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Abstract: Multifactor authentication is a relevant tool in securing IT infrastructures combining two or
more credentials. We can find smartcards and hardware tokens to leverage the authentication process,
but they have some limitations. Users connect these devices in the client node to log in or request access
to services. Alternatively, if an application wants to use these resources, the code has to be amended
with bespoke solutions to provide access. Thanks to advances in system-on-chip devices, we can
integrate cryptographically robust, low-cost solutions. In this work, we present an autonomous device
that allows multifactor authentication in client–server systems in a transparent way, which facilitates
its integration in High-Performance Computing (HPC) and cloud systems, through a generic gateway.
The proposed electronic token (eToken), based on the system-on-chip ESP32, provides an extra layer
of security based on elliptic curve cryptography. Secure communications between elements use
Message Queuing Telemetry Transport (MQTT) to facilitate their interconnection. We have evaluated
different types of possible attacks and the impact on communications. The proposed system offers an
efficient solution to increase security in access to services and systems.

Keywords: elliptic curve cryptography; authentication protocol; cryptographic devices; security keys

1. Introduction

Servers and services define authentication schemes to avoid unauthorised access. Accordingly,
they are essential elements to implement a secure system. A large number of computer attacks take
advantage of vulnerabilities in authentication systems. The Common Vulnerabilities and Exposures
(CVE) is an updated and growing list of known security vulnerabilities. In particular, among them
are those related to authentication [1]. It is important to implement mechanisms to strengthen and
guarantee the authentication of users and systems.

A first approach is to use passwords to control access, but this is insufficient as they may be
susceptible to attacks based on dictionaries, social engineering, or access to databases where credentials
are stored [2].

Some systems have been proposed to avoid the use of user keys, such as Pico [3], where a secure
authentication protocol is established.

Adding additional elements to a password allows an extra security component. Systems with
multifactor authentication are often used to improve authentication, ensuring that if the security of an
element is compromised, the other one can ensure that access remains secure.

Cryptographic resources such as symmetric and asymmetric encryption, hashing, and public key
signing are strong elements for solving mathematical authentication. Besides, it is vital the use of true
random number generators.
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Vulnerabilities are often primarily related to how solutions are implemented. It is crucial to
be careful in choosing the right combination of resources to prevent attacks. We can find many
authentication systems based on the elements indicated previously. In particular, elliptic curve-based
public key cryptography [4] has a significant impact on the development of current robust systems.

We can combine passwords with some other elements to leverage security. There are solutions
based on mobile applications [5], or systems based on sending keys by SMS as Azure integrates into its
portal [6]. However, this kind of authentication has well-documented shortcomings [7]. If a duplicate
SIM card is obtained through social engineering or impersonating the owner, the mobile phone-based
security may be compromised.

Users are progressively sensitised to the privacy of their mobile phone and do not want to install
applications to access work-related resources. Moreover, if they change their phones, it involves
reinstalling the software. For this reason, many users prefer to have an external authentication element.

Electronic devices with cryptographic resources allow adding extra security and are more
challenging to duplicate and manipulate. For a long time, we can find solutions based on smartcards
or access tokens that we will describe in the Related Work section.

The new system-on-chip devices offer a 32-bit computing capacity, integrated
cryptographic resources, and various communication systems, allowing the integration of new
authentication alternatives.

The authentication process can be approached in different ways, depending on how the resources
are interconnected and what level of security we want to implement. The aim of the proposed
system is to address some of these problems, using an electronic token (eToken) in a multifactor
authentication scheme that prevents duplication and facilitates communication between elements.
The system includes a transparent gateway that allows integration with the systems currently in use,
which simplifies its global integration. It also uses secure communications based on Message Queuing
Telemetry Transport (MQTT). This model is more flexible than the usual authentication protocols since
it allows to authenticate remote systems or to be combined with multi-eToken authorisation.

This paper is organised as follows: In Section 2, we introduce related works. Section 3 describes
our proposed system. Section 4 shows the security analysis of the main components based on possible
attacks. Section 5 gives a detailed experiment setup and results. Finally, in Section 6 we present
some conclusions.

2. Related Work

A standard solution for identifying users in High-Performance Computing (HPC) and cloud
environments is to authorise access with a public/private key pair, from a trusted client node. A concern
is the uncontrolled use of public/private keys. Users can forget where they have installed them, so the
access to this personal computer can comprise all of them [8]. If someone accesses the original computer,
access to all nodes is compromised. To resolve this, Cloudfare [9] uses short-lived certificates and
single sign-on (SSO) credential-based authentication.

Furthermore, Kerberos [10] was proposed in 1988 as an authentication system and was updated
to version 5 in 2005 to resolve some limitations in RFC4120 [11]. It is used as an initial authentication
mechanism to access Windows and Linux systems. It can also be used in other environments [12],
but it requires a “kerberisation” process, which limits its use in applications that are not foreseen.
These systems were designed when there were limitations in communication networks, processors
were slower, and public key cryptography was less used. The Kerberos detach authentication process
from the service server creates a centralised control for different services. Additionally, Kerberos is
based on the use of private key cryptography, so it is essential to select robust passwords to avoid
dictionary attacks. Some security analyses [13,14] show this weakness in the communication phase
which represents a real challenge for this protocol. It also requires time synchronisation between
computers, since tickets are based on time stamps. Some extensions to Kerberos have been proposed,
such as described by Tbatou et al. [15]. They define an authentication protocol for distributed systems
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based upon Kerberos V5 and Diffie–Hellman models, but they are not multifactor authentication
schemes. To make Kerberos more secure, Quoc et al. [16] proposed to modify the initial exchange in
Kerberos 5 by using biometric data and asymmetric cryptography. They used a .Net DLL library MCC
SDK for fingerprint biometric authentication, so it is limited to Windows platforms. Moreover, these
solutions do not solve how to adapt the authentication scheme to other protocols.

Additionally, we can find some multifactor authentication resources to enhance security that trust
on a single component. There are some time-based one-time password (OTP) systems, such as Google
Authenticator [17], which involve an approximate synchronisation to generate the access code. Further,
the user needs to access another program to obtain the code, type it, or wait because the time expiration
is close, so it is generally somewhat inconvenient to use. Although Google has developed this OTP
scheme, it prefers that its employees use security keys based on hardware tokens [18].

Some authentication models have been proposed, such as systems based on communication
latency [19], but these systems are neither applicable in clusters, since the access times between nodes
are almost constant and independent of the Internet connection, nor in environments with access times.

Smartcard-based systems [20] have been used for a long time to identify in a safe way. These cards
require a reader that could be integrated into a keyboard, laptop, or USB reader. The problem is that,
over time, some drivers have stopped working because they have become obsolete by the operating
system versions. New smartcards also support near-field communication (NFC) which facilitates
access but involves using a computer as an intermediate element to authenticate. If we do not have
this element, it is not possible to carry out the authentication. Furthermore, the user cannot validate or
cancel a request if the card is inserted.

