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Abstract: Beat classification and denoising are two challenging and fundamental operations when
processing digital electrocardiograms (ECG). This paper proposes the extended segmented beat
modulation method (ESBMM) as a tool for automatic beat classification and ECG denoising. ESBMM
includes four main steps: (1) beat identification and segmentation into PQRS and TU segments;
(2) wavelet-based time-frequency feature extraction; (3) convolutional neural network-based
classification to discriminate among normal (N), supraventricular (S), and ventricular (V) beats; and (4)
a template-based denoising procedure. ESBMM was tested using the MIT–BIH arrhythmia database
available at Physionet. Overall, the classification accuracy was 91.5% while the positive predictive
values were 92.8%, 95.6%, and 83.6%, for N, S, and V classes, respectively. The signal-to-noise ratio
improvement after filtering was between 0.15 dB and 2.66 dB, with a median value equal to 0.99 dB,
which is significantly higher than 0 (p < 0.05). Thus, ESBMM proved to be a reliable tool to classify
cardiac beats into N, S, and V classes and to denoise ECG tracings.

Keywords: electrocardiogram; cardiac beat classification; convolutional neural network; ECG denoising;
segmented beat modulation method

1. Introduction

Cardiovascular diseases (CVDs) continue to be the leading cause of death worldwide with a
reported increase in the CVD mortality rate from 12.3 million in the year 1990 to approximately
17.9 million in the year 2016. This accounts for 31% of the global death count. The World
Health Organization (WHO) attributes the major causes of CVDs to behavioral factors like smoking,
excessive alcohol consumption, physical inactivity, and nutritional/dietary deficiencies, in addition to
pre-existing medical conditions such as diabetes, hypertension, hyperlipidaemia, or having a family
history of CVD. Identifying those at highest risk of CVDs is vital to ensure that the patients receive
timely and appropriate treatment, as 80% of premature heart diseases and strokes are said to be
preventable [1,2].

Electrocardiogram (ECG) is both noninvasive and the most common medical test among
the procedures used by clinicians to detect and analyze cardiac arrhythmia. A cardiac arrhythmia is
defined as any deviation (regular or irregular/sustained or nonsustained) from normal sinus rhythm.
It is caused by abnormalities in impulse formation or in the conduction of electrical signals due to
alterations in the heart tissue or activity [3]. There has been great deal of interest shown by clinicians
and researchers working in the field of cardiology in the diagnosis of automated arrhythmia [4–10]
in the past decade. However, the analysis and detection of arrhythmic cardiac beats using ECG is met
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by some technical challenges. First, the ECG acquired in the raw form is prone to different kinds of
noise and interference, such as power-line interference, electrode motion artifacts, muscle artifacts,
respiration, and others. Second, the classification of cardiac beats in long-term ECG recordings using
visual analysis to identify critical and noncritical arrhythmia is laborious, time-consuming, and it is
not a feasible solution considering the large amount of data acquired in long-term and continuous
monitoring scenarios. Hence, novel and effective solutions are needed for both the classification
and denoising of ECG with design requirements focused on retaining the morphological parameters
that are good enough for clinical assessment and a sensitive arrhythmic beat detection with reduced
time complexity to be beneficial in automated analysis of cardiac arrhythmia in such diverse
and long-term datasets.

Numerous noise cancellation methods have been proposed for the denoising of ECG signals.
Several efficient denoising techniques have been presented in the past few years to separate
the useful ECG components from background noise contamination emanating from various sources.
Linear and adaptive filtering techniques have been used for the removal of baseline wander,
muscle activity, and motion artifact noise [11,12]. Variations in wavelet transform have proven
to overcome other time-frequency methods since they allow the ECG noise factors to be analyzed at
multiresolution [13,14]. Statistical methods such as principal component analysis [15,16], independent
component analysis [16], and deep neural networks [17] have also been used to extract a noise-free
signal from the original ECG recording. In addition, our research group presented a noise cancellation
method, the segmented beat modulation method (SBMM) [18,19]. It was proposed as a template-based
ECG filter with reproducibility of heart-rate and morphological variability. It has previously been
tested in applications relative to abdominal fetal ECG [20] and electromyography filtering from ECG
corruption [21], all in the case of short-term ECG recordings.

