] [CrossRef]
- Zhang, X.M. Recent developments in time-delay systems and their applications. Electronics 2019, 8, 552. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Zhang, J.; Yu, H. Review of modeling and control in UAV autonomous maneuvering flight. In Proceedings of the 2018 IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, China, 5–8 August 2018; pp. 1920–1925. [Google Scholar]
- Li, M.; Naessens, F.; Debacker, P.; Raghavan, P.; Desset, C.; Li, M.; Dejonghe, A.; Perre, L.V.D. An area and energy efficient half-row-paralleled layer LDPC decoder for the 802.11AD standard. In Proceedings of the IEEE Workshop on Signal Processing Systems, Taipei City, Taiwan, 16–18 October 2013; pp. 112–117. [Google Scholar]
- Pomares, J. Visual Servoing in Robotics. Electronics 2019, 8, 1298. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lee, J.; Lee, J.; Park, G. Motion-based Identification of Multiple Mobile Robots using Trajectory Analysis in a Well-configured Environment with Distributed Vision Sensors. Int. J. Control Autom. Syst. 2012, 10, 787–796. [Google Scholar] [CrossRef]
- Banlue, T.; Sooraksa, P.; Noppanakeepong, S. A Practical Position-based Visual Servo Design and Implementation for Automated Fault Insertion Test. Int. J. Control Autom. Syst. 2014, 12, 1090–1101. [Google Scholar] [CrossRef]
- Mia, M.; Królczyk, G.; Maruda, R.; Wojciechowski, S. Intelligent Optimization of Hard-Turning Parameters Using Evolutionary Algorithms for Smart Manufacturing. Materials 2019, 12, 879. [Google Scholar] [CrossRef] [Green Version]
- Lebecki, K.; Ma, M.; So, T. Continuous dust monitoring in headings in underground coal mines. J. Sustain. Minig 2017, 15, 125–132. [Google Scholar] [CrossRef]
- Krabicka, J.; Yan, Y. Finite-Element Modeling of Electrostatic Sensors for the Flow Measurement of Particles in Pneumatic Pipelines. IEEE Trans. Instrum. Meas. 2009, 58, 2730–2736. [Google Scholar] [CrossRef]
- Reyes-vera, E.; Senior, D.E.; Luna-Rivera, J.M.; Lopez, F. Advances in electromagnetic applications and communications. TecnoLógicas 2018, 21, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Lin, Z.; Huang, X.; Li, J. A radio over fiber system with simultaneous wireless multi-mode operation based on a multi-wavelength optical comb and pulse-shaped 4QAM-OFDM. Electronics 2019, 8, 1064. [Google Scholar] [CrossRef] [Green Version]
- Gong, C. Visible light communication and positioning: Present and future. Electronics 2019, 8, 788. [Google Scholar] [CrossRef] [Green Version]
- Tran, H.Q. applied sciences Improved Visible Light-Based Indoor Positioning System Using Machine Learning Classification and Regression. Appl. Sci. 2019, 9, 1048. [Google Scholar] [CrossRef] [Green Version]
- Werfli, K.; Chvojka, P.; Ghassemlooy, Z.; Hassan, N.B.; Zvanovec, S.; Burton, A.; Haigh, P.A.; Bhatnagar, M.R. Experimental Demonstration of High-Speed 4x4 Multi-CAP MIMO visible Light communications. IEEE J. Light. Technol. 2018, 16, 1944–1951. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Jung, S.; Kwon, J.K. Modulation and Coding for Dimmable Visible Light Communication. Opt. Commun. 2015, 27, 136–143. [Google Scholar] [CrossRef]
- Cailean, A.M.; Dimian, M. Current Challenges for Visible Light Communications Usage in Vehicle Applications: A Survey. IEEE Commun. Surv. Tutor. 2017, 19, 2681–2703. [Google Scholar] [CrossRef]
