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Abstract: As photovoltaic (PV) power plants are an essential component of modern smart grids, the
PV generation forecasting of such plants has recently been gaining interest. The forecasting results of
PV power often suffer from large errors because of unusual weather conditions. In a learning-based
forecasting model, the forecasting accuracy can be enhanced by using carefully selected data for
training rather than all the data without any screening. That is, using a training set that only
contains information obtained from similar days can help enhance the accuracy of learning-based PV
forecasting. This paper proposes a forecasting method for small-scale PV generation. This method is
based on long short-term memory; further, it detects similar days considering the different impacts
of weather variables on PV power according to the day. This method can address issues caused by
unnecessary learning from non-similar historical days. The simulation results demonstrate that the
proposed method exhibits better performance than do existing similar day detection methods.

Keywords: PV power forecasting; long short-term memory (LSTM); similar day detection;
weather variables

1. Introduction

Photovoltaic (PV) power has attracted significant attention as an emission-free power source owing
to increasing awareness about global warming. However, as more PV generators are integrated into
power systems, uncertain and non-dispatchable PV power causes difficulties in the power systems [1,2].
In particular, several small-scale PV generators that are integrated in a distribution grid make it
considerably difficult to maintain the operational security of the power systems. To address this issue,
the accuracy of short-term forecasting models for PV power should be enhanced.

As PV power is largely dependent on weather conditions, most studies on short-term PV power
forecasting (STPPF) are based on the data of predicted weather conditions [3]. Recent STPPF models
can be categorized into statistical, learning-based, and hybrid techniques. In the statistical approach,
PV power is treated as a time series, and past observations of PV power are used statistically by
process models such as the vector auto-regression model [4], ordinary least square model [4], gradient
boosting [4], extreme learning machine [5,6], empirical mode decomposition [6], and sine cosine
algorithm [5]. Seasonal modeling and weather information are crucial for these approaches due to the
characteristics of PV power fluctuations [7]. Owing to advancements in learning-based algorithms,
many STPFF models [8–12] have started using learning-based research. They can be further classified
into machine-learning- and deep-learning-based approaches. Support vector regression (SVR) [8] and
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artificial neural networks (ANNs) [9] are perfect examples of the machine-learning-based approach that
can provide better performance even with few recorded datasets. Back-propagation neural networks
(BPNNs) [10–12] and long short-term memory (LSTM) networks [13,14] represent deep-learning-based
approaches, and they exhibit considerably better performance when several datasets are used in the
training process. However, a BPNN has a higher chance to get stuck in local minima, and LSTM
entirely depends upon the type of input PV training data even when the amount of input PV data is
sufficiently large. Due to these issues, these forecasting methodologies deliver an average normalized
mean absolute error (nMAE) in the range of 10–25%. Such problems are because the PV power changes
with the weather conditions [15]. Therefore, the training set contains unnecessary data.

To address the potential problems of overfitting and underfitting, a few hybrid STPPF models
have been developed [16–23]. In the hybrid approach, a specific type of day is detected, and then
similar days are identified. The specific types of days are defined in PV power forecasting mostly
based on weather conditions described in colloquial language, such as sunny, rainy, and cloudy
days [16,17]. Moreover, some studies used numerical weather predictions (NWPs) to define similar
days. In [15], two important variables were selected based on Euclidean distance (ED) to detect
similar days. Statistical models such as statistical analysis software (like SPSS) [16], discrete wavelet
transformation (DWT) [18], radial basis function [19], and wavelet packet distribution (WPD) [20] have
also been used to define a specific type of day. Furthermore, learning-based clustering techniques such
as support vector machine (SVM) [17], k-nearest neighbors (k-NN) [17], and self-organizing maps
(SOMs) classification [21,22] have also been applied to extract similar weather days. The common
goal for all these hybrid techniques is to seek similar days from historical data and, eventually, to
create a new PV series for better training results. Consequently, these methodologies have an average
forecasting nMAE of around 5–18%, merely depending upon a type of day. However, they still fail to
effectively disclose daily forecasting results.

