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Abstract: This study measured the speed of a moving vehicle in multiple lanes using a drone.
The existing methods for measuring a vehicle’s speed while driving on the road measure the speed of
moving automobiles by means of a sensor that is mounted on a structure. In another method, a person
measures the speed of a vehicle at the edge of a road using a speed-measuring tool. The existing
method for measuring a vehicle’s speed requires the installation of a gentry-structure; however,
this produces a high risk for traffic accidents, which makes it impossible to measure a vehicle’s speed
in multiple lanes at once. In this paper, a method that used a drone to measure the speed of moving
vehicles in multiple lanes was proposed. The suggested method consisted of two LiDAR sets mounted
on the drone, with each LiDAR sensor set measuring the speed of vehicles moving in one lane; that is,
estimating the speed of moving vehicles in multiple lanes was possible by moving the drone over the
road. The proposed method’s performance was compared with that of existing equipment in order to
measure the speed of moving vehicles using the manufactured drone. The results of the experiment,
in which the speed of moving vehicles was measured, showed that the Root Mean Square Error
(RMSE) of the first lane and the second lane was 3.30 km/h and 2.27 km/h, respectively. The vehicle
detection rate was 100% in the first lane. In the second lane, the vehicle detection rate was 94.12%,
but the vehicle was not detected twice in the experiment. The average vehicle detection rate is 97.06%.
Compared with the existing measurement system, the multi-lane moving vehicle speed measurement
method that used the drone developed in this study reduced the risk of accidents, increased the
convenience of movement, and measured the speed of vehicles moving in multiple lanes using a
drone. In addition, it was more efficient than current measurement systems because it allowed an
accurate measurement of speed in bad environmental conditions.

Keywords: drone; vehicle speed measurement; detection information module; LIDAR

1. Introduction

Recently, drone technology has developed rapidly in various fields. The drone is highly useful
for aerial surveillance because of its remote sensing capability. Besides, multiple target detection is
essential to recognize harmful threats in advance.

It is difficult to estimate the desired target due to signal noise and interference from a multipath
fading of transmitted signals in a wireless communication environment [1]. The strength of the signal
that carries information is decreased by multipath fading, which is caused by natural and man-made
structures [2]. Target estimation [3-6] using radio waves has been studied in the radar, sonar, mobile
communication, and laser fields. In particular, a method for estimating targets using radar has been
developed to protect military personnel from enemy threats [7-9].

Moving target detection is an essential preprocessing step to mark regions in the application,
such as abandoned animal detection, surveillance tracking, and vehicle estimation. Since it affects
subsequent steps, robust and accurate moving target detection is essential to ensure optimal performance
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in its application. Technological advances in areas, such as signal processing technology, sensors,
and position tracking, have affected various applications of UAVs.

In recent years, target detection has been studied using a camera mounted on a drone. Drones
can be significantly useful in many fields, and moving target detection is essential to identify harmful
threats in advance. Drones can acquire data by detecting the vehicles from the point after flying from
one point to another with a program or remote controller. In Reference [10], various applications
have been proposed for the automatic video analysis technology of smart surveillance by drones.
In Reference [11], aerial image acquisition has been studied by developing an all-in-one camera-based
target detection and positioning system for search and rescue missions. In Reference [12], the speed
estimation for moving objects has been studied by registering and subtracting frames after capturing
images using a camera mounted on a drone. Image registration is the process of matching two or more
images of the same scene to the same coordinates. In Reference [13], pedestrian movement detection
using a small drone camera consists of frame subtraction, threshold, morphological filter, and false
alarm reduction in consideration of the actual target size. In Reference [14], the paper has studied
the Ground Penetrating Radar (GPR) system to detect land mines and Improvised Explosive Devices
(IEDs) using vehicles and drones. The system consists of a transmitter mounted on a vehicle and a
receiver mounted on a drone. This method uses a Synthetic Aperture Radar (SAR) algorithm to reduce
surface clusters and target detection, but it is impossible to detect objects with drones without vehicles.
In Reference [15], the paper has studied the methodology of acquiring a growth deficit map with an
accuracy of up to 5 cm and a spatial resolution of 1 m using Diffusion Interferometry-SAR (DIN-SAR).
In order to form high-resolution maps for crop growth monitoring, satellite-based radar optical sensors
and drone-borne optical sensors are necessary.