- Fernández, I.; de la Vega, D.; Roggo, D.; Stiegler, R.; Capponi, L.; Angulo, I.; Meyer, J.; Arrinda, A. Comparison of measurement methods of LV grid access impedance in the frequency range assigned to NB-PLC technologies. Electronics 2019, 8, 1155. [Google Scholar] [CrossRef] [Green Version]
- Fernández, I.; de la Vega, D.; Arrinda, A.; Angulo, I.; Uribe-Pérez, N.; Llano, A. Field trials for the characterization of non-intentional emissions at low-voltage grid in the frequency range assigned to NB-PLC technologies. Electronics 2019, 8, 1044. [Google Scholar] [CrossRef] [Green Version]
- Alvi, M.J.; Izhar, T.; Qaiser, A.A.; Kharal, H.S. Field Optimization and Electrostatic Stress Reduction of Proposed Conductor Scheme for Pliable Gas-Insulated Transmission Lines. Appl. Sci. 2019, 9, 2988. [Google Scholar] [CrossRef] [Green Version]
- Khelladi, S.; Saci, K.; Hadjadj, A.; Ales, A. Design And Behavioral Study Of EMI Filter Intended For Aeronautical Application. In Proceedings of the International Conference on Advanced Electrical Engineering (ICAEE), Algiers, Algeria, 19–21 November 2019; pp. 1–5. [Google Scholar]
- Zhou, Z.; Yap, Y.K. Two-dimensional electronics and optoelectronics: Present and future. Electronics 2017, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Ball, J.E.; Younan, N.H. Radar and radio signal processing. Electronics 2017, 6, 64. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Zhu, D. High-resolution spotlight spaceborne SAR focusing via modified-SVDS and deramping- based approach. IET Radar Sonar Navig. 2019, 13, 1826–1835. [Google Scholar] [CrossRef]
- Lombardini, F.; Member, S. Multibaseline ATI-SAR for Robust Ocean Surface Velocity Estimation. IEEE Trans. Aerosp. Electron. Syst. 2004, 40, 417–433. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, X. Electromagnetic Imaging Methods for Nondestructive Evaluation Methods. Sensors 2011, 11, 11774–11808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Zhang, X.; Chen, P. Compressed sensing-based DOA estimation with antenna phase errors. Electronics 2019, 8, 294. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Zhang, J.; Zhang, J. Joint DOD and DOA estimation of bistatic MIMO radar in the presence of unknown mutual coupling. Signal Process. 2012, 92, 3039–3048. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Huang, M. Robust Sparse Bayesian Learning for Off-Grid DOA Estimation With Non-Uniform Noise. IEEE Access 2018, 6, 64688–64697. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.C.; Islam, T. Innovative technologies and services for smart cities. Electronics 2019, 8, 376. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Member, S.; Amineh, R.K.; Member, S. Microwave Sensing of Water Quality. IEEE Access 2019, 7, 69481–69493. [Google Scholar] [CrossRef]
- Yi, W.Y.; Lo, K.M.; Mak, T.; Leung, K.S.; Leung, Y.; Meng, M.L. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems. Sensors 2015, 25, 31392–31427. [Google Scholar] [CrossRef] [Green Version]
- Bashian, A.; Assili, M.; Anvari-Moghaddam, A.; Catalão, J.P.S. Optimal design of a wide area measurement system using hybrid wireless sensors and phasor measurement units. Electronics 2019, 8, 1085. [Google Scholar] [CrossRef] [Green Version]