Although several methods have been developed in existing studies, an accurate method of similar
day detection in PV power forecasting still remains undiscovered because different weather variables
have different relationships with PV power generation. Some weather variables are highly correlated to
the PV power and, hence, provide important information for accurate PV forecasting for all day types.
However, other weather variables are correlated to the PV power only for certain day types. In other
words, these variables provide important information to increase the forecasting accuracy for some
days; however, they may cause overfitting problems for other days. That is, the impacts of weather
variables on PV generation change as the type of a specific day is varied, and the most informative
weather variables vary daily. Thus, to enhance the accuracy of learning-based PV forecasting, a proper
training set should be developed that only contains information obtained from similar days considering
the different impacts of weather variables on PV power for each day type.

This paper proposes a similar day detection (SDD) method for learning-based PV forecasting that
deals with different impacts of weather variables on PV power for each day type. The proposed similar
day detection method first classifies historical days into several groups by considering the similarity of
PV power patterns. In addition, important weather variables are selected for each day type considering
their different impacts on the PV power. Finally, a new PV series is created from the identified similar
days, which is more repetitive and appropriate for the LSTM-based PV forecasting model.

2. Weather’s Impact on PV Power Forecasting

Several weather variables can be used for PV forecasting, such as temperature, humidity, wind
speed, rain amount, daylight hours, and cloud cover. Further, different weather variables have
different relationships with PV generation. Figure 1 shows the Pearson correlation coefficients between
historical PV power and selected weather variables. In Figure 1, the correlation of each weather
variable is changing day by day. For example, the average temperature is positively correlated to
PV power on Day 1 and Day 4. In contrast, for Day 5 and Day 6, it is negatively correlated to PV
power. These observations show the complicated and inconsistent relationship between PV power and
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weather variables. Figure 2 shows the distribution of the selected weather variables according to PV
power, as observed in the southern region of Korea in 2015.
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Figure 1. Correlation coefficients between photovoltaic (PV) power and weather variables: (a) average
temperature, (b) rain amount, (c) daylight hours, and (d) cloud cover.

In Figure 2, the historical data are classified into different colored dots denoting three levels of PV
power. As weather variables values are increased, the PV power tends to increase or decrease as shown
in Figure 2a,b, respectively. The varying information from these weather variables is closely linked to
the PV power for all generation levels. Hence, these variables can be used as an index to identify the
types of days for all periods. In contrast, in Figure 2c,d, some weather variables show an influence on
PV power only on days of a certain level of PV generation, and these weather variables provide some
information of diversity and randomness on these days. Although these weather variables present
complexity and uncertainty, they help deliver similar weather information for days of a certain level of
PV generation.

For SDD, the following two types of weather variables for each day group, classified based on
the PV power pattern, should be identified. One variable is highly correlated to the PV power and,
hence, can be used for primary sorting to select groups of similar days. The other variables have some
information only for day types with a specific generation pattern. Because these variables can interfere
with the PV prediction of specific days, they should be selected by day group and used for secondary
sorting to select similar days. Figure 3a,b describes the conventional method and proposed SDD
method, respectively. To consider the impact of weather variables by PV power patterns, historical
days are classified into several groups by their PV patterns, and different weather variables are used
for each group of days to estimate their similarity to the target day. With this proposed strategy for
detecting similar days, the training set is expected to contain the PV patterns of many similar days
so that the forecasting model can provide more accurate results. The proposed similar day detection
strategy is described in the following section.
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3. Proposed Short-Term PV Power Forecasting

3.1. Classification of Days with Historical PV Generation

To reduce the probability of overfitting and underfitting problems in the learning-based forecasting
model, the training set needs to be reduced so that it contains the generation patterns of days with
similar PV generation and weather conditions. As the first step of selecting similar days, historical days
are classified by considering the similarity of generation patterns. The historical generation pattern of
PV power can be expressed as follows:

P = [p1, p2, . . . , pd, . . . , pD], (1)

where vector pd is the hourly generation profiles of PV power on day d, and D represents the number
of days of historical data.