In the published articles, SBMM does not include a differentiating function for normal sinus beats
and abnormal beats, hence it is a template-based denoising method with proven applicability to the
normal sinus rhythm only [18,19,22–25]. The current work overcomes this limitation of SBMM and adds
a classification function based on a convolutional neural network (CNN) to classify the beats into three
beat classes selected among the five beat classes defined by the American National Standards Institute
(ANSI) and the Association for the Advancement of Medical Instrumentation (AAMI) standard
(ANSI/AAMI EC57:1998) [26] and further apply SBMM for the denoising of arrhythmic beats. This also
extends the SBMM applicability to ECG recordings with arrhythmic cardiac cycles (CC).

2. Methodology

2.1. Preprocessing

In the preprocessing stage, power and low-frequency interference is removed from the raw
ECG signal using a 6th-order bidirectional Butterworth band-pass filter with lower and upper cut-off
frequencies of 0.5 Hz and 40 Hz, respectively. The baseline is computed as a cubic spline interpolation of
fiducial points, placed 90 ms before R-peak position and subtracted from the bandpass-filtered signal.

2.2. Review of Segmented Beat Modulation Method

The originally proposed SBMM [18,19] is typically applied to short ECG recordings, the length
of which is defined by the user as number of beats (typically a few tens of beats) or time (up to
one minute). In case of a longer ECG recording, ECG windows of the chosen length are recursively
extracted from the ECG recording and then singularly submitted to the SBMM. SBMM performs cardiac
cycle (CC) identification and segmentation by assuming CC-onset fiducial mark ∆t before each R-peak
and CC-offset fiducial mark at ∆t before the next consecutive R-peak (usually, ∆t = 40 ms). R-peak to
previous R-peak interval (RR) is computed for each identified CC. All CCs are then segmented
into a QRS segment (±∆t around the R peak) and TUP segment (from ∆t after the R-peak until
the end of current CC). Using the observations reported in [27], the duration of the QRS segment is



Electronics 2020, 9, 1178 3 of 15

assumed to be independent from RR, while the duration of the TUP segment is, in first approximation,
proportional to it. Hence, the duration of all QRS segments is considered constant for all CCs
(i.e., 2 × ∆t), whereas the duration of TUP segments (i.e., CC duration-QRS duration) is RR- and thus
CC-dependent. All TUP segments are stretched/compressed in length to match the calculated median
(over all available beats) TUP length and then concatenated with their respective QRS segments to get
modulated CCs. All CCs being of equal length now, a median operation is performed over all CCs to
compute a median-template. This template, which represents a clean version of the most common
beat morphology existing in the recording, is also divided into QRS and TUP segments. Again,
QRS is assumed constant and the median TUP is replicated to the number of CCs in the recording
and then each CC is compressed/stretched to match the CC length of the input signal. All CCs are now
concatenated to form a clean output ECG recording. As CC identification and segmentation is done
using R-peak positions, SBMM requires, as input, the raw ECG recording plus the R-peak position
vector either provided as annotations compiled by experts using visual analysis or found using any
standard peak detection algorithm.

2.3. Extended Segmented Beat Modulation Method (ESBMM)

Similar to the originally proposed SBMM, ESBMM is applied to short ECG recordings, the length of
which is defined by the user as number of beats (typically a few tens of beats) or time (up to one minute).
In case of a longer ECG recording, ECG windows of the chosen length are recursively extracted from
the ECG recording and then singularly submitted to the ESBMM. The ESBMM was proposed to
overcome the SBMM’s main limitation of being applicable only in case of the normal sinus rhythm.
The ESBMM is based on a different CC segmentation from the SBMM (Figure 1) and performs
the following four steps (Figure 2): (1) a CC identification and segmentation step, in which each CC is
segmented into PQRS and TU segments (instead of QRS and TUP segments as done in the SBMM);
(2) a feature-extraction step, in which each CC is characterized in terms of temporal, morphological,
and spectral features; (3) a classification step, based on a convolutional neural network (CNN),
in which beats are classified as N, S, or V; and (4) a denoising step. A clean ECG estimate is obtained
at the output to retain the heart rate and morphological variability of the input ECG. The proposed
method was tested on the well-known MIT–BIH arrhythmia database [28] and evaluated under two
performance criteria: (1) classification for normal (N), supra-ventricular (S), and ventricular (V) beat
classes according to the patient-based assessment; and (2) denoising reporting signal-to-noise ratios
for the ECG recordings in the database evaluated on the basis of noise cancellation assessment criteria.
Details of the proposed procedure are reported below.