In past studies, drones have used cameras to detect objects. This method is difficult to apply to
object detection in environments, such as foggy and dark ones. Using a LIDAR sensor mounted on a
drone, it detects the speed of vehicles driving on the road. The LiDAR sensor uses LightWare’s SF30C.
The moving target is detected for vehicles driving on the first and second lanes of the road, and the
position of the drone detection is vertically upward to the edge of the road. After the drone is moved
to the measuring point, it detects the target in the stopped state. The drone hovering range is within
1 m. The speed of moving vehicles in multiple lanes is measured using a LIDAR sensor mounted on a
drone. Recently, the amount of research on Intelligent Transportation Systems (ITS) for smart roads has
been increasing, and information [16-18] about automobiles in relation to driving on roads has been
found to be closely related to road safety. Currently, it is not possible to measure the speed of vehicles
in multiple lanes at once with a single piece of equipment. Therefore, it is necessary to develop an ITS
system that estimates the speed of moving vehicles in multiple lanes using one piece of equipment.

This study presented a drone-based speed measurement system that estimated the speed of
moving vehicles in multiple lanes [19-22]. There are two methods for measuring the speed of a moving
vehicle in multiple lanes. The first method measures the speed of a moving vehicle on the outskirts
of a road using speed-measuring equipment [23-25]. The second method gauges a vehicle’s speed
by mounting a sensor on a fixed structure and measuring the vehicle’s speed [26,27]. The method
by which a person obtains information about a vehicle may differ depending on the climate and the
person who performs the measurements. The method for measuring the speed of a vehicle equipped
with a sensor in a fixed mechanism obtains information about that vehicle on the outskirts of the road,
so it is impossible to measure a moving vehicle’s speed over the entire lane. It is impossible to measure
the speed of moving vehicles in all lanes because the existing measurement method only measures the
speed of moving vehicles at the edge of a lane. In addition, there is a risk of roadside traffic accidents
when a person measures the speed of moving vehicles in multiple lanes; thus, a method that minimizes
this risk is needed.

This paper is organized as follows. In Section 2, the methodology of vehicle detection and speed
estimation is discussed. The component of the developed drone system that measures a vehicle’s speed
is described in Section 3. In Section 4, the analysis of information about moving vehicles detected using
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the developed drone that measures a vehicle’s speed is represented. Vehicle speed measurements
are analyzed together with the developed drone through field experiments in Section 5. In Section 6,
the proposed method is compared with the existing method, and the paper is concluded.

2. The Methodology of Vehicle Detection and Speed Estimation

The speed of the vehicles was estimated using a drone that was equipped with a set of LIDAR
sensors that measure distance. This LiDAR sensor set detected moving vehicles in multiple lanes.

Figure 1 shows the proposed method for estimating the speed of vehicles in multiple lanes using
multiple LiDAR sensors. Each LiDAR [28] sensor obtained information about vehicles passing along
each lane. A set of LIDAR sensors for detecting vehicles in one lane consisted of two sensors. The front
sensor in Figure 1 scanned point A, and the other sensor scanned point B. The sensor at the front of
the LiDAR indicated that point A was perpendicular to the ground. Hf was the distance between
the sensor at the front of the LIDAR and point A, and Hr was the distance from the rear sensor
to point B, and 60 was the angle between the two LiDAR sensors. Figure 2 shows the flow for the
drone to detect the vehicle and calculate the vehicle speed. The sensors counter read stored data by
measuring the distance from the front and rear sensors at each measurement point. When the vehicle
entered/exited the measurement point, the Hf and Hr distances differed from the reference distance.
At this point, how the vehicle has driven the measurement point was determined. The distance
between measuring points was calculated using Hf, Hr, and sensor angle. The vehicle speed was
obtained by calculating the vehicle entry/exit time difference and the distance between measuring
points. The distance between point A and point B was represented by L, and the angle and distance
between the sensors were proportional. In Figure 1, the distance L between point A and point B could
be expressed as follows [29-32].