To classify the days with similar historical generation patterns, a self-organizing map (SOM)
and learning vector quantization (LVQ) based algorithm [24–26] is used in this study, which is a
semi-supervised classification technique. The SOM and LVQ algorithm selects the closest node (wd)

which represents the closest day for pd among the randomly distributed nodes (wd). This algorithm
then iteratively updates the closest node and explores the corresponding neighbors. The closest node
is selected by the competitive learning rule of minimum Euclidean distance as follows:

wd = argmin
i
‖pd −wi‖. (2)

Once the clustering model is sufficiently trained for all days d, each input pd is mapped into
k different groups as an output. For each kth PV group, similar types of PV power generation are
collected and can be mapped into group Ck:

Ck =
[
pk,1, pk, 2, . . . , pk, d, . . . , pk,D,

]
, (3)

where D′ is the number of similar PV power generation days for the clustering output PV group k.
With this clustering, the historical days that have a similar generation pattern are classified into group
k. Further, the historical NWPs of the days that belong to group k are defined as follows:

Mk =


m1

k,1, m1
k,2, . . . , m1

k,d, . . . , m1
k,D′

m2
k,1, m2

k,2, . . . , m2
k,d, . . . , m2

k,D′

m j
k,1, m j

k,2, . . . , m j
k,d, . . . , m j

k,D′

mJ
k,1, mJ

k,2, . . . , mJ
k,d, . . . , mJ

k,D′

, (4)

where m j
k,d is the numerical prediction value of weather variable j on day d that belongs to group k;

D′ and J are the number of days that belong to group k and the number of weather variables to be
considered, respectively. For developing Mk, various weather variables such as temperature, wind
speed, rain amount, humidity, cloud cover, and daylight hours can be used.

3.2. Decomposition of Weather Variables

In this study, based on their relationship with PV generation, weather variables are classified into
two types: primary weather variables (PWVs) and secondary weather variables (SWVs). The PWVs
are highly correlated to PV generation for all days. PV generation can change greatly due to these
variables as the difference in PWV values among the day groups is higher than that for the other
weather variables. In contrast, the SWVs are correlated to PV generation only in a certain day group
k. These variables give important information that increases the forecasting accuracy for some days;
however, they cause overfitting issues in learning-based forecasting for other days.
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Because of the high correlation between the PWVs and PV generation, there should be a high
deviation between the day groups that are classified by the PV generation pattern. In this study, to
identify the PWVs of a PV site, the deviations of each variable are estimated, and the variables of higher
deviation are selected as PWVs. The deviation of variable j is calculated as the difference between the
minimum and maximum averages of m j

k,d as follows:

r j = max
k

(
m j

k

)
−min

k

(
m j

k

)
, for all j, (5)

where r j is the deviation of variable j and m j
k is the average value of weather variable m j

k,d in day group

k. The average value m j
k in Equation (5) can be calculated as follows:

m j
k =

1
D′

D′∑
d=1

m j
k,d. (6)

By using this deviation between the day groups, the weather variables with higher deviation (r j)
are selected as PWVs as follows:

pwv =
{

j
∣∣∣ r j
≥ α

}
, (7)

where pwv is the set of indices of PWVs, and α is the PWV threshold used to select higher r j. Figure 4
shows an example distribution of weather variables’ averages by day group.Electronics 2020, 9, x FOR PEER REVIEW 7 of 17 
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In contrast, SWVs cannot provide the information needed to recognize huge changes in PV
generation. Therefore, the deviation of SWV values among the day groups is less than that of PWVs.
Although SWVs can increase the forecasting accuracy for some days, extension of the training set tends
to give better results in learning-based methods. Since SWVs can cause overfitting in learning-based
forecasting for some days, adequate SWVs should be selected for a certain day group k. This study
estimates the deviations of each variable, and the variables with higher deviation are selected as the
SWVs for a certain day group k. This is similar to the selection of PWVs; however, it is different in that
it estimates the deviation of weather variables within a day group. The deviation of variable j for day
group k is calculated as follows:

s j
k = max

d

(
m j

k,d

)
−min

d

(
m j

k,d

)
. (8)
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The weather variables with higher deviation (s j
k ) are SWVs, and they help further divide the day

group. The SWVs for day group k are selected as follows:

swvk =
{

j
∣∣∣∣ s j

k ≥ β
}
, (9)

where swvk is the set of indices of SWVs of day group k and β is the SWV threshold to select higher s j
k .

3.3. Detection of Similar Days

The weather variables with higher r j can give primary information to select similar days. With the
similarity of PWVs, a similar day group k can be selected as follows:

argmin
k

∑
j∈pwv

∣∣∣∣m j
k −m j

D+1

∣∣∣∣, (10)

where m j
D+1 is the forecasting value of variable j for the forecasting day. A similar day group k selected

using Equation (10) includes days with similar PV generation and PWVs. However, similarity of all
the days in the selected group k is not sufficient to increase the forecasting accuracy, because diversities
of weather variables still exist in these days. To solve this problem, the SWVs can help us to identify
the most similar days within the selected group k. For selecting the most similar days, the similarity of
SWVs is estimated for the days in the selected group k as follows:

Φk, d =
∑

j∈swvk

∣∣∣∣m j
k,d −m j

D+1

∣∣∣∣, (11)

where Φk, d is the similarity between the SWVs of days in group k and the forecasting day. When a day
has lower Φk, d, the SWVs of the day are much closer to those of the forecasting day. Finally, only the
profiles pk,d of the days with lower Φk, d are used as the training set Pin,

Pin =
{
pk,d

∣∣∣ Φk,d < γ
}
, (12)

where γ is the constant threshold to select higher Φk,d. Using Equation (12), the most similar days are
detected and collected in Pin.

3.4. LSTM-Based Day-Ahead PV Power Forecasting

The long short-term memory (LSTM) approach, one of the best versions of recurrent neural
networks, can learn temporal relationships in a time series. Since the LSTM learning process has the
ability to understand relationships among distant dependencies [27], the LSTM methodology is useful
when the input sequential series contains a lot of repetitive patterns [13,20]. The PV generation of
Equation (12) behaves as a strong stationary time series [28]. Therefore, it is more suitable for the LSTM
network than the conventional PV generation series.

Figure 5 shows the structure of the training and testing sets of the proposed LSTM-based
architecture. In Figure 5, series of PV generation on the selected similar days are expressed via elements
pk,d =

{
p(1,d), p(2,d), . . . , p(t,d), . . . , p(24,d)

}
. In the training set Pin, the selected time series of similar days

is used instead of the original time series (pd) of PV generation. With this selection of training data,
overfitting in the learning network can be mitigated so that the forecasting accuracy for PV generation
can be improved.
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For the LSTM network, the weight and bias of the forget, input, and output gates are updated in
the form of gradient error signals. In addition, the input temporal patterns forming error signals link
the appropriate values of PV generation after a certain time t through the gates and sigmoid activation
functions. The forget gate controls which information needs to be forgotten from the previous cell
state. The input gate decides which information needs to be updated in the cell state, and the output
gate sends the right cell state as the output. To optimize the LSTM model, a root mean square is used
for the training process as follows:

argmin

√√√D′′∑
d=1

∣∣∣pd − p̂d
∣∣∣2, (13)

where D′′ is the number of similar days, which is the length of the training set, and p̂d is the predicted
PV generation obtained from the LSTM. Figure 6 illustrates the procedure for the proposed PV
generation forecasting.
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4. Numerical Results and Discussion