- Nolich, M.; Spoladore, D.; Carciotti, S.; Buqi, R.; Sacco, M. Cabin as a Home: A Novel Comfort Optimization Framework for IoT Equipped Smart Environments and Applications on Cruise Ships. Sensors 2019, 19, 1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleinlein, R.; García-Faura, Á.; Jiménez, C.L.; Montero, J.M.; Díaz-De-maría, F.; Fernández-Martínez, F. Predicting image aesthetics for intelligent tourism information systems. Electronics 2019, 8, 671. [Google Scholar] [CrossRef] [Green Version]
- Arlati, S.; Colombo, V.; Spoladore, D.; Greci, L.; Pedroli, E.; Serino, S.; Cipresso, P.; Goulene, K.; Stramba-badiale, M.; Riva, G.; et al. A Social Virtual Reality-Based Application for the Physical and Cognitive Training of the Elderly at Home. Sensors 2019, 19, 261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.; Li, Q. Nanoelectronic materials, devices and modeling: Current research trends. Electronics 2019, 8, 564. [Google Scholar] [CrossRef] [Green Version]
- Najam, F.; Yu, S. Impact of Quantum Confinement on Band- to-Band Tunneling of Line-Tunneling Type L-Shaped Tunnel Field-Effecto Transistor. IEEE Trans. Electron. Devices 2019, 66, 2010–2016. [Google Scholar] [CrossRef]
- Crupi, G.; Schreurs, D.M.M.; Raskin, J.; Caddemi, A. Solid-State Electronics A comprehensive review on microwave FinFET modeling for progressing beyond the state of art. Solid State Electron. 2013, 80, 81–95. [Google Scholar] [CrossRef]
- Chung, S.; Lee, S.; Jang, S.; Yoo, M.; Kim, K.; Chung, C.; Cho, S.Y.; Cho, H.; Hwang, S.; Kim, J.; et al. Highly Scalable Saddle-Fin (S-Fin) Transistor for Sub-50 nm DRAM Technology. In Proceedings of the VLSI Symposium, Honololu, HI, USA, 13–15 June 2006; pp. 147–148. [Google Scholar]
- Suligoj, T.; Poljak, M.; Jovanovic, V. Improving bulk FinFET DC performance in comparison to SOI FinFET. Microelectron. Eng. 2009, 86, 2078–2085. [Google Scholar]
- Kim, Y.K.; Lee, J.S.; Kim, G.; Park, T.; Kim, H.J.; Cho, Y.P.; Park, Y.J.; Lee, M.J. The Optimized Partial Insulator Isolation MOSFET (PiFET). J. Semicond. Technol. Sci. 2017, 17, 729–732. [Google Scholar] [CrossRef]
- Cheng, T.; Rao, J.; Tang, X.; Yang, L.; Liu, N. Analog Memristive Characteristics and Conditioned Reflex Study Based on Au/ZnO/ITO Devices. Electronics 2018, 7, 141. [Google Scholar] [CrossRef] [Green Version]
- Xiong, C.; Xiao, J.; Chen, L.; Du, W.; Xu, W.; Hou, D. Interfacial passivation of n-ZnO/p-Si heterojunction by CuI thin layer. J. Semicond. 2018, 39. [Google Scholar] [CrossRef]
- Lv, F.; Yang, R.; Guo, X. Analog and digital Reset processes observed in Pt/CuO/Pt memristive devices. Solid State Ionics 2017, 303, 161–166. [Google Scholar] [CrossRef]
- Górecki, K.; Górecki, P. Compact electrothermal model of laboratory made GaN Schottky diodes. Microelectron. Int. 2020, 37, 95–102. [Google Scholar] [CrossRef]
- Kim, Y. Editorial of energy-effcient and reliable information processing: Computing and storage. Electronics 2019, 8, 914. [Google Scholar] [CrossRef] [Green Version]
- Kuzmina, M.; Manykin, E.; Surina, I. Oscillatory network with self-organized dynamical connections for synchronization-based image segmentation. BioSystems 2004, 76, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Lai, Z.; Zeng, W.; Wei, L. Local sparsity preserving projection and its application to biometric recognition. Multimed. Tools Appl. 2018, 77, 1069–1092. [Google Scholar] [CrossRef]