L= \/(Hf)2+ (Hr)? —2Hf Hr cos0 1)

A moving vehicle was detected by the front and rear sensors, which transmitted data to the
computer on the ground. The computer on the ground estimated the vehicle’s speed by calculating the
time difference of the measuring vehicle from two sensors. The speed of the vehicle shown in Figure 1
was calculated as follows L

V= Y 2)
where V is the vehicle’s speed, and At is the time difference between the time measured at point A and
the time measured at point B in Figure 1. This paper proposed a method for measuring the speed of
vehicles driving along up to two lanes. The proposed method for calculating the speed of vehicles
obtained information about vehicles on the road differently compared with the existing method for
measuring the speed of vehicles on the roadside. It simultaneously measured the speed of operating
vehicles that drove in multiple lanes and assumed that vehicles moving in one lane did not interfere
with vehicles moving in other lanes.

Four LiDAR sensors mounted on a drone were used to detect vehicles moving in the first and
second lanes. Two LiDAR sensors were used in one lane to detect the vehicle entry/exit at the measuring
point. The front sensor scanned the vehicle entry measurement point, and the rear sensor scanned
the vehicle exit measurement point. The data measured in each lane was transmitted to the ground
computer by including the header information for each lane in a data frame with the TCP protocol
setting. The ground computer could distinguish measurement data of each lane based on header
information of the frame.

The angle (0) between the drone LiDAR sensors was fixed. The moving vehicle was measured
while the angle was fixed. In Figure 1, the distance (L) increased when the drone was flying upward,
and the distance (L) decreased when the drone was flying downward. The distance between the
measuring points was controlled by the drone’s height position. In Figure 1, the drone LiDAR sensor
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measured two points (entry/exit) in each lane. This data was transmitted to the ground computer
system using a transceiver. When the vehicle entered/exited to two points, the distance between Hf
and Hr changed. It was determined that the vehicle moved at two points, and the vehicle speed was
calculated by the ground computer system when the distance was changed.
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Figure 1. The vehicle measurement using a sensor set in each lane.
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Figure 2. The vehicle speed calculation flow.

When the drone LiDAR sensor detected the moving vehicle, it could not verify that it was pointing
correctly at the road measurement point. The measurement point of the drone LiDAR sensor could
be identified as the measurement point of the Infrared (IR) laser sensor by aligning the drone LiDAR
sensor and the IR laser sensor. The IR laser sensor measurement point could be identified by the
human eye. The IR laser sensor measuring point became the LiDAR sensor measuring point when the
LiDAR sensor measurement point and the IR laser sensor measurement point were aligned.
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3. Developed Drone System Component

This drone development system is comprised of a drone system and ground equipment and can
be used to obtain information about traffic in multiple lanes. The drone for obtaining information
about traffic in multiple lanes include a multi-lane LiDAR distance detection system [33-36] based on
a LiDAR distance measurement sensor. The drone system consists of an airframe, an autonomous
flight control system, a LIDAR sensor, a gimbal device, a communication and video device, and a
video camera that can transmit video, vehicle speed, and traffic data. The multi-lane LiDAR detection
system calculates a vehicle’s speed by calculating the distance between two points, as well as the
distance between two points by reference to the distance to the measurement point, and by aligning
the sensor’s constant angle with a sensor set consisting of two LiDAR distance measurement sensors.
Therefore, it is possible to accurately measure the speed of a vehicle regardless of the change in altitude
of the UAV during flight. In order to minimize damage in the event that the drone crashes, the direction
of the sensor is set in such a way that it can be measured by stopping and hovering in the direction
directly above the shoulder.