4.1. PV Data Description and Implementation

The proposed method was tested using hourly recorded data gathered from a 1 MW PV site in
Goheung, Korea, for one year (January 2015 to December 2015). The daily measurement of weather
data is forecasted and announced by the Metrological Administration of South Korea. Most of the
weather data were used without any modification. However, rain amount data of more than 50 mm
were changed to 50 mm because PV generators are expected not to produce electrical power when
the daily rain amount is more than 50 mm. Table 1 presents sample data of the eight daily weather
variables that were used for the numerical simulation. Also, Table 2 presents the technical specifications
of the PV power plants.
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Table 1. Weather data used in the numerical simulation.

Numerical Weather Predictions (NWPs) of Weather Parameters

Date
Avg.

Temp
(◦C)

Min.
Temp
(◦C)

Max.
Temp
(◦C)

Wind
Speed
(m/s)

Rain
(mm)

Humidity
(%)

Day-Light
Hours

Cloud Cover
(max. 10)

1 −1.4 −3.1 −0.4 8.8 0 88 8.5 3.6
2 1 −1.3 5 6.6 0.1 77.8 9.5 5
3 0.4 0.4 5.6 1.4 0 79.6 8 4.9
...

...
...

...
...

...
...

...
...

365 3 4.8 7.4 3 5.8 80.9 4.7 6.4

Table 2. Technical specifications of the photovoltaic (PV) system.

Technical Specification Value

Module type Polycrystalline
Module capacity 240 W

Total installed capacity 1 MW
Installation type Fixed

Module efficiency 14.4%
Inverter efficiency 96%

Plant location Goheung-Gun, South Korea
Location coordinates 34.61◦ N, 127.28◦ E

With the consideration of seasonal impact and data requirement issues [11,16,29], the training
dataset was developed using the latest six-month data. Hence, for each time, the training dataset
comprised PV data and NWPs of 180 days. Using this dataset, the results of the proposed method were
compared with the results of [16,29] as well as with the results of other deep learning models [11,13,20].
The training simulation was performed in a Windows operating system on an I7-6700 CPU at 3.40 GHz
with 16 GB installed RAM.

To evaluate the accuracy of forecasting results, we employed the normalized mean absolute
percentage error (nMAE) and root-mean-square error (RMSE), which are calculated as follows:

nMAE =
1
T

T∑
t=1

∣∣∣p̂D+1, t − pD+1,t
∣∣∣

Pcapacity
× 100%, (14)

RMSE =

√√√
1
T

T∑
t=1

(p̂D+1, t − pD+1,t)
2, (15)

where p̂D+1,t is the forecasting PV power at time t; pt is the actual PV power at time t; and Pcapacity is
the generation capacity of the PV site.

For clustering the PV power, the number of groups was set to be 6. To explore the PWVs and
SWVs, thresholds α and β were both set to 0.5. The PV series that was extracted from the similar days
was tested via Tensor-flow (backend), where the frontend was Python with the Keras library [30].
The tuning process of the appropriate hyper-parameters was inspired by [31–35]. The common
hyper-parameters, such as the number of hidden layers, activation function, optimization algorithm,
and number of nodes per layer, are summarized in Table 3. The additional hyper-parameters were set
as follows: inner activation function was hard sigmoid, monitor function was validation loss, patience
size was 3, and drop-out was 0.5. The fully connected layer was attached to the output layer of the
LSTM. Each time, one-hour predicted PV power values were obtained from the fully connected layer.
The dataset was split into a validation set (3 days), testing set (1 day), and training set (remaining days)
for each day of the week.
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Table 3. Hyper-parameters for selected models.

