Metasurfaces for Reconfiguration of Multi-Polarization Antennas and Van Atta Reflector Arrays
Abstract
:1. Introduction
1.1. Surface-Wave Antenna Arrays
1.2. Polarization-Reconfigurable Holographic LWAs
1.3. Van Atta Retrodirective Reflectors
2. Surface-Wave Antenna Arrays
2.1. 1 × 4 Linearly Polarized Metasurface Array
2.2. 2 × 2 Circularly Polarized Metasurface Array
2.3. Fabrication and Measurements
3. Polarization Reconfigurable Holographic LWAs
4. A Van Atta Retrodirective Microstrip Antenna Array with Low Backscattering
4.1. Theory of Passive Retrodirective Arrays
4.2. Design of the Patch Antenna and Its Feeding Network
4.2.1. Aperture-Coupled Patch Antenna with Microstrip Line Feeding Network
4.2.2. Aperture-Coupled Patch Antenna with Virtual Feeding Network
4.3. Retrodirective Reflector with Low Backscattering Using Metamaterials
Design of Metasurfaces Based on AMCs for RCS Reduction of Retrodirective Array
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bukhari, S.S.; Vardaxoglou, J.; Whittow, W. A Metasurfaces Review: Definitions and Applications. Appl. Sci. 2019, 9, 2727. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, C.; Grbic, A. Metamaterial Huygens surfaces: Tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 2013, 110, 197401. [Google Scholar] [CrossRef] [PubMed]
- Maci, S.; Minatti, G.; Casaletti, M.; Bosiljevac, M. Metasurfing: Addressing Waves on Impenetrable Metasurfaces. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1499–1502. [Google Scholar] [CrossRef]
- Fong, B.H.; Colburn, J.S.; Ottusch, J.J.; Visher, J.L.; Sievenpiper, D.F. Scalar and tensor holographic artificial impedance surfaces. IEEE Trans. Antennas Propag. 2010, 58, 3212–3221. [Google Scholar] [CrossRef]
- Ramalingam, S.; Balanis, C.A.; Birtcher, C.R.; Pandi, S.; Shaman, H.N. Axially Modulated Cylindrical Metasurface Leaky-Wave Antennas. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 130–133. [Google Scholar] [CrossRef]
- Ramalingam, S.; Balanis, C.A.; Birtcher, C.R.; Pandi, S.; Shaman, H.N. Polarization-diverse holographic metasurfaces. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 264–268. [Google Scholar] [CrossRef]
- Modi, A.Y.; Balanis, C.A.; Birtcher, C.R.; Shaman, H.N. Novel Design of Ultrabroadband Radar Cross Section Reduction Surfaces Using Artificial Magnetic Conductors. IEEE Trans. Antennas Propag. 2017, 65, 5406–5417. [Google Scholar] [CrossRef]
- Modi, A.Y.; Alyahya, M.A.; Balanis, C.A.; Birtcher, C.R. Metasurface-Based Method for Broadband RCS Reduction of Dihedral Corner Reflectors With Multiple Bounces. IEEE Trans. Antennas Propag. 2020, 68, 1436–1447. [Google Scholar] [CrossRef]
- Ramalingam, S.; Balanis, C.A.; Birtcher, C.R.; Pandi, S. Analysis and Design of Checkerboard Leaky-Wave Antennas With Low Radar Cross Section. IEEE Open J. Antennas Propag. 2020, 1, 26–40. [Google Scholar] [CrossRef]
- Alharbi, M.S.; Balanis, C.A.; Birtcher, C.R. Hybrid Circular Ground Planes for High-Realized-Gain Low-Profile Loop Antennas. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1426–1429. [Google Scholar] [CrossRef]
- Alharbi, M.S.; Balanis, C.A.; Birtcher, C.R. Performance Enhancement of Square-Ring Antennas Exploiting Surface-Wave Metasurfaces. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1991–1995. [Google Scholar] [CrossRef]
- Costa, F.; Luukkonen, O.; Simovski, C.R.; Monorchio, A.; Tretyakov, S.A.; de Maagt, P.M. TE Surface Wave Resonances on High-Impedance Surface Based Antennas: Analysis and Modeling. IEEE Trans. Antennas Propag. 2011, 59, 3588–3596. [Google Scholar] [CrossRef]
- Yang, F.; Aminian, A.; Rahmat-Samii, Y. A Novel Surface-Wave Antenna Design Using a Thin Periodically Loaded Ground Plane. Microw. Opt. Technol. Lett. 2005, 47, 240–245. [Google Scholar] [CrossRef]