Figure 3 shows the drone that was developed in this study. It consisted of a propeller, a Flight
Control Computer (FCC), a gimbal, a multi-lane detection system, and a camera. The developed drone
was designed to be a quadcopter drone with four propellers due to weight considerations. The FCC
controlled the drone’s flight and various devices that were mounted on the drone. The communication
system in the drone was equipped with a transceiver so that a remote controller could control the
drone’s flight and transmit data from the drone to the computer on the ground using Radio Frequency
(RF) communication. It was difficult to continuously measure at a specific point because the drone
aircraft would shake due to changes in direction. The gimbal was equipped with a three-axis gimbal to
maintain the payload attached to the drone in constant balance. The vehicle detection module consisted
of a LiDAR sensor, a camera, and a transceiver. The multi-lane vehicle detection system consisted of a
LiDAR distance measurement sensor and a vehicle detection module. The vehicle detection module
detected a moving vehicle in a lane, and two LiDAR sensors were needed to detect a moving vehicle in
one lane. The drone of this study was composed of four sensors, with the vehicle detecting the 1st and
2nd lanes simultaneously.

FCC & Communication System

P4

Gymbal

Multi- Lanes Detection system
(Sensor set)

Vehicle Detection Part T~
a Camera

Figure 3. The components of the developed drone.
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The multi-lane LiDAR vehicle detection system had an interface port, by which the system could
be connected to the sensors for each lane, a Central Processing Unit (CPU) circuit part that could
perform calculations, a memory slot for data storage, and an external communication port. The camera
transmitted images of the road to the computer on the ground to check the traffic flow.

Figure 4 presents a block diagram of the control system for the multi-lane traffic information
detection module. The diagram shows information about a vehicle that was derived from the calculation
of the distance between two points, the front/rear sensor measurement values, and information about
the installation angle for the calculation of a vehicle’s speed. Figure 4 shows that the control system
for estimating a vehicle’s speed had two parts: a vehicle detection part and a ground control part.
The vehicle detection part consisted of a camera and a Detection Information Module (DIM). The ground
control part comprised a Detection Control Module (DCM) and a server. The camera of the vehicle
detection part transmitted images of a vehicle’s entry into and exit from the measurement point
to the ground control part using 5.8 GHz RF communication. The Detection Information Module
transmitted the information obtained by the drone’s sensor set to the ground control part using
915 MHz RF communication. The Detection Control Module of the ground control part shown in
Figure 3 calculated the vehicle’s speed and the traffic volume using the information received from the
detection information module and stored the data in the server. In addition, the Detection Control
Module transmitted a vehicle detection message to the detection information module and saved the
video image data in the server in order to process data received from the camera of the vehicle detection
part. The multi-lane speed and traffic detection function calculated the traffic volume in each lane
and the speed of vehicles, using the information obtained by the front/rear sensors and transmitted
from the detection information module, and stored the acquired data. The detection confirmation
displayed a video taken during the data collection time and a still screen at the time a vehicle was
detected through the video capture device to provide information about the time of the video and the
still screen. The detection information generation parameter remotely set various parameters in order
for the Detection Information Module to detect vehicles.

Vehicle Ground
Detection Part Control Part
HDMI
Transform
e >
.Detect Information \ Lane info log Traffic )
.Selected range data information
.Status o = store
DIM . DMC —
D - S —] Video
.Start/Stop = information
.Time-Sync . store
Video Lo
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, .Sampling Rate 8
D Detection S Speed
measurement measurement

Figure 4. The detection and speed measurement of the module control system.

e The generation of information about speed was indicated by the setting of the angle of the
front/rear sensor for each lane.

e The indicator was set on/off to check the exact measurement point indicated by the sensor when
the drone moved to the measurement point.
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e The drone moved to a measurement point and collected measurements about traffic during
stationary flight. In this mode, the speed of vehicles moving in multiple lanes was measured.

e The debug mode was set to display the raw information obtained by the multi-lane detection
sensors and to check for the presence or absence of a vehicle’s detection.

e  When the calculation of a vehicle’s speed was completed, the information about the speed
was logged.