The use of token-based systems has grown because they are simple elements to use. It is a resource
that the user owns, so it is not enough to have a password or a public/private key pair. Besides, the user
validates by using a click to request access.

The Fast Identity Online Alliance (FIDO) specified two authentication frameworks and protocols:
the universal authentication framework (UAF) for password-less authentication from smart devices,
and the Universal Second Factor protocol (U2F) [21] for the authentication of two factors using a small
hardware token to accompany a non-FIDO smart device that has a FIDO-compatible web browser.
Both operate on the same underlying principle of using asymmetric encryption for authentication,
and both have now been combined in the World Wide Web Consortium (W3C) Web Authentication
Recommendation (FIDO2) [22].

Yubiko [23] sells different U2F security keys. According to the manufacturer, to prevent attacks on
the YubiKey, which might compromise its security, the YubiKey does not permit its firmware to be
accessed or altered. However, a bug in the randomness of some of these keys (FIPS Series) cause 80 bits
of a nonce to be fixed. If it is used for Elliptic Curve Digital Signature Algorithm (ECDSA) signatures,
it could allow an attacker who gains access to several signatures to reconstruct the private key [24]. So,
if you use a device that cannot be reprogrammed and critical failure is detected, finally you have to
throw it away.

Chadwick et al. [25] propose the use of mobile phones with fingerprint readers to authenticate
users with UAF, instead of using users and access codes. Ciolino et al. [26] have studied the impact on
the usability of security keys and the importance of using them in a broader context of web services.
There are provisioning schemes for U2F-based IoT devices such as U2Fi [20], but these do not offer a
direct solution to communicate between client and server independent applications.

OAuth is a solution that tries to unify the authorisation of different applications. The first version
of OAuth dates from 2007, and in 2012, OAuth 2.0 was defined [27]. This protocol allows to authorise
third-parties to access their server resources without sharing their credentials, and it is mainly used in
web or mobile applications. According to Chae et al. [28], it has many security vulnerabilities in the
third-party application certification procedure. OAuth 2.0 is not an authentication protocol, though,
it can be used as a base layer for another authentication protocol such as OpenID Connect [29]. OpenID
Connect 1.0 allows clients to verify the identity of the user based on the authentication performed by
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the authorisation server. According to Li et al. [30], real-world implementations of both schemes are
often vulnerable to attack, and in particular to cross-site request forgery (CSRF) attacks.

OpenID Connect and OAuth 2.0 do not include a multifactor authentication but an external
solution to provide it exists such as SAASSPASS [31], with a mobile app. Also, SecSign [32] provides an
extension for two-factor authentication using a mobile phone. However, as it was commented before,
users are reluctant to install applications in their phones to access work resources.

Another solution is to combine different elements like single sign-on (SSO) with two-factor
authentication and Security Assertion Markup Language (SAML). We can use SAML for exchanging
user authentication data as Extensible Markup Language (XML) between identity providers and service
providers. SSO is a scheme that uses a single authentication to allow access to multiple applications by
passing an authentication token seamlessly to configured applications.

However, at the end, if you need to implement a solution you have to use different layers provided
by diverse developers, so it could be critical the compatibility of the different version of each component
to get a stable solution. We should avoid using a sledgehammer to crack a nut.

In an HPC environment, we can find a very diverse ecosystem of applications. Not only we have
web access to a platform, but also we need to access resources and applications located internally in
the cluster, so there is usually no direct access to facilitate authentication on computers and users that
are on the private intranet network.

These computing environments are continually growing with new massive data storage systems,
computing models such as map/reduce, or new paradigms that arise when trying to tackle complex
computing problems that can be more easily solved by new communication models. Many of these
systems are based on a user and password scheme as the first level of authentication.

There are specific solutions for Hadoop such as the one proposed by Khalil et al. [33], based on
Trusted Platform Module (TPM), but this solution cannot be used in other applications and depends
on the TPM installed in each client node, so it locks the user to a specific client node.

In addition, another general problem in multiple protocols is that they do not include a
centralised system that can easily control the revocation of communications in real-time. Typically,
when client–server communication has been authorised and established, there is no direct way
to cancel it. In these cases, different rules can be set at the firewall level, but these require
superuser permissions.

3. Design and Implementation

The proposed system offers a multifactor authentication system that can be used in various
configurations; for instance, a basic client/server model, an HPC environment where it is possible to
access multiple services and servers, or in a cloud environment taking advantage of various resources
such as sending messages or virtualised servers.

Although it could itself be used as a single authentication element, it is recommended to
have multiple elements that strengthen authentication due to the increase in the number of
cyberattacks. That is why this system is proposed as an additional element of authentication
that can work transparently.

This model allows that security can be increased on critical systems with combined authentication,
that is, not only authenticating with a user but also with a second user to validate access.

The proposed system allows any application based on TCP/IP (network databases, big data
systems, browsers) to use this authentication model. Besides, it supports remote authentication; that is,
the user that authorises does not need to be directly connected to the service server. Other systems like
U2F are mainly oriented to be used with browsers and session authentication.

This system monitors communications in real-time, keeping a record of active communications,
so if necessary, a specific communication can be cut instantly. Additionally, the system can be installed
and configured without the need for root privileges, making it easy to deploy the system.



Electronics 2020, 9, 1148 5 of 26

It is highly scalable because it is based on the Message Queuing Telemetry Transport (MQTT)
model, with diverse broker implementations offering high availability and redundancy. MQTT servers
are widely used in IoT infrastructures, and various cloud providers also offer MQTT-based services so
they can take advantage of the services they offer.

The gateway server prevents denial of service attacks because the ports are closed and only
activated when the request is required.

The protocol is open, allowing the development and implementation of various solutions,
with different public/private key models.

Our eToken can verify the context; that is, it can detect which Bluetooth or WiFi resources are
closed for the eToken in order to authorise in a valid environment. This operation can be remotely
activated by the administrator who can control which resources are valid.

The system separates the authentication service from the system being accessed, as Kerberos
does, although in our proposal, we do not need time stamps and the authentication is based on
public key algorithms. In general, other authentication systems require direct access from client to
authentication servers, but in our scheme, communications go through the MQTT broker, which avoids
direct connections facilitating global connectivity among all the elements.

This eToken is based on ESP32 [34], a low-cost device with a 2-core processor at 240 MHz, which
has support for cryptographic functions and includes WiFi and Bluetooth communications. This circuit
has been used in other ECC-based cipher suites for IoT, such as [35]. Although it has a USB connection,
it can work independently and does not need to be connected to USB, so it is ideal for carrying it in a
portable way and working with equipment that does not have access to USB ports.

Systems based on smartcards require some type of reader, either contact or recently NFC.
The proposed system is independent, so it does not need any additional reader because it uses
WiFi connection.

One of the advantages of our system over cryptographic circuits or security keys that cannot
update is that if a vulnerability is detected, our system can be reprogrammed and updated. The idea
is to have a low-cost open system that can be used for secure authentication, and that can even be
extended with the use of cryptographic circuits like ATECC608A [36].