Figure 1. Cardiac cycle (CC) with its PQRS and TU segments, and associated RR interval according to
extended segmented beat modulation method (ESBMM).
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Figure 2. Flow chart of the extended segmented beat modulation method (ESBMM).
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2.3.1. Cardiac Cycle Identification and Segmentation

According to the ESBMM, the CC onset fiducial mark is assumed at ∆t1 before each R-peak position,
and the CC offset as ∆t1 before the succeeding R-peak position (typically, ∆t1 = 250 ms) as shown
in Figure 1. All CCs are then segmented into a PQRS segment (from ∆t1 before the R-peak position
until ∆t2 after the R-peak position; typically, ∆t2 = 40 ms) and TU segment (from ∆t2 after the R-peak
position until the end of CC). The TU segments are then modulated (stretched or compressed) to match
the median TU length calculated over lengths of all TU segments (CC duration − (∆t1 + ∆t2)). The CCs
are then reconstructed by concatenating PQRS and modulated TU segments. The result is a batch
consisting of all CCs of equal length. Figure 3 shows examples of CC waveforms for beats classified
as N, S, and V, respectively.

Figure 3. Examples of cardiac cycle (CC) waveforms for beats classified as normal (N; panel (a)),
supraventricular (S; panel (b)) and ventricular (V; panel (c)).

2.3.2. Feature Extraction

For each CC, a feature vector was computed. The feature vector was constructed using the
following: features related to temporal intervals, features obtained by applying discrete wavelet
transform to the modulated CC, and statistical features. The features related to temporal intervals
are RR interval and CC duration. The features based on the ’Daubechies 4’ wavelet transform of
the modulated CC are obtained using decomposed wavelet coefficients at detail levels 4 to 7 (cD4, cD5,
cD6, and cD7) [29]. The statistical features are kurtosis (4th order statistics) and skewness (3rd order
statistics) calculated as in Equations (1) and (2), respectively, of the entire CC, and of P (onset: ∆t1 ms
before the R-peak position, offset: ∆t2 ms before the R-peak position; Figure 1), QRS (onset: ∆t2 ms
before and after the R-peak position; Figure 1), and TU (onset: ∆t2 ms after the R-peak position, offset:
∆t2 ms before the next consecutive R-peak position; Figure 1) waves taken from the modulated CC
since they represent the morphological distortion of the entire CC and of P, QRS, and TU waves,
respectively.

kurtosis =
∑N

i=1(xi − x̄)4/N
std4 (1)

skewness =
∑N

i=1(xi − x̄)3/N
std3 (2)

where x̄ is the mean, std is the standard deviation, and N is the number of data points. The final feature
vector now becomes the RR interval, CC duration, cD4, cD5, cD6, cD7, kurtosis (CC), kurtosis (P),
kurtosis (QRS), kurtosis (TU), skewness (CC), skewness (P), skewness (QRS), and skewness (TU).

2.3.3. Convolutional Neural Network Classification

The CNN classifier input consists of the number of parameters equal to the number of
features extracted in the previous step and the number of samples equal to the number of beats
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in the ECG recording currently being processed. The output consists of three beat classes: normal (N),
supraventricular (S) and ventricular (V) beat classes, respectively. Synthetic data are used to overcome
the imbalance in the number of ECG heartbeats in the three classes according to the synthetic minority
oversampling technique [30]. N class, in this case, is the majority class, hence, the number of the CCs
in S and V classes is increased to match the number of CCs in the N class. The architecture of the
implemented CNN is as follows: the input feature vector, batch normalization layer, convolution
layer (kernel size: 3, filters: 16), fully connected layer (number of neurons: 16), fully connected layer
(number of neurons: 3), and output SoftMax layer. True AAMI beat labels were used as references
during training.

2.3.4. Denoising

Beats classified as N, S, and V were used to create three templates, one for each class. For each
class, the median beat duration, the median PQRS duration, and the median TU duration are computed
using the RR-intervals of all beats belonging to the same class. Each CC of each beat is then segmented
into PQRS and TU segments. The TU segment of each beat is modulated (stretched/compressed) to
match the median TU duration of its class. All CCs of all beats belonging to the same class are now
characterized by the same length, and the template of that class can be obtain mediating all these beats.
Finally, each noisy beat of noisy ECG is replaced by the demodulated (compressed/stretched) template
of corresponding class.