4. Vehicle Detection and Speed Analysis Measurement

The detection information analysis employed the Detection Information Module’s vehicle detection
and the Detection Control Module’s speed measurement. The file containing the original information
that was collected by the detection information module extracted the traffic volume and the speed of
the vehicle. The multi-lane moving vehicle detection parameters, such as Hf, Hr, and sensor angle,
were vehicle detection algorithm parameters that were included in the header of the file containing the
original information.

The speed measurement for each lane extracted the speed of vehicles in each lane at the time
when the front/rear sensor sensed the vehicle. The vehicle detection parameters consisted of a base
slope to determine entry/exit from the measurement point, an on-off wait switch, and front and rear
sensor angles for each lane. Once vehicle detection and a speed calculation were complete, the data
were stored in the same log file used by the Detection Control Module function, and the detection
information about all vehicles was displayed in a graph.

Figure 5 shows a block diagram of the vehicle detection information for the vehicle detection
algorithm and the speed calculation algorithm. The parameters for the vehicle detection algorithm
were set in BtnModify. BinPlayCtrl operated the LiDAR front/rear sensors for the vehicle detection and
speed information generation using the parameters set in BtnModify when there was a detection event.

Sensor Typed .
« Speed Typed - Fl/le Raw Path
Btn
Modif

Data

y P !
rocessing
Event (

AN _ Log_save_flag

Event Bin
Save
Btn
Stop

Figure 5. Block diagram of detection information for data processing.

BtnStop stopped detecting vehicles when it received a stop event message from the DCM.
Then, information about a vehicle’s speed was generated in order to process the data collected by



Electronics 2020, 9, 1136 8 of 16

BtnPlayCtrl. BinSave stored log files that were used to transmit data to the computer on the ground,
which processed the data acquired by the front/rear sensors. The DCM loaded the raw data from the
DIM into BtnRawpath.

The block diagram of information about a vehicle’s detection and speed for data processing
contained the following:

e BtnModify: Applied the vehicle detection parameter to the vehicle detection algorithm.

e  BtnPlayCtrl: Started vehicle detection and speed generation.

e  BtnStop: Stopped vehicle detection and speed generation.

e BtnSave: Saved the created information about speed in a log file.

e BtnRawPath: Loaded the file containing raw information from the DIM.

e  Data Processing: Detected vehicles and calculated their speed according to an event message.

Figure 6 shows the hierarchical control procedure for each vehicle detection and speed calculation
event in the detection information analysis shown in Figure 5. BtnPlayCtrl controlled vehicle detection
according to the event message from the DCM. The drone detected moving vehicles when BtnPlayCtrl
received an ‘operate’ message, and the drone did not detect vehicles when BtnPlayCtrl received a ‘stop’
message. BtnModify operated when vehicle detection was not required and changed each parameter
setting at this time. BtnSave created a log file and created a header file to save the log file when it
received a ‘start saving’ event message. BtnSave stopped saving the log file and the header file when
the state of the message was changed to ‘end’. BtnStop was applied when the user wanted to change
the status of an event. In this mode, it stopped both the measurement of a moving vehicle’s speed and

log file creation and storage and was used to change parameters again.

BtnPlayCtrl BtnModify

Raw data open State != get data

Parameter
cmd=pause change Q Set_config()
tate chang tate change
Event: Event=pause
BtnSave BtnStop
(start memo) && (raw data open)
close Set event Event=
log file flag vent=stop

Figure 6. The hierarchical control procedure for each event.
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The hierarchical control procedure for each event was as follows:

e BtnPlayCtrl: Saved raw data by changing the status of each event in the analysis of vehicle
detection information.

e  BtnModify: Changed the parameters when it was not in data acquisition mode.

e BtnSave: Created the log file and the header file and saved the log file.

e  BtnStop: Updated the data display event to ‘stop’.