3.1. System Overview

The proposed system consists of a set of functional elements configured on physical or virtual
resources. The functional elements are:

• Users: who access the system;
• Services: offered by the programs through TCP connections;
• Servers: computers where the services are installed;
• Clients: computers from which services are accessed;
• eToken: devices that authenticate the request by the user.

All these elements can be gathered into groups to facilitate configuration. We can define some
access control list (ACL) rules on these elements. Each item has a 128-bit UUID and a public/private
key pair that allows the system to authenticate the requests. Each element generates its keys, so the
private key never leaves its environment.

The system is hybrid because each element authenticates other elements using public keys, and is
combined with a centralised model that authorises access. Since authorised public keys can be added
and removed, the configuration server can send messages for all items, including eTokens, to update
the list of authorised items.

There are other additional elements that are:

• Configuration server: this allows to modify the configuration of each element remotely;
• Authentication server: this authorises the request for access to services based on ACLs;
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• Gateways: transparent clients and servers that redirect network connections;
• MQTT broker: server for exchanging messages.

Some of these resources can be implemented on the same node but have been independently
designed, allowing a distributed model. These can be separated according to the needs of
the implementation.

Table 1 shows a comparison between different authentication schemes, including our model.

Table 1. Comparation of main features among different authentication schemes.

Features Our Proposed
Model

Kerberos +
Biometric Auth [16]

Kerberos + TPM
→ Hadoop

FIDO U2F
Yubikey

Oauth + OpenID
Connect + SecSign Smart Cards

Use public/private
key cryptography Public Private Public (TPM)/

Private(Kerberos) Public Public Public/
Private

Remote nodes
authorisation Yes Yes No Yes Yes No

Scalable Yes No No Yes Yes No

Multiprotocol/
Easy to adapt to
new protocols

Yes Kerberisation/ Only
Windows Only for Hadoop Yes No No

Reprogrammable Yes Yes No (TPM) No Yes No

Password activation Yes No No No No Pin

Combined
authorisation Yes No No No No No

Indirect client to
auth. server
connection

Yes No No No No No

Real-time
revocation control Yes No No No No No

Time
synchronisation-independent Yes No No Yes Yes Yes

3.2. System Architecture

The proposed system is oriented to be distributed and scalable, allowing the control of elements
that can be placed in private infrastructures, cloud environments, or hybrid models. Furthermore,
it allows any application to use this authentication scheme. Hence, it acts as a bridge between client
and server, avoiding having to modify the original applications and offering a reduced impact on
global performances, as described in Section 5.

The communication system is implemented with the following elements:

• Client request service (CRS): this makes the service request to the eToken;
• eToken (ET): this validates the request by the user and the signature;
• Authenticator server (AS): this server verifies the authenticity of the message and requests access to

the gateway server. Another authorisation process checks the ACL rules for accessing the services;
• Gateway server (GS): accepts incoming communication to the server and monitors the

communication in case of revocation;
• Gateway client (GC): allows communication with the gateway server and is integrated with the

client request service.

The advantage of a centralised authentication server is that it simplifies the management of access
rules and avoids the management of certificate revocation. Furthermore, AS can force the cancellation
of the communication instantly, informing the SG that it must close a specific connection.

CRS, AS, GS, and GC are written in Golang. It is a language that allows applications to be portable,
fast, robust, and optimised for concurrency in each architecture. Besides, the system can work with
containers like Docker. ESP32 code is written in C++, using the PlatformIO toolset [37]. Figure 1 shows
how the different elements are interconnected.
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Besides, there are two additional elements:

• MQTT broker (MB): this establishes communication between all components transparently;
as shown in Figure 2.

• Configuration server (CS): the only server authorised to manage any configuration in the system;
• The MQTT protocol based on a published and subscribed system. Thanks to the centralised model

with an MQTT broker, all elements are securely interconnected.
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3.3. Algorithms Used

The algorithms we use are mainly based on: one-way hash functions, elliptic curve cryptography,
Elliptic Curve Integrated Encryption Scheme (ECIES), and true random number generators (TRNG).
In order not to extend the length of this work, the mathematical base of these algorithms is not included,
since it is described in the bibliography here included.

3.3.1. Hash Functions

One-way hash functions are widely used in cryptographic systems [38,39]. They offer a
deterministic value for an input sequence. Given an output value, it is computationally impossible to
find the original input value.
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By default, the system uses the SHA-256 hash function that is considered cryptographically robust,
but it can work with SHA-384 and SHA-512 as well. According to Lu et al. [40], some implementations
of SHA-256 are vulnerable to attacks, so it is recommended to use stronger hash functions. In any
case, other secure one-way functions could be implemented and used thanks to the reprogramming
capability of the eToken.

3.3.2. Elliptic Curve Cryptography

Public key algorithms grounded on elliptic curve are also frequently used in robust cryptographic
communication systems such as Transport Layer Security (TLS) [41]. In particular, the Elliptic Curve
Digital Signature Algorithm (ECDSA) [4] is a variant of the Digital Signature Algorithm (DSA) based
on elliptic curve cryptography. These algorithms are an appealing alternative that are replacing
Rivest, Shamir, and Adleman (RSA)-based systems, in part because smaller key sizes are used in the
elliptic curve to provide an equivalent level of security. In symmetric key algorithms, there is a direct
correspondence between the level of security and the size of the key used. In contrast, in the asymmetric
key algorithms it can change depending on the algorithms used. Table 2 shows a comparison of
different key sizes for the RSA and elliptic curve algorithms and their references according to the
Espressif IoT Development Framework [42].

Table 2. Comparison of key size in Rivest, Shamir, and Adleman (RSA) and Elliptic Curve Digital
Signature Algorithm (ECDSA).

RSA Key Size ECDSA Key Size ESP_IDF Curve

1024 bits 160–223 bits secp192r1, sec192k1
2048 bits 224–255 bits secp224r1, sec224k1
3072 bits 256–383 bits secp256r1, secp256k1, bp256r1
7680 bits 384 bits–511 bits secp384r1, bp384r1

15360 bits 512 ≥ bits sepc512r1, bp512r1

One difference between RSA and ECDSA is that RSA allows signing and encryption, while ECDSA
only allows signing. Alternatively, elliptic-curve Diffie–Hellman (ECDH) is based on the Diffie–Hellman
algorithm [43] using elliptic curve and allows the exchange of a safe value between two elements that
can be used later in symmetric encryption between both.

The Standards for Efficient Cryptography Group recommends the domain parameters for each
curve [44]. The signature function used is based on any of the currently used elliptic curves implemented
in MBED TLS [45] such as:

• FIPS 186-4: secp192r1, secp224r1, secp256r1, secp384r1, secp512r1;
• Brainpool: bp256r1, bp384r1, bp512r1;
• Koblitz: secp192k1, secp224k1, secp256k1.