2.4. Data

The data used for testing the classification and denoising efficiency of the proposed algorithm
were taken from the MIT–BIH arrhythmia database developed by Massachusetts Institute of
Technology (MIT) and Boston’s s Beth Israel Hospital (BIH) in 1987 and available as open source
on Physionet [28,31]. Only limb lead II (as in [32]) of the 35 ECG recordings (ID 100, 101, 105, 106,
108, 109, 113, 114, 116, 118, 119, 123, 124, 200, 201, 202, 203, 205, 207, 208, 209, 210, 213, 214, 215,
217, 219, 220, 222, 223, 228, 231, 232, 233, 234) out of the 48 available ones were used here, since
the remaining 13 were single beat-class recordings for which the proposed ESBMM simplifies into
the SBMM. The 35 ECG recordings used were approximately 30 min long and were acquired from
35 subjects, 19 men (53 to 89 years old) and 16 women (23 to 89 years old). Approximately 60% of
these recordings were obtained from inpatients. Recording numbers 100–124, with some numbers
missing, include a variety of waveforms and artifacts that an arrhythmia detector might encounter
in routine clinical use. Furthermore, recording numbers 200–234, again with some numbers missing,
include a variety of rare but clinically important phenomena such as complex ventricular, junctional,
supraventricular arrhythmias and conduction abnormalities. Each recording is supported by an
annotation file made available by the MIT–BIH arrhythmia database, providing the positions of
R-peaks and corresponding label for each heartbeat compiled by clinical experts [28,31]. From each
ECG recording, ECG windows containing 30 consecutive beats were consecutively extracted to be
analyzed from the ESBMM. A division of the dataset was used to train (60%) and test (40%) the ESBMM
in the classification step of the methodology. True AAMI beat labels were used as references. ESBMM
performance was evaluated on a PC workstation with two Intel(R) Core (TM) 3.40 GHz (CG8250)
processors and 12 GB of RAM. Detail of the MIT–BIH database is provided in Table 1.
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Table 1. Association for the Advancement of Medical Instrumentation (AAMI) to MIT–BIH annotation
mapping detail.

AAMI MIT–BIH Beat Description

N or . Normal beat
L Left bundle branch block

N R Right bundle branch block
e Atrial escape beat
j Nodal (junctional) escape beat

S Supraventricular premature beat
A Atrial premature beat

S a Aberrated atrial premature beat
J Nodal (junctional) premature beat

V Premature ventricular contraction
V E Ventricular escape beat

! Ventricular flutter wave

2.5. Validation Study

2.5.1. Classification

The ESBMM performance in classifying heart beats into the three N, S, and V classes
was performed in terms of overall accuracy (Acc) and individual positive predictive value of each
class (PP(N), PP(S), and PP(V), respectively) as computed in Equation (3) to Equation (6), respectively:

Acc =
TN + TS + TV

TN + FN + TS + FS + TV + FV
, (3)

PP(N) =
TN

TN + FN
, (4)

PP(S) =
TS

TS + FS
, (5)

PP(V) =
TV

TV + FV
, (6)

where, TN, TS, and TV represent correctly classified (true) N, S, and V beats, respectively, and FN,
FS, and FP represent wrongly classified (false) N, S, and V beats, respectively.

2.5.2. Denoising

ESBMM performance in ECG denoising was assessed in terms of signal-to-noise improvement
(SNRimp) as given in Equation (7), where SNRin and SNRout are the signal-to-noise ratio (in dB) of
the ECGs at ESBMM input and output, respectively, and are defined as in Equations (8) and (9):

SNRimp = SNRout − SNRin , (7)

SNRin = 20 × log(
PeaktoPeakECGin
4 × std(ECGin)

) , (8)

SNRout = 20 × log(
PeaktoPeakECGout

4 × std(ECGout)
) , (9)

where PeakToPeakECGin,out is an ECG signal-measure representing a median over maximum minus
minimum amplitudes of all ECG beats and std(ECGin,out) is a noise-measure representing standard
deviation of ECGin,out respectively. Normality of the SNRimp value over the 35 ECG recordings
was evaluated using the Lilliefors test. Non-normal distributions were described in term of median
(50th percentile) and its [25–75th] percentiles range, and compared using the rank sum test. A median
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SNRimp value statistically greater than zero (p-value < 0.05) indicates a significant improvement
in signal quality, and thus a good denoising performance of the ESBMM.