Figure 7 shows the Hierarchical Control Procedure (HCP) for the extraction of the data from the
DIM in the vehicle detection part. The thread was operated at intervals of 8 ms and executed functions,
such as initialization, data collection, and data processing, according to the operation state in order
to extract information about detected vehicles. The data processing unit controlled data acquisition
according to the event state of each cycle. A speed error occurred in the study due to diffused reflection
or sensor receiver signal noise. In particular, the speed error was greater when the sensor scanned
the wheels of the vehicle. The average filter was used to minimize the effect on the error. Since the
research concept was set to detect a vehicle over 15 m, an error occurred due to the diagonal scanning
of the sensor. This error was corrected by processing it as a DC offset.

Thread function data
processing

Data processing C Everytime:8ms
state machine

State is idle
— &&

¢ State is pause State is get data
Event is play
Event is stop Event is play Event is stop Eventis play

Init
_parameter State Raw

( change change data
State Data
=get data State State filtering

=idle =get data

Detection

Speed

Figure 7. The Hierarchical Control Procedure for data analysis.

When the drone arrived at the measurement point to detect vehicles, it would receive an event
message from the DCM telling it to initialize the parameters for vehicle detection. The drone would
transition to a standby state and would not detect vehicles when the DIM received a ‘stop” event
message from the DCM. The drone would transition from the standby state to the vehicle detection
state when the DIM received an event message from the DCM stating that it was operational. The drone
transitioned between states according to the messages from the DCM, which controlled vehicle
detection. The data obtained by the drone were transmitted to the DCM, and the DCM calculated the
vehicle’s speed by processing the data received from the DIM.
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The procedure shown in Figure 7 was as follows.

o In the initial state, the parameters were initialized, and the graph output’s state was changed.

e  The algorithm’s state was changed to acquire data.

e  Filtering was performed after obtaining raw data.

e The vehicle detection algorithm was applied to extract the data rate.

o  The speed calculation algorithm was applied using the data from the vehicle detection algorithm.

5. Experiment

Figure 8 shows the distance-measuring sensor that measured the distance between the drone
and the road. The sensor was manufactured by using a Lightware’s SF30C LiDAR sensor.
The distance-measuring sensor was fixed in place, and the target was moved to measure the distance in
order to determine the accuracy of the developed distance-measuring sensor. The maximum detection
distance of the distance-measuring sensor was found to be 100 m. The sensor had a beam angle of
3.5 mrad.

Figure 8. The distance-measuring LiDAR sensor.

Figure 9 shows the peak-to-peak measurement of the distance from 10 m to 100 m using the
distance-measuring sensor shown in Figure 8. The measured distance in Figure 8 was tested by using the
drone from 10 m to 100 m after taking into consideration the minimum and maximum distance from the
ground required for safe flight. The experiment measured the distance between the distance-measuring
sensor and the target while changing the distance in 10 m increments (repeated 10 times for each
distance). The results of the experiment showed that the maximum measurement distance difference
error was 7 cm at 100 m, and the minimum measurement distance difference error was 3 cm at 20 m
and 80 m. The average peak-to-peak distance difference error of the distance-measuring sensor was

4.5 cm.
8
7
6
5
4
3
2
1
0
10 20 30 40 50 60 70 80 90 100

Distance (m)

Error(Peak to peak)-(cm)

Figure 9. The measurement speed error according to the change in distance.
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Table 1 shows the average, maximum, minimum, and peak-to-peak measurement for each distance
from the distance-measuring sensor. When the measurement distance was 60 m and 80 m, the average
measurement distance was 60.02 m and 80.02 m, respectively. The sensor produced the minimum
difference in measurement distance at 60 m and 80 m. When the measurement distance was 100 m,
the difference in measurement distance was at its maximum due to the average measurement distance
of 100.7 m. The maximum measurement distance at 100 m was 101.1 m, which was the maximum
measurement difference shown in Table 1. The maximum measurement distance at 80 m was 80.03 m,
which was the minimum measurement difference shown in Table 1. Since the minimum measurement
distance of 80 m was 80 m, this distance was the most accurately measured distance in the experiment.
The minimum measurement distance of 100 m showed the maximum measurement difference to be
100.4 m.