We can find some implementations of elliptic curve algorithms as described by Liu et al. [46]
using a TI MSP430. It is a 16-bit microcontroller with a top speed of 25 MHz. Our low-cost eToken,
based on a dual core 32-bit microcontroller at 240 MHz, outperforms this implementation with reduced
execution times even with larger bit sizes. In Section 4.1, we study the times of different functions for
these elliptical curves used in the eToken.

3.3.3. Elliptic Curve Integrated Encryption Scheme

Elliptic Curve Integrated Encryption Scheme (ECIES) is a hybrid system that combines symmetric
encryption with elliptic curve-based public key cryptography for secure message delivery. The secret
key used for symmetric encryption is hidden using a key derivation function (KDF) and a key agreement
(KA) key exchange function (ECDH). In Reference [47], it is shown in detail how these schemes work.
Figure 3 illustrates how a session key (SKk) is encrypted using this scheme.
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3.3.4. True Random Number Generator

The ESP32 includes a hardware random number generator. If Bluetooth or WiFi are enabled (as in
our case), it uses RF noise as an entropy source and values obtained can be considered true random
numbers. Besides, random number generator functions used by all the elements pass the Dieharder
random number test suite [48].

3.3.5. Combining Algorithms

The hash function is calculated for all sent messages and signed with the private key by the sender
element so that the receiver can validate it.

Since the system is based on public key, it is not necessary to store symmetric encryption keys that
could compromise the security of the system. Furthermore, authentication does not require multiple
messages between client and server as authentication is verified at each step.

We use the notation shown in Table 3 to identify elements and primary functions used during
different stages. Each of the phases involved is described below.

Table 3. Relation of the notation of the components used.

Symbol Meaning

SKk Sesion key
Clc Client
Sn Sesion
Ui User
Tt Token t
Tt2 Possible 2nd token
Sj Server

GWCgc Gateway client gc
GWSgs Gateway server gs
Pub(Ei) Public key element i
Priv(Ei) Private key element i

ESk Ephemeral session key
AS Authentication server

SVCs Service
SEQq Sequence number

CS Configuration server
h() Hash function

Sg(hash,privK) Sign function hash with priv key privK
Vf(msg,pubK) Verify function msg with public key pubK
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3.4. Resource Registration

The system works under a trust model based on a public key scheme, so it is essential to store the
secret keys safely and correctly. To create a new configuration, we define three steps.

3.4.1. Configuration Server Registration

Initially, we initialise the configuration server. This is the only one that can modify the system
configuration of any system resource. It is responsible for:

• Creating a public and private key pair to sign the configuration messages. The public key is
installed on all elements and is, therefore, the only one authorised to make changes;

• Creating the root certification authority to sign the certificates used in accessing the MQTT broker.
The public key of this certification authority (CA) must be installed on all computers and eTokens
to establish secure TLS communication between the elements.

3.4.2. MQTT Broker Registration

Communications between the different elements are made through MQTT messages using secure
TLS-based communications and avoiding possible man-in-the-middle (MitM) attacks.

This MQTT broker needs a certificate that must be signed by the CA, that is, by the configuration
server. MQTT communications can be based on two models:

• Using only the MQTT server certificate, which is verified by clients who must have the public key;
• Using client and server certificates both signed by the CA.

3.4.3. Registration of Functional Elements

All functional elements (servers, clients, users, and eTokens) have to follow the next step to be
included in the authentication system:

• Generate a unique 128-bit UUID;
• A public/private key pair to sign the messages. The private key must be stored safely in each

of them;
• Each element has a configuration profile created by the configuration server to access the MQTT

broker with a user defined for each one. This control mechanism allows cancelling access if
necessary, by deleting the user associated with that element;

• Each resource sends its UUID and public key to the configuration server. Thus, each element
has a set of authorised public keys. So, any request that does not come from any of these keys is
directly discarded.

In the case of the eToken, the USB connection can act as an initial gateway to configure it, and the
initial authorisation is only possible when the device deletes all the keys or is completely restarted,
leaving it empty.

The configuration server must also store the information safely, mainly to prevent false elements
from being modified or added. Thus, when the system starts, the configuration server generates the
configuration of the nodes to connect using the MQTT broker.

When the configuration is changed, the configuration server sends the changes to the elements
that update their information. All elements only need to store the basic configuration and keep it
correctly updated.

In the case of a public cloud, we can have the authentication server and the configuration server
in a safe place, outside the cloud if necessary, so we can physically implement some additional
security measures.
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3.5. Service Request

Once the configuration is established, the system is now available to establish communications
securely. Thus, the service request process can be divided into five steps.

3.5.1. The User Requests eToken to Access Service

The client creates a new session (Sn) identified with a UUID, with a sequence number (SEQq) to
the service (SVCs), and with the corresponding request hash validation signatures. This request is
signed by the user (Ui) (1) and by the client node (CLc) (2) requesting access:

Sgn_user(Sn) = Sg(h(Sn, SEQq, Ui,CLc,SVCs), Priv(Ui)) (1)

Sgn_client(Sn) = Sg(h(Sn,SEQq, Ui,CLc,SVCs), Priv(CLc)) (2)

A robust hash function is used to get a unique value for each request. In addition, each request
has a serial number, which has two advantages:

• They are different messages with different signatures;
• The number is incremental, so the same number cannot be used again.

When an element starts, the configuration server sends a random number from which the count
continues. If the number is less than the previous value or greater than a small window, it sends an
access revocation message informing the configuration server, so the element must identify itself again.

The new request for access to a service is sent to the eToken (Tt). This is an important difference
from the U2F model, where the hardware key does not identify the user. Thus, an eToken that is not
recognised by an authorised user will reject the request.

3.5.2. The Etoken Requests Access to the Authentication Server

After a power-up condition or after a period of time, the user has to log into the eToken to enable
it sending a password as an extra security level.

The eToken has a list of authorised public keys so it can confirm if a user (Ui) from a node (CLc)
has access to the system. This simplifies the configuration of the eToken since it only requires the list of
authorised public keys.

The eToken verifies the signature from the node (CLc) using Vf (msg, pub (CLc)), and if it is valid,
it displays on the screen the request for the user to validate it by pressing a button or by using the
fingerprint sensor if it is enabled. The times required for signature validation are shown in Section 4,
based on the selected elliptic curve.

Additionally, the eToken can verify the context; that is, it can detect which Bluetooth or Wifi
resources are nearby. It must detect a valid environment to authorise. This operation can be remotely
activated by the configuration server which can control which resources are valid.

Since the session identifier (Sn) is unique using a 128-bit UUID, the information is not repeated on
every signature. It is only necessary to sign Sn.

Once authorised by the user and the context, the eToken signature is added (3):

Sgn_eToken(Sn) = sg(h(Sn), Priv(Tt)) (3)

If we define a configuration with multi-user and multi-eToken authentication, the request
authorised by the first eToken is sent to the second eToken to be validated by the second user. In this
case, an additional signature of the second eToken is also included (4).