2.6. Robustness to Noise Evaluation

In order to verify the ESBMM ability to properly classify beats and denoise ECG signals in noisy
conditions, we performed the following evaluation: from each of the 35 selected recordings of the MIT
database, we selected, if present, a 5-min ECG segment with at least 3 N, 3 S,and 3 V beat instances.
This selection criterion was introduced to have a balanced number of beats in each class despite
the reduction in ECG length. Successively, three different noise types typically affecting the ECG
were added, which are baseline wander, muscle activity, and electrode motion artifacts. All noise
signals were taken from the MIT–BIH Noise Stress Test database [33] also available on Physionet
and consist of real noise recordings acquired through ECG electrodes located on the limbs to make
the amplitude of the ECG component negligible (and thus not visible) with respect to that of the noise.
Both clean and corrupted versions of each ECG segment were eventually submitted to the ESBMM
in order to evaluate its robustness to noise in terms of Acc, PP(N), PP(S), PP(V), and SNRimp.

3. Results

3.1. Validation Study

3.1.1. Classification

The proposed algorithm took approximately 273 min (approx. 4.5 h) to process all 35 ECG
recordings. Table 2 represents data split into training and testing subsets, and the data split was carried
out according to beat annotations provided with the dataset. A 60:40 division ratio of the total dataset
into training and testing datasets led to the distribution of beats over the N, S, and V classes as reported
in Table 2.

Table 2. Number of beats per beat-class and datasets.

Dataset/Class N S V Total

Training 41,020 1646 4057 46,723
Testing 27,346 1097 2704 31,147
Total 68,366 2743 6761 77,870

Confusion matrices relative to beat classification as N, S, and V for the training, testing and total
datasets are reported in Table 3. Overall, more than 90% of the total beats were correctly classified.
Values of Acc, PP(N), PP(S), and PP(V) for the testing, training, and total datasets are reported in Table 4.

Table 3. Confusion matrices relative to beat classifications (normal (N), supraventricular (S),
and ventricular) for the training, testing, and total datasets.

Training

True/Predicted N S V Total

N 39,205 765 1050 41,020
S 15 1604 27 1646
V 202 342 3513 4057

Total 39,422 2711 4590 46,723

Testing

N 25,388 722 1236 27,346
S 51 1019 27 1097
V 391 198 2115 2704

Total 25,830 1939 3378 31,147

Total

N 64,603 1487 2276 68,366
S 66 2623 54 2743
V 593 523 5645 6761

Total 65,262 4633 7975 77,870
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Table 4. Values of overall accuracy (Acc), PP(N), PP(S), and PP(V) for the testing, training,
and total datasets.

Dataset
Acc PP(N) PP(S) PP(V)

(%) (%) (%) (%)

Training 94.86 85.57 97.44 86.59
Testing 91.57 92.84 92.89 78.21
Overall 93.58 94.49 95.62 83.49

Recording numbers 108, 114, 118, 124, 200, 201, 202, 205, 207, 210, 213, 215, 219, 223, 228,
233, and 234 each have N, S, and V beats. Recording numbers 100, 101, 113, 209, 220, 222, 231,
and 232 each have N and S beats. Recording numbers 105, 106, 109, 116, 119, 123, 203, 208, 214, 217
contain N and V each. Recording number 102, 103, 104, 107, 111, 112, 115, 117, 121, 122, 212, 221,
and 230 have no or single abnormal beat instances.

3.1.2. Denoising

SNRimp distribution was not normal; its median value was 0.99 [0.15;2.66] dB, which was
significantly higher than 0 (p < 0.05). Figure 4 shows, as an example, a noisy section of recording number
105 with ECGin and ECGout computed using the proposed ESBMM algorithm; for this recording
SNRimp was 6.08 dB.

Figure 4. As an example, the figure depicts an electrocardiogram (ECG) window from recording
number 105 at the input (ECGin) and at the output (ECGout) of the extended segmented beat modulation
method (ESBMM).