- Yang, F.; Rahmat-Samii, Y.; Kishk, A. Low-Profile Patch-Fed Surface Wave Antenna with a Monopole-Like Radiation Pattern. IET Microw. Antennas Propag. 2007, 1, 261–266. [Google Scholar] [CrossRef]
- Feng, G.; Chen, L.; Xue, X.; Shi, X. Broadband Surface-Wave Antenna With a Novel Nonuniform Tapered Metasurface. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2902–2905. [Google Scholar] [CrossRef]
- Lin, F.H.; Chen, Z.N. Low-Profile Wideband Metasurface Antennas Using Characteristic Mode Analysis. IEEE Trans. Antennas Propag. 2017, 65, 1706–1713. [Google Scholar] [CrossRef]
- Yang, W.; Chen, S.; Che, W.; Xue, Q.; Meng, Q. Compact High-Gain Metasurface Antenna Arrays Based on Higher-Mode SIW Cavities. IEEE Trans. Antennas Propag. 2018, 66, 4918–4923. [Google Scholar] [CrossRef]
- Zhu, H.L.; Cheung, S.W.; Chung, K.L.; Yuk, T.I. Linear-to-Circular Polarization Conversion Using Metasurface. IEEE Trans. Antennas Propag. 2013, 61, 4615–4623. [Google Scholar] [CrossRef] [Green Version]
- Ta, S.X.; Park, I. Low-Profile Broadband Circularly Polarized Patch Antenna Using Metasurface. IEEE Trans. Antennas Propag. 2015, 63, 5929–5934. [Google Scholar] [CrossRef]
- Wu, Z.; Li, L.; Li, Y.; Chen, X. Metasurface Superstrate Antenna With Wideband Circular Polarization for Satellite Communication Application. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 374–377. [Google Scholar] [CrossRef]
- Ta, S.X.; Park, I. Compact Wideband Circularly Polarized Patch Antenna Array Using Metasurface. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1932–1936. [Google Scholar] [CrossRef]
- Patel, A.M.; Grbic, A. A printed leaky-wave antenna based on a sinusoidally-modulated reactance surface. IEEE Trans. Antennas Propag. 2011, 59, 2087–2096. [Google Scholar] [CrossRef]
- Ramalingam, S. Impedance Modulated Metasurface Antennas. Ph.D. Dissertation, Arizona State University, Tempe, AZ, USA, 2020. [Google Scholar]
- Minatti, G.; Caminita, F.; Casaletti, M.; Maci, S. Spiral leaky-wave antennas based on modulated surface impedance. IEEE Trans. Antennas Propag. 2011, 59, 4436–4444. [Google Scholar] [CrossRef]
- Pandi, S.; Balanis, C.A.; Birtcher, C.R. Design of Scalar Impedance Holographic Metasurfaces for Antenna Beam Formation with Desired Polarization. IEEE Trans. Antennas Propag. 2015, 63, 3016–3024. [Google Scholar] [CrossRef]
- Minatti, G.; Caminita, F.; Martini, E.; Sabbadini, M.; Maci, S. Synthesis of modulated-metasurface antennas with amplitude, phase, and polarization control. IEEE Trans. Antennas Propag. 2016, 64, 3907–3919. [Google Scholar] [CrossRef]
- Bodehou, M.; Martini, E.; Maci, S.; Huynen, I.; Craeye, C. Multibeam and Beam Scanning with Modulated Metasurfaces. IEEE Trans. Antennas Propag. 2020, 68, 1273–1281. [Google Scholar] [CrossRef]
- Li, M.; Tang, M.; Xiao, S. Design of a LP, RHCP and LHCP Polarization-Reconfigurable Holographic Antenna. IEEE Access 2019, 7, 82776–82784. [Google Scholar] [CrossRef]
- Van Atta, L.C. Electromagnetic Reflector. U.S. Patent 2,908,002, 6 October 1959. [Google Scholar]
- Sharp, E.; Diab, M. Van atta reflector array. IEEE Trans. Antennas Propag. 1960, 8, 436–438. [Google Scholar] [CrossRef]
- Appel-Hansen, J. A van atta reflector consisting of half-wave dipoles. IEEE Trans. Antennas Propag. 1996, 14, 694–700. [Google Scholar] [CrossRef]
- Chung, S.J.; Chang, K. A retrodirective microstrip antenna array. IEEE Trans. Antennas Propag. 1998, 46, 1802–1809. [Google Scholar] [CrossRef]
- Li, Y.; Jandhyala, V. Design of retrodirective antenna arrays for short-range wireless power transmission. IEEE Trans. Antennas Propag. 2012, 60, 206–211. [Google Scholar] [CrossRef]
- Wang, X.; Sha, S.; He, J.; Guo, L.; Lu, M. Wireless power delivery to low-power mobile devices based on retro-reflective beamforming. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 919–922. [Google Scholar] [CrossRef]