Sgn_eToken2(Sn) = sg(h(Sn), Priv(Tt2)) (4)

This request is sent to the authentication server for global authorisation and to check all ACLs.
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3.5.3. The Authentication Server Requests Access to the Gateway

The eToken sends the request to the authentication server. This has all the ACL rules that allow
deciding if the Ui user from the CLc node with the eToken Tt has access to the SVCs service. Possible
rules are described later in Section 3.8.

The authentication server verifies all signatures so it can confirm that is a valid request. Then, the
authorisation process checks the ACL rules and, when it validates the request, it signs with its private
key (5):

Sgn_AS (Sn) = sg (h (Sn), Priv (AS)) (5)

This request is sent to the gateway server to enable access.

3.5.4. The Gateway Server Enables the Service

Create a random 256-bit session key (SKk) that will be valid for a configurable time that by default
is set to 60 s. Since the server is the one that generates the session key, there is no need to timestamp, so
it avoids the problem of time synchronisation between nodes.

The server opens the communication port that allows access to the service and sends the SKk
session key using the ECIES hybrid encryption scheme (6) to the gateway client that is integrated with
the initial service request system.

GwMsg = ECIES_Crypt (SKk, Pub (GWCgc)) (6)

The message includes an ephemeral ESk key for a secure exchange using ECIES. The gateway
client receives the message (6) to obtain the SKk session key (7).

SKk = ECIES_Decrypt (GwMsg, Priv (GWCgc)) (7)

3.5.5. Communication through the Gateway

When the client receives the session key (SKk) (7), it requests communication with the server
through the gateway.

The gateway server checks the session key in the list of valid keys and decides whether the
connection is accepted. Invalid connections are rejected after a few seconds, preventing a brute force
attack. If the session key is valid, it establishes communication with the service and the session ID (Sn)
is included in the list of active communications.

If the authentication server receives a communication revocation request, it can send the message
to the gateway server to immediately cut the communication. This revocation can come from the
global supervisor.

The Figure 4 shows the message sequence chart (MSC) between the different elements:
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3.6. Multiservice Authorisation

One of the advantages of this model is that it allows multiple communication channels to be
opened simultaneously with authentication.

In this case, the client requests the service as usual. Thanks to the MQTT model, the authentication
server sends multiple requests to different gateway servers. Thus, each server forwards an opening
message from its communication channel, confirming client access for TCP sockets.

Suppose a Hadoop-based big data application where a client accesses multiple Hadoop servers.
The client creates multiple requests for accessing the servers. In this case, multiple session keys SKk1,
SKk2, ... are created, one for each gateway client that accesses the system.

Sessions can be kept open for a time, which avoids having to authenticate repeatedly. Figure 5
shows how the system performs a multiservice request with multiple servers. Yellow messages have
the session keys that the client receives to access to different services.
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3.7. Message Format

The messages are sent in JSON format to facilitate communication through MQTT and are
processed quickly by the elements.

Every request has a sequence number that increases with each request. The verification confirms
that the number must be greater than the last one received and within a window of 16 values. Values
outside this window are considered anomalous.

One of the configuration parameters is the level of sequence control. In the relaxed security model,
a warning message is generated to the administrator. In strict mode, the administrator must accept the
restart of the numbering.

Thus, after each verification and authorisation, the elements add new JSON fields with the
corresponding signature.

Since each element has its UUID, it is used to distribute the information in the topic hierarchy
used in the MQTT broker. Each service request also has a unique UUID, so there is no overlap in
uniquely determined requests, and there is no collision in messages sent through MQTT. The MQTT
broker is in charge of sending the corresponding message to each node.

The primary communications are made using the following topic scheme:

anb/domain/dst_element_uuid/request/src_element_uuid/

Thus, the element that receives the messages has access to all the subtopics:

anb/domain/dst_element_uuid/

Instead, the sending item only has access to the subtopics:

anb/domain/dst_element_uuid/request/src_element_uuid/

The configuration server is responsible for managing the MQTT broker configuration, MQTT
users, and topic access rules in the MQTT broker. It also informs the elements of the new topics they
must subscribe, allowing the setting to change dynamically.

3.8. Definition of Access Rules

Flexible rules for accessing services can be established based on various combinations of the clients,
users, and eToken nodes. Groups of elements can be defined to facilitate configuration. The YML
configuration file consists of three main parts:

• Element definition (authentication process);
• Group and combined element definition (authentication process);
• Access rule definition (ACL) (authorisation process).

Each element is identified by an alias: its UUID and the name of the file that contains the public
key in PEM format. New aliases can be created and they can contain any combination of other aliases
with the “AND” and “OR” operators.

In the access rules, on the one hand, there are the elements that access: users, client nodes, and
eTokens, and on the other hand, the elements access: servers and services.

It is possible to set any combination of rules that are evaluated in order to authorise access to a
service on a server. As previously mentioned, multiple eTokens can be combined to define a cascading
authorisation in which two users must authorise access to a service, increasing security in the system.

Authentication and authorisation processes work independently, and if necessary, can be separated
in different servers and contexts. YML can be divided into each part, but for practical reasons,
client requests can be solved by the same server.



Electronics 2020, 9, 1148 15 of 26

4. Security Analysis

This section studies the resistance of different elements in the proposed system to frequent attacks
in authentication environments.

4.1. Resistance in the MQTT Broker

In the MQTT-based message delivery model, only the MQTT broker has a listening TCP port, and
all the elements connect to it using two-way TCP sockets. This design allows that the elements do not
have a listening port, and therefore there is no direct way to get into them.

In any case, it is the MQTT broker that must be more robust against attacks. The MQTT protocol
is quite secure and reliable; although MQTT can be considered robust because several MQTT broker
implementations have their security well evaluated, the way it is implemented and configured can
cause issues.

In the proposed model, we use MQTT with certificates, TLS communications, and users with
access rules, which offers several advantages:

• Communications are encrypted;
• Only certificates signed by the CA are accepted. In our case, the certificates are generated by the

configuration server;
• MQTT users for each element allow communication control;
• ACLs are used to access the topics of the MQTT broker so that each element has limited access

only to its information.

All these resources add an extra security level to the communication between all the elements.
Even if the MQTT broker is compromised, and an attacker has access to read all messages or can send
new ones, the system is still reliable because:

(1) If the attacker can read all messages, they know the service requests from the users, but these
messages have irrelevant information. Related to the session key SKk, it is encrypted using the ECIES
scheme, so the attacker cannot get it to access to the gateway server in a later phase. SKk can only be
decrypted with Priv(GWCgc).

(2) If the attacker can send messages, they also need a valid private key Priv(Ei) to sign their false
requests, but all messages with invalid signatures are rejected.

4.2. Tamper Resistance of the EToken

The eToken stores the private key and authorised public keys in its ESP32 flash memory through
the non-volatile storage (NVS) library and using 256-bit AES-XTS-based NVS encryption.