Table 1. Distance measurement according to the change in distance.

Distance (m) Average (cm) Max (cm) Min (cm) Peak to Peak (cm)
10 1003.519 1005 1001 4
20 2004.823 2006 2003 3
30 3004.391 3007 3002 5
40 4007.657 4010 4006 4
50 5003.617 5006 5001 5
60 6002.320 6006 6002 4
70 7003.086 7005 7001 4
80 8002.362 8003 8000 3
90 9005.368 9010 9004 6
100 10,070.568 10,110 10,040 7

Figure 10 shows images taken during an experiment performed to compare a speed-gun with the
developed drone and confirm the accuracy of the speed measurements from the system developed in
this study. The drone measured the speed of a moving vehicle in only one lane and then transmitted
the data to the ground control part to calculate the speed in the DCM. The number shown in red
and yellow in Figure 10 was a measurement of the speed at which the vehicle moved between the
speed-gun and the drone. Table 2 shows the results of the test conducted on one road. In the 5th
experiment, the difference in measured speed between the speed-gun and the drone was the smallest
(0.17 km/h). In the 3rd experiment, the difference in measured speed between the speed-gun and the
drone was the largest (4.34 km/h). The average difference in measured speed between the speed-gun
and the drone for a vehicle moving in only one lane was 1.47 km/h. Table 2 shows the measured speed
values of the drone and the speed gun for the detection vehicle.

Table 2. Data on the velocity of vehicles in one lane measured using a speed-gun and the developed drone.

Test Speed-Gun Developed Drone Difference in Speed
(km/h) (km/h) (km/h)

1 31 31.42 0.42
2 23 244 14
3 38 42.34 4.34
4 28 29.71 1.71
5 50 50.17 0.17
6 60 63 3

7 59 59.68 0.68
8 48 48.09 0.09
9 68 70.01 2.01
10 83 82.16 0.84
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Figure 10. Comparison of speed measurements from a speed-gun and the developed drone.

Table 3 shows the drone and speed-gun measurement data for the vehicle speed in multiple
lanes. Existing equipment used a speed-gun, and the drone’s height was a fixed flight (hovering) at
35 m above the road. In the experiments, the vehicle speed was measured 17 times in multiple lanes.
The vehicle speeds measured using the speed-gun and the drone in the 16th experiment on the first lane
were 55 km/h and 54.7 km/h, respectively. The difference in measured speed between the two pieces of
equipment was 0.3 km/h, which is the minimum value shown in Table 3. The vehicle speeds measured
using the speed-gun and the drone in the 6th experiment on the first lane were 85 km/h and 78.19 km/h,
respectively. The difference in measured speed between the two equipment was 6.81 km/h, which is
the maximum difference in measured speed shown in Table 3. The vehicle speeds measured using
the drone and the speed-gun in the 6th experiment on the second lane were 84.78 km/h and 85 km/h,
respectively. The difference in measured speed between the two pieces of equipment was 0.22 km/h,
which was the minimum value obtained in the second lane during the experiment. The maximum
difference in measured speed between the two pieces of equipment in the second lane was obtained
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during the 15th experiment. At this time, the vehicle speeds measured using the drone and speed-gun
were 44.68 km/h and 50 km/h, respectively, and the difference in the measured speed was 3.32 km/h.

Table 3. Data on the velocity of vehicles in multiple lanes measured using a speed-gun and the
developed drone.

1st Lane 2nd Lane
Test Developed Drone Speed-Gun Developed Drone Speed Gun
(km/h) (km/h) (km/h) (km/h)
1 58.28 55 55.72 55
2 69.69 65 67.38 65
3 78.04 75 73.32 75
4 27.47 25 27.43 25
5 11.46 X 11.76 X
6 78.19 85 84.78 85
7 88.96 84 X 84
8 41.5 40 40.52 40
9 10.76 10 10.84 10
10 35.5 32 35.01 32
11 25.33 24 24.32 24
12 46.62 43 44.62 43
13 57.13 55 57.13 55
14 38.52 36 40.16 36
15 53.7 50 44.68 50
16 54.7 55 56.21 55
17 93.66 93 93.83 93