- Ettorre, M.; Alomar, W.A.; Grbic, A. Radiative wireless power-transfer system using wideband, wide-angle slot arrays. IEEE Trans. Antennas Propag. 2017, 65, 2975–2982. [Google Scholar] [CrossRef]
- Tseng, W.J.; Chung, S.B.; Chang, K. A planar van atta array reflector with retrodirectivity in both e-plane and h-plane. IEEE Trans. Antennas Propag. 2000, 48, 173–175. [Google Scholar] [CrossRef] [Green Version]
- Hester, J.G.D.; Tentzeris, M.M. Inkjet-printed flexible mm-wave van-atta reflectarrays: A solution for ultralong-range dense multitag and multisensing chipless rfid implementations for iot smart skins. IEEE Trans. Microw. Theory Tech. 2016, 64, 4763–4773. [Google Scholar] [CrossRef]
- Christie, S.; Cahill, R.; Buchanan, N.B.; Fusco, V.F.; Mitchell, N.; Munro, Y.V.; Maxwell-Cox, G. Rotman lens-based retrodirective array. IEEE Trans. Antennas Propag. 2012, 60, 1343–1351. [Google Scholar] [CrossRef]
- Ettorre, M.; Alomar, W.A.; Grbic, A. 2-d van atta array of wideband, wideangle slots for radiative wireless power transfer systems. IEEE Trans. Antennas Propag. 2018, 66, 4577–4585. [Google Scholar] [CrossRef]
- Sievenpiper, D.F. High-Impedance Electromagnetic Surfaces. Ph.D. Dissertation, University of California, Los Angeles, CA, USA, 1999. [Google Scholar]
- Yang, F.; Rahmat-Samii, Y. Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A Low mutual coupling design for array applications. IEEE Trans. Antennas Propag. 2003, 51, 2936–2946. [Google Scholar] [CrossRef] [Green Version]
- Quarfoth, R. Anisotropic Artificial Impedance Surfaces. Ph.D. Dissertation, University of California, San Diego, CA, USA, 2014. [Google Scholar]
- Balanis, C.A. Advanced Engineering Electromagnetics, 2nd ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Pozar, D.M. Microwave Engineering, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Modi, A.Y.; Balanis, C.A.; Birtcher, C.R.; Shaman, H.N. New Class of RCS-Reduction Metasurfaces Based on Scattering Cancellation Using Array Theory. IEEE Trans. Antennas Propag. 2019, 67, 298–308. [Google Scholar] [CrossRef]
- Chen, W.; Balanis, C.A.; Birtcher, C.R. Checkerboard EBG surfaces for wideband radar cross section reduction. IEEE Trans. Antennas Propag. 2015, 63, 2636–2645. [Google Scholar] [CrossRef]
- Liu, Y.; Li, K.; Jia, Y.; Hao, Y.; Gong, S.; Guo, Y.J. Wideband RCS Reduction of a Slot Array Antenna Using Polarization Conversion Metasurfaces. IEEE Trans. Antennas Propag. 2016, 64, 326–331. [Google Scholar] [CrossRef]
- Zheng, Y.; Gao, J.; Zhou, Y.; Ziangyu, C.; Yang, H.; Li, S.; Li, T. Wideband Gain Enhancement and RCS Reduction of Fabry–Perot Resonator Antenna with Chessboard Arranged Metamaterial Superstrate. IEEE Trans. Antennas Propag. 2018, 67, 590–599. [Google Scholar] [CrossRef]
mm | mm | Analytical Using (5) | |
---|---|---|---|
(dBsm ) | −4.42 | −0.63 | −3.24 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, M.; Alyahya, M.A.; Ramalingam, S.; Modi, A.Y.; Balanis, C.A.; Birtcher, C.R. Metasurfaces for Reconfiguration of Multi-Polarization Antennas and Van Atta Reflector Arrays. Electronics 2020, 9, 1262. https://doi.org/10.3390/electronics9081262
Alharbi M, Alyahya MA, Ramalingam S, Modi AY, Balanis CA, Birtcher CR. Metasurfaces for Reconfiguration of Multi-Polarization Antennas and Van Atta Reflector Arrays. Electronics. 2020; 9(8):1262. https://doi.org/10.3390/electronics9081262
Chicago/Turabian StyleAlharbi, Mohammed, Meshaal A. Alyahya, Subramanian Ramalingam, Anuj Y. Modi, Constantine A. Balanis, and Craig R. Birtcher. 2020. "Metasurfaces for Reconfiguration of Multi-Polarization Antennas and Van Atta Reflector Arrays" Electronics 9, no. 8: 1262. https://doi.org/10.3390/electronics9081262
APA StyleAlharbi, M., Alyahya, M. A., Ramalingam, S., Modi, A. Y., Balanis, C. A., & Birtcher, C. R. (2020). Metasurfaces for Reconfiguration of Multi-Polarization Antennas and Van Atta Reflector Arrays. Electronics, 9(8), 1262. https://doi.org/10.3390/electronics9081262