- Ruqia, B.; Javaid, N.; Husain, A.; Hassan, N.M. Influential Reasonable Robust Virtual Machine Placement for Utilization and Saving Energy. In International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing; Springer: Cham, Switzerland, 2019; pp. 549–561. [Google Scholar]
- Liu, B. Improved particle swarm optimization combined with chaos. Chaos Solitons Fractals 2005, 25, 1261–1271. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mohammad, S.; Lewis, A. Advances in Engineering Software Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, S.; Saremi, S.; Mohammad, S. Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization. Expert Syst. Appl. 2016, 47, 106–119. [Google Scholar] [CrossRef]
- Gopalan, P.; Huang, C.; Simitci, H.; Yekhanin, S. On the Locality of Codeword Symbols. IEEE Trans. Inf. Theory 2012, 8, 6925–6934. [Google Scholar] [CrossRef] [Green Version]
- Thi, M.; Pierson, J.; Da, G.; Stolf, P.; Nicod, J.; Rostirolla, G.; Haddad, M. Negotiation game for joint IT and energy management in green datacenters. Future Gener. Comput. Syst. 2019. [Google Scholar] [CrossRef]
- Almalaq, Y.; Matin, M. Three topologies of a non-isolated high gain switched-inductor switched-capacitor step-up cuk converter for renewable energy applications. Electronics 2018, 7, 94. [Google Scholar] [CrossRef] [Green Version]
- Siwakoti, Y.P.; Blaabjerg, F.; Loh, P.C.; Town, G.E. High-voltage boost quasi-Z-source isolated DC/DC converter. IET Power Electron. 2014, 2387–2395. [Google Scholar] [CrossRef]
- Applications, G.; Li, W.; He, X. Review of Nonisolated High-Step-Up DC/DC Converters in Photovoltaic. IEEE Trans. Ind. Electron. 2011, 58, 1239–1250. [Google Scholar]
- Shen, C.L.; Chen, L.Z.; Chen, H.Y. Dual-input isolated DC-DC converter with ultra-high step-up ability based on sheppard taylor circuit. Electronics 2019, 8, 1125. [Google Scholar] [CrossRef] [Green Version]
- Almalaq, Y.; Alateeq, A.; Matin, M. A Non-Isolated High Gain Switched-Inductor Switched-Capacitor Step-Up Converter for Renewable Energy Applications. In Proceedings of the 2018 IEEE International Conference on Electro/Information Technology (EIT), Rochester, MI, USA, 3–5 May 2018; pp. 134–138. [Google Scholar]
- Khorasani, R.R.; Member, S.; Adib, E. ZVT Resonant Core Reset Forward Converter With a Simple Auxiliary Circuit. IEEE Trans. Ind. Electron. 2018, 65, 242–250. [Google Scholar] [CrossRef]
- Wang, C. Novel Zero-Voltage-Transition PWM DC—DC Converters. IEEE Trans. Ind. Electron. 2006, 53, 254–262. [Google Scholar] [CrossRef]
- Zhou, T.; Francois, B. Modeling and control design of hydrogen production process for an active hydrogen/wind hybrid power system. Int. J. Hydrogen Energy 2009, 34, 21–30. [Google Scholar] [CrossRef]
- Guilbert, D.; Maria, S.; Scipioni, A.; Lorraine, D. DC/DC converter topologies for electrolyzers: State-of-the-art and remaining key issues. Int. J. Hydrogen Energy 2017, 42, 23966–23985. [Google Scholar] [CrossRef]
- Tang, J.; Lee, J.; Roh, J. Low-Power Fast-Transient Capacitor-Less LDO Regulator With High Slew-Rate Class-AB Amplifier. IEEE Trans. Circuits Syst. 2019, 66, 462–466. [Google Scholar] [CrossRef]
- Strasser, T.; Member, S.; Andrén, F.; Kathan, J.; Cecati, C.; Buccella, C.; Member, S.; Siano, P.; Member, S.; Leitão, P.; et al. A Review of Architectures and Concepts for Intelligence in Future Electric Energy Systems. IEEE Trans. Ind. Electron. 2015, 62, 2424–2438. [Google Scholar] [CrossRef] [Green Version]