3.2. Robustness to Noise Evaluation

Overall, 33 5-min ECG segments were found to satisfy the criteria for the evaluation of
the ESBMM robustness to noise. The results relative to this evaluation are reported in Table 5.
Regarding classification, Acc and PP(N) were only slightly affected by noise; PP(S) decreased
significantly only in the presence of electrode motion artifacts; and PP(V) was affected by all types of
noise even though it remained at least at 60%. Eventually, SNRimp was less than 2 dB in the absence of
noise but increased in the presence of noise until exceeding 5 dB in the presence of electrode motion
artifacts. Figure 5 shows, as an example, a 10 s section of recording number 202 with ECGin corrupted
by: (a) no additional noise; (b) baseline wander; (c) muscle activity; and (d) electrode motion and the
respective ECGout computed using the proposed ESBMM algorithm.
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Table 5. Values of Acc, PP(N), PP(S), PP(V), and SNRimp for selected 5-minute ECG segments corrupted
by various types of noise.

Noise Type
Acc PP(N) PP(S) PP(V) SNRimp

(%) (%) (%) (%) (dB)

No additional noise 93.38 96.48 76.33 78.60 1.71 [0.46; 2.97]
Baseline wander 91.36 95.88 75.44 62.33 2.67 [1.76; 3.57]
Muscle activity 91.52 96.45 73.11 60.00 3.86 [3.01; 4.68]

Electrode motion artifacts 91.11 95.85 52.88 65.43 5.02 [3.30; 6.71]

Figure 5. As an example, the figure depicts an ECG window from recording number 202 at the input
(ECGin) and at the output of the extended segmented beat modulation method (ESBMM). In panel (a),
ECGin was not corrupted by additional noise. Differently, in panels (b–d), ECGin was corrupted by
baseline wander, muscle activity, and electrode motion artifacts, respectively.

4. Discussion

The current work proposes the ESBMM as an extended and improved version of
the existing SBMM, which is able to denoise ECG tracings characterized by sinus as well
as nonsinus rhythm. This feature makes the ESBMM applicable in many more applications than
the SBMM. The main differences between the ESBMM and SBMM consist in a different segmentation
of the cardiac cycle and in the insertion of a procedure for beat classification. According to the ESBMM,
each cardiac cycle is still segmented into two segments, but the first (i.e., the PQRS segment) includes
the P wave and the QRS complex, while the second (i.e., TUP segment) includes the T and U waves,
respectively. Differently, according to the SBMM, the first segment (i.e., the QRS segment) includes
only the QRS complex, while the second (i.e., the TUP segment) includes the T wave, the U wave,
and the P wave of the successive cardiac beat. The reason for including the P wave in the same segment
in which the QRS complex is present relies on the fact that the P wave and QRS complex both represent
the same electric phenomenon, which is depolarization, though of the atria and ventricles, respectively.
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Consequently, they can be hypothesized to show a similar dependency of instantaneous heart rate.
Moreover, evaluation of P-wave presence and morphology is fundamental for a beat classification
(all supraventricular arrhythmias show abnormalities at P-wave level). Taking into account that
the electrical activity of a cardiac beat starts with the P wave, when classifying a cardiac beat, its P wave
has to be present in the segments representing it and not in the segments representing the previous
one.

Beat classification relies on features related to temporal intervals (RR interval and CC duration),
features obtained applying discrete wavelet transform to the modulated CC (cD4 to cD7), and statistical
features (kurtosis and skewness). Since in each ECG recordings, after modulation of all TUPs, each CC
is equal in length, the number of wavelet decomposed coefficients is the same for all beats. Asl et al. [29]
reported that the representative and distinct components for each type of heartbeat can be found
in the detail information at level 4 to 7. Hence, only the wavelet coefficients at detail levels 4 to 7
(i.e., cD4, cD5, cD6, and cD7, respectively) were used here as features for morphological classification.
Zhang et al. [34] proved that the RR interval is a highly distinguishing factor for the separation of N
and S beats, hence each CC had an associated RR-interval feature. The skewness and kurtosis are
effective in estimating shape distortion of any signal compared to Gaussian distribution. They were
well able to distinguish between V and other beats since the major difference of V beats with other
types of beats is the shape [35]. Hence, the kurtosis of CC and skewness of CC were considered.