In Table 3, the ‘X’ symbol indicates that the vehicle’s speed was not measured. The results of the
experiment in multiple lanes showed that there were some differences in measured speed between the
developed system and the existing piece of equipment. The reason for these differences was that the
drone scanned the beam using a diagonal line, so a vehicle’s position and the time at which it was
detected might vary depending on the scanning position and the vehicle’s driving pattern. In addition,
it might be that the differences in measured speed occurred because of the difference in the time
of detection of the entry and exit sensors. If the distance between the two sensors was insufficient,
a vehicle might not be detected, and its speed might not be measured. Table 4 shows Root Mean Square
Error (RMSE) and the vehicle detection rate for the data shown in Table 3. The RMSE for the first lane
was 3.30 km/h, and the RMSE for the second lane was 2.27 km/h. The vehicle detection rate was 100%
in the first lane; however, in the second lane, the vehicle detection rate was 94.12% because one vehicle
was not detected. The average vehicle detection rate was 97.06%.

Table 4. RMSE (Root Mean Square Error) and vehicle detection rates of the developed drone in multiple lanes.

RMSE Vehicle Detection
(km/h) Rate (%)

1st lane 2.83 100

2nd lane 1.83 94.12

There were two reasons for the difference in speed measurements obtained during the experiment.
First, since the developed drone sensor scanned the beam diagonally, the detected position of a vehicle
varied depending on the scanning position and the vehicle’s driving pattern. Second, the scanning
distance value was indirectly calculated by the distance values from two sensors and the proximity
angle when a vehicle failed to be detected. The scanning distance value increased the difference in
measured speed due to the diffusion of reflections or noise from the sensor.
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6. Conclusions

In this study, a drone to accurately and safely measure the speed of a vehicle moving on a road
was developed. The drone tested the moving vehicle detection 17 times in a hovering flight. The drone
measurement performance was compared with the vehicle speed measurement. The proposed drone
system was comprised of the drone for the detection of moving vehicles and ground equipment for
the processing of data. The difference between the drone system proposed in this study and the
existing speed measurement system was that a set of sensors could be installed on the drone to acquire
information on all vehicles moving in each lane. To determine the accuracy of the speed measurements
from the developed drone system, its performance was compared with that of a speed-gun that is
commonly used to measure vehicle speeds. The advantages of the proposed drone system were as
follows: (1) it reduced the risk of roadside traffic accidents, which the use of the existing method for
measuring vehicle speeds entails. (2) It allowed one to obtain information about the speed of vehicles
without the need to install a gentry-structure. In addition, the system improved the accuracy of vehicle
speed measurements on roads affected by foggy and dark environments. Since the weight of the sensor
module and the gimbal was located below the center of the drone, it had a wind resistance of up to
15 m/s when an appropriate Proportional Integral Derivative (PID) control setting was used. The weight
of the drone developed in this study was 20 kg, including a dummy. The drone was equipped with
an 8 kg dummy to fly at a wind speed of 15 m/s. When the dummy was removed from the drone,
it could fly up to 10 m/s wind resistance, with the drone weighing 12 kg. The drone’s movement during
the stationary flight (hovering) could be measured within 1 m. It would be dangerous to test the
entire system on a public road without being able to ensure that the drone’s flight would be 100% safe.
In addition, it was impossible to fully consider all road irregularities because the drone needed to fly in
a place without streetlights and wires. In the future, research should be conducted on how to improve
the drone’s wind resistance so that it remains stable during flights in strong winds. Besides, a method
that uses an average filter and a speed correction algorithm for reducing the difference in measured
speed must be developed.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations

The following abbreviation are used in this manuscript:

LiDAR Light detection and ranging

TCP Transmission control protocol
DC Direct current

DCM Detection control module

DIM Detection information module
HCP Hierarchical control procedure
RMSE Root mean square error

PID Proportional integral derivative
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