Model Hidden
Layers Activation Optimization Nodes

Per Layer
No. of

Iterations
Testing

Samples

SVR N/A N/A SMO N/A default 16-h
BPNN 2 ReLU RMSprop 24 150 16-h

LSTM 2 sigmoid,
tanh RMSprop 20 500 16-h

4.2. Results of Day-Ahead PV Forecasting

Figure 7 and Table 4 show the forecasting results with and without the proposed similar day
detection method for a few selected weeks (peak load season of Korea). For the cases without the
proposed similar day detection, forecasting models based on SVR, BPNN, and LSTM were tested, and
each network was trained via back-propagation with mean squared error as the loss function. Figure 7
shows that the forecasting results with the proposed method are generally closer to the actual PV
power than others. As summarized in Table 4, by using the proposed similar day detection, the average
nMAE and average RMSE were improved by a minimum of 2% and 20 kWh, respectively. Thus, in
conclusion, the proposed forecasting method can significantly improve the forecasting accuracy when
compared to other forecasting models without similar day detection.
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Figure 7. Results of PV power forecasting with and without the proposed similar day detection (SDD).

For each testing day, the computational times for the similar day detection and LSTM networks
were about 2 min and 15 min, respectively. The entire computational time of the proposed hybrid
technique was substantially lower than that of the conventional LSTM-based network.
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Table 4. Normalized mean absolute error (nMAE) and root-mean-square error (RMSE) of PV power
forecasting with and without the proposed similar day detection (SDD).

Day
nMAE (%) RMSE (kWh)

SVR BPNN LSTM Proposed SVR BPNN LSTM Proposed

1 9.78 7.49 10.85 5.86 122.03 116.2 145.59 74.26
2 9.02 10.88 10.85 5.36 109.90 135.42 145.59 59.49
3 9.39 7.75 13.25 6.19 118.42 98.69 195.81 81.79
4 5.59 12.19 9.22 8.43 88.47 188.57 140.75 118.24
5 8.38 9.55 12.35 4.91 110.66 142.30 164.31 60.17
6 8.66 3.11 14.02 5.72 116.08 46.41 195.21 70.45
7 7.09 3.16 11.51 2.98 93.36 46.7 170.91 38.13
8 7.18 5.46 8.59 3.96 102.99 72.15 139.45 48.44
9 6.05 3.68 9.66 4.07 84.96 57.43 145.25 53.52

10 5.64 4.79 10.66 3.5 78.98 68.88 107.93 43.76
11 5.80 4.55 9.44 3.53 78.77 58.89 118.70 41.95
12 6.50 9.24 6.08 10.14 100.44 125.25 101.61 155.39
13 16.93 13.15 8.27 6.98 222.64 179.85 115.44 96.93
14 9.97 8.08 8.34 9.92 135.93 129.00 110.60 141.60

4.3. Comparison with Existing SDD Models

This section compares the results of the proposed similar day detection and two other similar day
detection methods (SDD-A and SDD-B). The similar day detection methods SDD-A and SDD-B were
built by referring to [9,21,29], respectively. To check the efficacy of the proposed similar day detection
method, we arbitrarily picked four weeks each in the summer, autumn, and winter seasons.

Figure 8 shows the daily average nMAE and RMSE of the proposed PV power forecasting for
the four selected weeks of each season. On most days, the proposed forecasting method significantly
improved the forecasting accuracy when compared to SDD-A and SDD-B. The forecasting nMAE
and RMSE are often varied because the type of day can vary day by day. This is because forecasting
performance depends not only on weather conditions but also on the collection of most similar days
and the hyper-parameter tuning process of the LSTM network.