ESP32 uses internal partition tables for flash memory. Since the partition is marked encrypted
and the flash encryption option is enabled, the bootloader will encrypt this partition using the flash
encryption key on the first boot.

When ESP32 runs the eToken program, it saves the information in encrypted form, so only the
program can correctly interpret the content. So, any external attempt to modify the configuration in
the eToken NVS is not possible.

If ESP32 is partially reprogrammed to try later to access the flash partition that stores the keys,
it is not readable since it is encrypted.

Changing the ESP32 configuration is only possible if it receives the messages signed by the
configuration server.

4.3. Theft Resistance of EToken

In the proposed scheme, if an eToken is stolen by an adversary A, the latter cannot extract any
information from the memory of the stolen devices, as described in Section 4.2.

Moreover, a stolen eToken can be locked at various levels:
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• After a power-on condition or an established time, a password is needed to login into the eToken
and enable it. After several failed tries, the device is blocked;

• Context validation: (When it is active) The eToken only works within the detection range of
validated WiFi or Bluetooth devices. So outside of its location, the eToken is not active;

• On the MQTT server: deleting the access account;
• On the authentication server: cancellation of authentication permissions;
• In the eToken WiFi access: The eToken can only communicate with the preconfigured

WiFi networks.

The eToken can be reprogrammed, but as mentioned in the previous section, the operational
configuration is encrypted and cannot be used to access the secure environment.

4.4. Resistance of MitM Attacks

MQTT establishes communications between nodes through TLS communications. The MQTT
broker and MQTT clients use certificates signed by the CA, thus preventing a node from impersonating
the MQTT broker.

TLS includes integrity checks, so communication at the TCP/IP level cannot be modified. Even,
if the MQTT is compromised, messages cannot be modified because they are signed with the respective
private keys in each stage.

Related to the session key SKk, it cannot be obtained by the attacker because even if he can
obtain the message, it is encrypted with the ECIES scheme, and a private key Priv(GWCgc) is needed
to decrypt.

The sequence number SEQq avoids the use of previous requests, so it needs to create new ones
adequately signed.

In the case of communication between gateways, if the service offers secure communications such
as SSH, it is the service itself that can detect a MitM attack, thus avoiding adding an additional layer of
integrity check that could slow down communications.

4.5. Resistance of Attacks to the Client Node

Suppose a system with an SSH client where we use public/private key to access a server. If an
attacker accesses the client node, they could access the SSH server in a typical configuration, but with
the proposed system, access to the SSH server requires the eToken authorisation.

Furthermore, the proposed model can use a private key for the client node and a private key for
the user. The administrator can select what keys can be used, one of them or both, if needed.

To tighten the private key to the client node, the client application stores the node private key
encrypted with a key that is partly derived from CPU properties, such as: model, family, cache lines,
and extensions. So, this private key can work only in a platform with the same physical characteristics,
which makes it difficult for the private key to be used in another client node.

Thus, if an adversary accesses the client node, they could use the private key, but they need to
know the password to enable the eToken and have to access it to validate the service request. If the
user has the eToken in his possession, he will not authorise the request, and therefore access to the
service is not possible.

Credentials used to access MQTT are encrypted, so the attacker does not have direct access to the
MQTT broker. Further, due to the segmentation of the topics used, this node has access to a limited
number of topics, so the MQTT is not compromised.

Likewise, if there is an attack on the client node copying the private key, this alone is not sufficient
to access the server, since eToken authorisation is required.
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4.6. Resistance of Attacks on the Authentication Server

The authentication server is a vital element because it decides if a request is valid, and it can
request to GS a new connection. In the proposed model, the AS is safer than other systems because
it does not need to have open ports outside. This is a significant difference because it is protected
for direct attacks from the outside. AS must be properly isolated, as it is responsible for admitting
authorisations. The proposed system has two advantages:

• Requests arrive through MQTT messages, so the authentication server does not have an explicitly
open port for receiving requests.

• This model allows having the server in a different and much safer location.

Thus, in an HPC configuration, the authentication server may be in another location with a
higher level of security. Likewise, in a cloud configuration, the instances can be virtualised, and the
authentication server can be outside the cloud, in a secure physical environment.

4.7. Resistance of Attacks on the Configuration Server

The configuration server, like the authentication server, is an essential element since it is the only
one that establishes the chain of trust in all the elements. So, it is recommended that it should be placed
in a safe location.

Likewise, the configuration server communicates by MQTT messages, so it does not have an
open port to receive attacks either. It stores its private key encrypted with a key that is partly
derived from CPU properties, as clients do with their private keys, and partly from the administrator
password. Moreover, the administrator can use his own eToken to validate modifications in the global
configuration, so a direct attack without that eToken is not possible.

4.8. Resistance of Attacks Accessing Gateways

Gateway servers only accept requests through MQTT messages signed by AS and have ports closed.
Only when access between gateways is requested, the access port on the server is temporarily opened.

The session key SKk guarantees that only a client with that value can establish a communication
with the server. The ECIES scheme allows to send it from the gateway server to the gateway client in a
safe way. Neither the administrator nor configuration server can access that value.

This port can remain fixed to facilitate firewall rules, or it can be dynamic, that is, in different
requests, it can open different ports, so an attacker would not know which port to use to access the
system. This information is transmitted in the message that the gateways have exchanged.

When the gateway server receives a request, the port listens for a limited time, and after receiving
the start of a communication, the session key SKk is verified. If it is incorrect or not received in a while,
the communication is closed.

4.9. Resistance of Denial of Service Attacks

As previously mentioned, there are only two entry points: the MQTT broker and the gateway
server that is only open after a request.

If the gateway server is open for a while because a service has been requested, the server waits for
the session key SKk, and if it is not valid, it closes the connection after a few seconds, avoiding repeated
access to the system. So, the element that can bear the most pressure is the MQTT broker, but these
servers are also designed to avoid denial-of-service (DoS) attacks. Additionally, other measures can be
taken at the firewall level to limit the number of access attempts per second, or block IP addresses after
some failed access attempts.
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4.10. Resistance of Network Outages

Although current local networks are very robust, they can experience unexpected outrages during
short periods. It is also essential to consider these scenarios to avoid possible attacks in conditions of
network instability.

All communications with the MQTT broker use TLS, so an attacker cannot take advantage of
sending false messages due to the integrity included in TLS communications. MQTT is a protocol quite
robust, even under unreliable networks. In our case, all the elements, including the authentication
and configuration servers, are MQTT clients and include auto reconnection, so as soon as the network
re-establishes, they are ready to transmit and receive. The system uses quality of service (QoS) 1 in
MQTT messages, which guarantees that a message is sent at least once to the receiver, so packets are
not lost, and the sender knows if it has to retransmit the message due to loss of connection.