- Model, N.R.; Simulation, D.; Tunneling, I. New Recombination Model for Device Simulation Including Tunneling. IEEE Trans. Electron Devices 1992, 39, 331–338. [Google Scholar]
- Wang, H.; Wang, N.; Jiang, L.; Zhao, H.; Lin, X.; Yu, H. Solid-State Electronics Study of the enhancement-mode AlGaN/GaN high electron mobility transistor with split floating gates. Solid State Electron. 2017, 137, 52–57. [Google Scholar] [CrossRef]
- Viswamohan, K.; Jayakrishna, G. Soft-Switching Techniques for DC-to-DC Converters in Electrolyzer Application. Int. J. Adv. Technol. Innov. Res. 2014, 6, 1021–1026. [Google Scholar]
Scopus ID | Indexed Name | H-Index | Citation_Count | Country | University |
---|---|---|---|---|---|
35492852400 | Ajayan P. | 157 | 107,372 | United States | Rice University |
7004992352 | Blaabjerg F. | 121 | 72,921 | Denmark | Aalborg Universitet |
55667348900 | Aloisio A. | 101 | 59,497 | Italy | Università degli Studi di Napoli Federico II |
57191607340 | Vaidyanathan S. | 101 | 20,414 | India | Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology |
7006009729 | Leo K. | 93 | 36,140 | Germany | Technische Universität Dresden |
35588010400 | Guerrero J. | 83 | 35,519 | Denmark | Aalborg Universitet |
7003388970 | Vajtai R. | 77 | 25,863 | United States | Rice University |
24433472700 | Bell J. | 74 | 17,846 | United States | Arizona State University |
7003748060 | Teodorescu R. | 69 | 26,165 | Denmark | Aalborg Universitet |
55777593400 | Heine T. | 68 | 15,993 | Germany | Universität Leipzig |
57202521319 | Engel A. | 66 | 23,522 | Germany | Universitätsklinikum Hamburg-Eppendorf und Medizinische Fakultät |
55887046200 | Andreotti M. | 64 | 16,444 | Italy | Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara |
14630220200 | Gregorio A. | 63 | 25,729 | Italy | Università degli Studi di Trieste |
16686333000 | Cerqueira A. | 62 | 16,423 | Brazil | Universidade Federal de Juiz de Fora |
7102777145 | Pecht M. | 62 | 17,909 | United States | A. James Clark School of Engineering |
7405458795 | Wang P. | 62 | 18,661 | China | Nanjing University |
35563614300 | Grigoropoulos C. | 62 | 14,742 | United States | University of California, Berkeley |
7005872966 | Baleanu D. | 61 | 20,595 | Turkey | Çankaya Üniversitesi |
7006613644 | Plaza A. | 59 | 16,852 | Spain | Universidad de Extremadura |
34572758100 | Steyaert M. | 58 | 12,119 | Belgium | KU Leuven |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García Salvador, R.M.; Novas, N.; Alcayde, A.; El Khaled, D.; Montoya, F.G. Electronics and Its Worldwide Research. Electronics 2020, 9, 977. https://doi.org/10.3390/electronics9060977
García Salvador RM, Novas N, Alcayde A, El Khaled D, Montoya FG. Electronics and Its Worldwide Research. Electronics. 2020; 9(6):977. https://doi.org/10.3390/electronics9060977
Chicago/Turabian StyleGarcía Salvador, Rosa M., Nuria Novas, Alfredo Alcayde, Dalia El Khaled, and Francisco G. Montoya. 2020. "Electronics and Its Worldwide Research" Electronics 9, no. 6: 977. https://doi.org/10.3390/electronics9060977
APA StyleGarcía Salvador, R. M., Novas, N., Alcayde, A., El Khaled, D., & Montoya, F. G. (2020). Electronics and Its Worldwide Research. Electronics, 9(6), 977. https://doi.org/10.3390/electronics9060977