Table 5 shows the weekly average nMAE and RMSE of PV power forecasting for the four selected
weeks of each season. In summer, the proposed model reported a 5.86% nMAE, which was lower
than SDD-B (with BPNN) with a 6.94% nMAE. In autumn, when the PV generation level is higher,
the proposed model reported a 6.43% nMAE, which was lower than SDD-A (with SVR) with a 7.85%
nMAE. Similarly, in winter, when the PV generation level is lower, the proposed model reported a
6.60% nMAE, which was lower than SDD-A (with SVR) with an 8.16% nMAE. The summary in Table 5
shows that the proposed method improved the forecasting accuracy by about 2 percent throughout
the study period. A similar level of improvement was seen while evaluating the performance of
forecasting using the RMSE metric. Thus, the evaluation demonstrates that the PV forecasting model
can deliver better performance by training only with data from the proposed similar day detection.
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Figure 8. Daily normalized mean absolute error (nMAE) and root-mean-square error (RMSE) of PV
power forecasting with different SDD methods. (a) Summer, (b) autumn, and (c) winter.
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Table 5. Weekly nMAE and RMSE of PV power forecasting with different SDD methods.

Week
nMAE (%) RMSE (kWh)

SDD-A
(w/SVR)

SDD-B
(w/BPNN)

SDD-B
(w/LSTM) Proposed SDD-A

(w/SVR)
SDD-B

(w/BPNN)
SDD-B

(w/LSTM) Proposed

Summer
(August)

1 7.59 8.40 7.80 6.04 99.00 109.64 96.71 80.19
2 6.03 5.41 5.11 5.02 77.27 76.08 65.81 64.01
3 10.99 6.61 7.57 6.05 152.48 99.21 107.85 83.87
4 9.58 7.33 7.55 6.33 138.53 103.50 107.42 88.97

average 8.55 6.94 7.01 5.86 116.82 97.11 94.45 79.26

Autumn
(October)

1 7.22 10.39 11.52 5.41 104.33 150.90 160.23 75.67
2 9.76 11.86 12.02 7.78 147.19 177.11 184.14 121.53
3 6.66 7.29 6.31 5.71 83.52 110.14 84.82 82.81
4 7.76 7.62 8.64 6.82 105.86 108.92 136.77 92.93

average 7.85 9.29 9.62 6.43 110.23 136.77 141.49 93.24

Winter
(December)

1 9.24 6.40 6.44 6.16 145.84 92.04 87.89 93.22
2 7.23 9.03 10.76 7.71 111.25 142.51 163.56 110.28
3 7.37 9.63 10.64 6.22 122.41 158.35 169.29 94.26
4 8.80 9.67 9.13 6.30 125.80 157.36 155.17 90.64

average 8.16 8.68 9.24 6.60 126.33 137.57 143.98 97.10

4.4. Impact of γ

Figure 9 shows the PV forecasting results with different γ values for selected weeks of summer,
autumn, and winter. In the summer and autumn seasons, more accurate forecasting can be expected
when the parameter γ is set to be around 1.7. However, in the winter season, more accurate forecasting
can be expected with the parameter γ set to be around 1.6, which is lower than the cases of summer and
autumn. The higher value of γ provides more training data to the LSTM, so that the LSTM has a greater
chance to learn the PV characteristics, However, more training data can increase internal variance
in the training set, which can cause overfitting of the hyper-parameters of the LSTM, degrading the
optimal learning of the LSTM. Therefore, it is necessary to explore the optimal γ value as it can vary
with seasonal weather conditions.

Figure 9. Cont.
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Figure 9. Results of PV power forecasting with different γ values. (a) Summer, (b) autumn, and
(c) winter.

5. Conclusions

In this paper we proposed a forecasting method for small-scale PV generation based on LSTM
combined with a similar day detection method that considers the different impacts of weather variables
on PV power by day type. In the proposed method, important weather variables are selected for each
day group that is classified by considering the similarity of PV power patterns. With the selected
weather variables, this method identifies similar days which are repetitive and thus appropriate to the
LSTM-based PV forecasting model. By using the proposed method, forecasting accuracy for small-scale
PV generation can be improved. The test results indicated that the proposed method can deliver a
notable improvement by training solely with data obtained from similar days. This method can be used
for operation of a distribution grid with accurate forecasting of distributed PV generation. In future
work, this study will be extended to very-short-term PV power forecasting by including more weather
parameters and by considering the relationships between the physical characteristics of PV generators
and weather variables.
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