4.11. Real-Time Selective Block Communication

The proposed system makes it easy to control all the sockets that are in use. If unauthorised
access is discovered, it is possible to cut any of the communications that are in progress, thanks to
the real-time control of all communications. If necessary, the configuration server can send updated
configuration messages blocking ACL access rules and preventing subsequent access to the system to
the element involved.

In other systems, once access is authorised, the communication is established. To cancel the
communication, the socket that has the communication has to be identified, or detect the IP address
and port number to block the connection with firewall rules.

5. Performance Analysis

In our tests, we have studied the runtime of the main cryptographic functions used in different
environments, and the impact of the gateway in some data transfers.

5.1. ECC Execution Times in the EToken

The eToken is based on ESP32, a low-cost system that incorporates a 240 MHz dual-core processor,
with cryptographic acceleration resources and integrated communications.

An important issue is knowing if this device could process the required elliptic curve cryptographic
functions at a reasonable time.

We have evaluated different elliptic curves with the MBed TLS library. Table 4 shows the runtimes
obtained for key generation, signature, and verification.

Table 4. Key generation, signature, and verification runtimes for various elliptic curves on the ESP32.

Elliptic Curve GenKey (ms) Sign (ms) Verify (ms)

MBEDTLS_ECP_DP_SECP192R1 112 52 175
MBEDTLS_ECP_DP_SECP224R1 140 67 231
MBEDTLS_ECP_DP_SECP256R1 224 95 347
MBEDTLS_ECP_DP_SECP384R1 331 129 497
MBEDTLS_ECP_DP_SECP521R1 574 229 842
MBEDTLS_ECP_DP_BP256R1 2057 726 2784
MBEDTLS_ECP_DP_BP384R1 3792 1132 4990
MBEDTLS_ECP_DP_BP512R1 6897 2067 9361

MBEDTLS_ECP_DP_SECP192K1 163 69 239
MBEDTLS_ECP_DP_SECP224K1 193 85 311
MBEDTLS_ECP_DP_SECP256K1 230 99 349

The SECP256R1 curve offers reasonable response times below 0.35 s for verifying and 0.1 s
for signing.
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5.2. Execution Times of ECDSA Functions

Various architectures have been evaluated to obtain the runtimes of key generation, verification,
and signing key of a 256-bit hash value used in different client and server functions. We prefer this way
to analyse because our model can be implemented with any combination of elements placed in different
architectures and operating systems. Tables 5–8 show the average times obtained in microseconds
using the Golang ECIES library [49] with different processors, such as: Intel i7-4980HQ @ 2.80 GHz,
Intel Xeon Silver 4116 CPU @ 2.10 GHz, AMD EPYC 7571 @ 2.4 GHz, and ARMv7 on Raspberry PI 4
model B.

Table 5. Elliptic curve cryptography (ECC) execution time on Intel i7-4980HQ @ 2.80 GHz MacOS
10.15.4.

Elliptic Curve GenKey (µs) Sign (µs) Verify (µs)

Elliptic.P224 763 804 1751
Elliptic.P256 17 59 114
Elliptic.P384 4417 4724 8430
Elliptic.P521 7594 7955 15,903

Table 6. ECC execution time on Intel Xeon Silver 4116 CPU @ 2.10 GHz Centos 7.7 kernel 3.10.0.

Elliptic Curve GenKey (µs) Sign (µs) Verify (µs)

Elliptic.P224 2478 2327 4406
Elliptic.P256 59 182 309
Elliptic.P384 14,401 12,176 27,282
Elliptic.P521 27,484 29,694 50,466

Table 7. ECC execution time on AMD EPYC 7571 @ 2.4 GHz RHEL 8.2.

Elliptic Curve GenKey (µs) Sign (µs) Verify (µs)

Elliptic.P224 1178 1228 2353
Elliptic.P256 26 65 147
Elliptic.P384 6315 6613 12,953
Elliptic.P521 10,854 11,271 20,077

Table 8. ECC execution time on Raspberry PI4b ARMv7 Raspbian GNU/Linux 10.

Elliptic Curve GenKey (µs) Sign (µs) Verify (µs)

Elliptic.P224 5798 5937 7935
Elliptic.P256 2329 3525 9015
Elliptic.P384 11,2167 117,424 229,602
Elliptic.P521 211,553 209,649 416,941

In general, the elliptical curve P256 requires less processing time. Besides, Intel and AMD
architectures have considerably lower execution times due to hardware optimisations.

5.3. ECIES Execution Times on Diverse Clients and Servers

Server and client gateways exchange a 256-bit secret key (SKk) to guarantee later access between
both elements. This key is sent securely with a message with the ECIES scheme.

Table 9 shows the encryption and decryption runtimes of the 256-bit token using the ECIES
library [28] with Golang. In this case, the secp256k1 curve is used in the ECIES functions related to the
private/public key functions. We have evaluated different architectures.
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Table 9. Elliptic Curve Integrated Encryption Scheme (ECIES) execution time on different client and
server platforms.

Platform GenKey (ms) Crypt (ms) Decrypt (ms)

Intel i7-4980HQ @ 2.80 GHz MacOS 10.15.4 2.55 4.54 2.39

Intel Xeon E5-2676 v3 @ 2.40 GHz
Amazon Linux 2 kernel 4.14.173 3.03 5.79 2.92

AMD EPYC 7571 @ 2.4 GHz
RHEL 8.2 3.14 6.34 2.83

ARM 64 bits AWS Graviton @ 2.3 GHz 4.48 8.62 4.42

Intel Xeon Silver 4116 CPU @ 2.10 GHz Centos 7.7 kernel 3.10.0 8.26 13.97 6.62

Raspberry PI4 61.93 86.06 43.21

5.4. Processing Time

As we have seen in the previous tables, the average time depends of the selected resources used.
It also depends on the network topology. In order to obtain an estimated global runtime, we have
used a configuration based on Intel Xeon E5-2676 v3 @ 2.40 GHz, with the MQTT broker Eclipse
Mosquitto [50] version 1.6.9, widely used in Linux and other platforms, although this model allows the
use of any other MQTT broker compatible with the 3.1 standard.

Table 10 shows the average times for each of the stages described in Section 3.5 with a 1 Gbps
network interconnection.

Table 10. Mean time for different stages.

Stage Average time

First request→ eToken 57 ms
eToken sign verification 347 ms

User validation Wait for user validation (touch)
eToken→ authentication server 4 ms

Sign validation and ACL check in auth. server 1 ms to 5 ms (depends of ACL rules)
Send to gateway server 0.67 ms

Validation and gateway server opening 0.75 ms
ESCIES crypt, send, and decrypt session key 9 ms

Client–server gateway connection 0.1 ms

Although the process involves several stages, and the signature verification time is longer in
ESP32, the central time is due to waiting for the user to validate the access. In general, authentication
times are reasonable in user context and server requirements.

For these measurements, the elliptical SECP256R1 curve has been used, which offers a high
security level and optimal execution times.

One of the advantages of this model is that it can work in parallel so that multiple authentication
processes can be established simultaneously.