Beat classification was performed using a convolutional neural network which receives several
temporal and morphological ECG features as input. Some of them were standard (such as the RR
interval); others were obtained by analyzing the ECG signal using the discrete wavelet transform
and by computation of higher order statistics. Several techniques have been previously proposed
for classification of cardiac arrhythmic beats in the past years [32,34,36–41]. Table 6 proposes a
comparison of the results obtained with the ESBMM against other methods that were tested on
the same database. De Chazal et al. [42] used a simple feature set based on heartbeat and RR intervals
plus wave morphology. Zhang et al. [34] presented a one-versus-one feature reduction strategy
focusing on the disease-specific features supporting the traditional support vector machine binary
classifier. Eventually, Chen et al. [32] proposed a combination of projected and dynamic features
for arrhythmia classification and a support vector machine classifier to cluster heartbeats. As can be
seen from Table 6, all methods were able to reliably classify N and V beats, but only the ESBMM was
also able to reliably classify S beats. The numbers of false positives in V beats seems to be quite high.
This effect could be due to the presence of bundle branch block beats in the class N, that could be
erroneously classified in class V. Future studies will evaluate the possibility of including the bundle
branch block beats in an additional fourth class, in order to solve this limitation of our approach.

Table 6. Beat classification performances over the MIT–BIH.

Method %Acc %PP(N) %PP(S) %PP(V)

ESBMM 91.5 92.8 95.6 83.4
deChazal [42] 81.9 99.2 38.5 81.9
Zhang [34] 86.7 99.0 36.0 92.8
Chen [32] 93.1 95.4 38.4 85.1

The ESBMM is a template-based method for ECG denoising. It operates in short-term ECG. In case
of long-term ECG, it is applied to short ECG windows recursively extracted from the long recording.
This design choice allows one to maintain physiological ECG variability (time and amplitude) by
significantly reducing the level of noise. However, thanks to the beat classification procedure,
three templates (instead of one, as for the SBMM) are computed, one for each beat class (N, S, and V).
Each template is obtained by performing the median computation over all beats belonging to a class,
an operation which is known to reduce noise and to provide the most likely morphology in a class of
beats. In order to perform the median operator, all CC needs to be modulated to have the same length.
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Indeed, the hypothesis behind the procedure is that each beat of a class is a slight modification of a class
specific morphology (best represented by the median, i.e., the template). Thus, the beat modulation
is only an intermediate step to obtain a denoised template for each class. Template waveforms are
then concatenated, demodulated, and adjusted in order to provide an output clean ECG tracing
characterized by the same beat-to-beat heart-rate variability characterizing the input noisy ECG.

The ESBMM’s ability to denoise ECG tracings is confirmed by the statistically significant
improvement of the signal-to-noise ratio that, on average, was 0.99 dB, with peaks of up to 6.08 dB.
The median limited improvement in the MIT–BIH arrhythmia database is not due to the fact that the
ESBMM’s denoising ability is limited, but, rather, to the low level of noise affecting the recordings.
The MIT–BIH arrhythmia database was chosen because it allowed us to evaluate the performance of
the ESBMM in beat classification, which is the main novelty of the ESBMM with respect to the SBMM.
However, the ESBMM’s robustness to corrupting factors such as baseline wanders, muscle activity,
and electrode motion artifacts was also evaluated. The results confirm the ability of the method to
estimate good quality ECG recordings in the presence of typical noises affecting the ECG, especially
for the N class, analogous to what was previously observed for the SBMM [18,19]. Indeed, since in an
ECG recording, the number of N beats is generally much higher than the number of S and V beats,
the template of class N is typically much cleaner than the templates of class S and V. Consequently,
PP(N) is much less affected by the presence of noise than PP(S) and PP(V).

This paper proposes the following:

• A new ECG segmentation procedure that separates repolarization waveforms from depolarization waveforms;
• A proposed feature vector composed of spectral, RR interval, and higher-order statistical features;
• A convolutional neural network to classify cardiac beats into N, S, and V classes;
• A denoising algorithm designed to separately construct median templates for N, S, and V beats

and reconstruct the original ECG recording including arrhythmic beats to match the original beat
duration and morphology.

5. Conclusions

In this paper, the extended segmented beat modulation method is proposed. The ESBMM proved
to be a reliable tool to classify cardiac beats into N, S, and V classes and to denoise ECG tracings
characterized by both sinus and nonsinus rhythms.
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ANSI American National Standards Institute
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CNN Convolutional Neural Network
ECG Electrocardiogram
ESBMM Extended Segmented Beat Modulation Method
N Normal sinus beat
S Supraventricular beat
SBMM Segmented Beat Modulation Method
V Ventricular beat
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