5.5. Direct Bandwidth and Latency Overhead

In this case, we use two programs written in Golang: a TCP echo, which retransmits everything it
receives, and another program that transmits and receives packet sequences of different sizes. In this
way, latencies and bandwidths can be evaluated considering symmetric communication. Table 11
shows the roundtrip time divided by 2 for different packet sizes with direct connection and compared
using the client and server transparent gateway.
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Table 11. Transfer time on Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10 GHz, CentOS 7.7.

Packet Size (Bytes) Direct Connection
(Time in µs)

Connection through
Gateways (Time in µs) % Effective BW

1 77 148 52
10 136 256 53

100 202 369 55
1,000 295 514 57

10,000 495 762 65
100,000 1148 1490 77

1,000,000 7491 8424 89
10,000,000 70,140 75,519 93

5.6. Impact on SSH Communications

We have also studied the impact on SSH communications. In our case, we have defined an SSH
tunnel with the TCP echo program at the end. We have measured the roundtrip time divided by 2,
as the previous test with direct connection and using our gateway.

Table 12 shows that we get an effective bandwidth better than 80% in all cases using the gateway
with SSH communications.

Table 12. Secure Shell (SSH) tunnel round trip time on Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10 GHz,
CentOS 7.7.

Packet Size (Bytes) Direct Connection
(Time in µs)

Connection through Gateways
(Time in µs) % Effective BW

1 169 205 82
10 283 350 81

100 406 493 82
1000 632 718 88

10,000 1043 1207 86
100,000 2160 2450 88

1,000,000 13,797 15,785 87
10,000,000 126,017 127,589 99

5.7. Impact on Accessing Data in Hadoop HDFS

Some HPCs use Hadoop for big data processing and analytics computing. We have studied the
impact of accessing data stored in a Hadoop cluster using HDFS. Hadoop is in version 3.2.1, and the
computer nodes have Intel E5-2620 v4 @ 2.10 GHz, CentOS 7.7, 500 GB HDDs and are connected with
a 1 Gbps network. The client node uses a Golang client for HDFS [51].

5.7.1. Metadata Access

We have tested four basic functions: create file, create directory, remove file, and remove directory.
All functions have almost the same execution time and vary from 3.37 ms to 4.01 ms depending

on the server load and internal Hadoop processes. The penalisation due to the gateway is only 0.05 ms,
that is practically hidden in the normal fluctuation of the times obtained. It only represents 1.25%. So,
the gateway has a reduced impact on these operations.

5.7.2. Data Access

As we have mentioned before, Hadoop has some fluctuations in execution time due to how it
handles internal flush buffers and its disk access policy. In this case, we have executed each test
100 times and obtained the median value to avoid extreme values. The execution time includes:
create/open, write/read, and close operations.
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Table 13 shows the execution time obtained with these tests for direct connection and using the
gateway. We can observe that the times obtained for a file with sizes from 1 byte up to 10,000 bytes are
almost the same, due to remote functions overhead, so buffers cannot work properly and optimise
their data transfers.

Table 13. Execution time for reading and writing access to Hadoop HFDS.

Packet Size
(Bytes)

Read Direct
Connection
(Time in µs)

Read through
Gateways

(Time in µs)

Write Direct
Connection
(Time in µs)

Write through Gateways
(Time in µs)

1

1617 1837 19,916 21,014
10

100
1000

10,000

100,000 2925 2977 19,929 21,104
1,000,000 10,578 10,949 27,913 29,849
10,000,000 87,488 88,157 109,151 110,587

100,000,000 861,559 861,737 906,371 907,872
1,000,000,000 8,581,931 8,681,764 9,625,042 9,938,063

We can observe that the impact of the gateway is reduced with different file sizes, and read and
write operations.

5.8. Discussion

It is necessary to analyse the impact of the main cryptographic functions implied to determine if
the proposed model can work in a real HPC environment and the overhead of the gateways. As already
discussed, our model can be implemented with any combination of elements placed in different
architectures and operating systems.

The results obtained confirm that the functions used in client and servers based on elliptic curve
cryptography have a reduced execution time on different architectures. Moreover, our eToken can also
execute them in tenths of seconds.

Concerning the gateways, they simplify the integration process with different programs and
services. In general, they have a reduced overhead as we can observe in the communications
test performed.

6. Conclusions

The use of security keys is as proliferating as multifactor authentication systems for secure system
access. The advantage of these systems is that the user “physically” has a non-duplicable element to
authorise access. Although there are standards such as those proposed by FIDO, these are subject to
possible improvements.

In this work, we present a different approach to the authentication process that can be applied to
HPC and cluster environments. Our proposed model is based on ESP32, a low-cost system-on-chip that
allows the execution of cryptographic functions based on elliptic curve and various communication
interfaces. In combination with this eToken, we propose a communication system that transparently
allows authentication in client–server programs, facilitating integration in current systems. This system
offers an extra level of security, flexibility in configuration, scalability in distributed systems, reduced
time in the authentication process, and the gateway has a reduced impact on cluster communications.

We continue improving our system adding compatibility with other authentication methods like
the Linux Pluggable Authentication Module (PAM) or authentication protocols.
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Abbreviations

The following abbreviations are used in this manuscript:

ACL Access Control List
AES Advanced Encryption Standard
AS Authentication Server
CA Certification Authority
CRS Client Request Service
CS Configuration Server
CVE Common Vulnerabilities and Exposures
DLL Dynamic Link Library
DoS Denial of Service
DSA Digital Signature Algorithm
ECC Elliptic curve cryptography
ECDH Elliptic Curve Diffie-Hellman
ECDSA Elliptic Curve Digital Signature Algorithm
ECIES Elliptic Curve Integrated Encryption Scheme
ESP_IDF Espressif IoT Development Framework
FIDO Fast Identity Online Alliance
FIPS Federal Information Processing Standard
GC Gateway Client
GS Gateway Server
JSON JavaScript Object Notation
MB MQTT Broker
MitM Man-in-the-Middle
MQTT Message Queuing Telemetry Transport
MSC Message Sequence Chart
NFC Near Field Communication
NVS Non-Volatile Storage
OTP One Time Password
PAM Linux Pluggable Authentication Module
PEM Privacy Enhanced Mail
QoS Quality of Service
RSA Rivest, Shamir & Adleman
SAML Security Assertion Markup Language
SDK Software Development Kit
SIM Subscriber Identity Module
SMS Short Message Service
SSH Secure Shell
SSO Single Sign-On
TCP Transmission Control Protocol
TI Texas Instruments
TLS Transport Layer Security
TPM Trusted Platform Module
TRNG True Random Number Generators
U2F Universal Second Factor protocol
UFC Universal Authentication Framework
UUID Universally Unique IDentifier
W3C World Wide Web Consortium
XML eXtensible Markup Language
XTS XEX Tweakable Block Cipher with Ciphertext Stealing
YML YAML Ain’t Markup Language
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