The Role of Inflammation in Anal Cancer
Abstract
:1. Introduction
2. Inflammation and Cancer
3. HPV Infection and Anal Cancer
4. HIV Infection and Anal Cancer
5. HPV and HIV Coinfection in Anal Cancer
6. The Role of CD8+ Cells in HPV and HIV Coinfection
7. The Role of PD-1/PD-L1 Axis in HPV and HIV Coinfection
8. Inflammatory Bowel Disease and Anal Cancer
9. Malignant Transformation of Anal or Perianal Chronic Lesions in CD
10. Adenocarcinoma
11. Carcinogenesis and Prognosis of Anal Cancers in Inflammatory Bowel Disease
12. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.; Miller, K.; Fuchs, H.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Wisniewski, A.; Fléjou, J.F.; Siproudhis, L.; Abramowitz, L.; Svrcek, M.; Beaugerie, L. Anal Neoplasia in Inflammatory Bowel Disease: Classification Proposal, Epidemiology, Carcinogenesis, and Risk Management Perspectives. J. Crohns Colitis 2017, 11, 1011–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welton, M.R.; Lambert, R.; Bosman, F. Tumours of the anal canal. In WHO Classification of Tumours of the Digestive System, 4th ed.; Bosman, F.T., Carneiro, F., Hruban, R.H., Theise, N.D., Eds.; IARC: Lyon, France, 2010; Volume 3, pp. 183–193. [Google Scholar]
- Bown, E.; Shah, V.; Sridhar, T.; Boyle, K.; Hemingway, D.; Yeung, J. Cancers of the anal canal: Diagnosis, treatment and future strategies. Future Oncol. 2014, 10, 1427–1441. [Google Scholar] [CrossRef] [PubMed]
- Pessia, B.; Romano, L.; Giuliani, A.; Lazzarin, G.; Carlei, F.; Schietroma, M. Squamous cell anal cancer: Management and therapeutic options. Ann. Med. Surg. 2020, 55, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Baby, D.; Rajguru, J.; Patil, P.; Thakkannavar, S.; Pujari, V. Inflammation and cancer. Ann. Afr. Med. 2019, 18, 121. [Google Scholar] [CrossRef]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef]
- Mantovani, A. Cancer: Inflammation by remote control. Nature 2005, 435, 752–753. [Google Scholar] [CrossRef]
- Brianti, P.; De Flammineis, E.; Mercuri, S.R. Review of HPV-related diseases and cancers. New Microbiol. 2017, 40, 80–85. [Google Scholar]
- Nagata, N.; Watanabe, K.; Nishijima, T. Prevalence of anal human papillomavirus infection and risk factors among HIV-positive patients in Tokyo, Japan. PLoS ONE 2015, 10, e0137434. [Google Scholar] [CrossRef] [Green Version]
- Glynne-Jones, R.; Nilsson, P.; Aschele, C.; Goh, V.; Peiffert, D.; Cervantes, A.; Arnold, D. Anal cancer: ESMO–ESSO–ESTRO clinical practice guidelines for diagnosis, treatment and follow-up. Radiother. Oncol. 2014, 111, 330–339. [Google Scholar] [CrossRef] [Green Version]
- Alemany, L.; Saunier, M.; Alvarado, I.; Quirós, B.; Salmeron, J.; Shin, H.R.; Pirog, E.; Guimerà, N.; Hernández, G.A.; Felix, A.; et al. HPV DNA prevalence and type distribution in anal carcinomas worldwide. Int. J. Cancer 2015, 136, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Plummer, M.; de Martel, C.; Vignat, J.; Ferlay, J.; Bray, F.; Franceschi, S. Global burden of cancers attributable to infections in 2012: A synthetic analysis. Lancet Glob. Health 2016, 4, e609–e616. [Google Scholar] [CrossRef] [Green Version]
- Bushara, O.; Krogh, K.; Weinberg, S.; Finkelman, B.; Sun, L.; Liao, J.; Yang, G.-Y. Human Immunodeficiency Virus Infection Promotes Human Papillomavirus-Mediated Anal Squamous Carcinogenesis: An Immunologic and Pathobiologic Review. Pathobiology 2021, 89, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Abramowitz, L.; Jacquard, A.-C.; Jaroud, F.; Haesebaert, J.; Siproudhis, L.; Pradat, P.; Aynaud, O.; Leocmach, Y.; Soubeyrand, B.; Dachez, R.; et al. Human papillomavirus genotype distribution in anal cancer in France: The EDiTH V study. Int. J. Cancer 2011, 129, 433–439. [Google Scholar] [CrossRef]
- Ogueji, I.A.; Adejumo, A.O. Perceived HIV stigmatization and association with cervical screening adoption among HIV-positive women in a Nigerian Secondary Health Facility: Implications for psychological interventions. J. HIV/AIDS Soc. Serv. 2022, 21, 17–26. [Google Scholar] [CrossRef]
- Salati, S. Anal Cancer: A Review. Int. J. Health Sci. 2012, 6, 206–230. [Google Scholar] [CrossRef] [PubMed]
- Comerlato, J.; Kops, N.L.; Bessel, M.; Horvath, J.D.; Fernandes, B.V.; Villa, L.L.; De Souza, F.M.A.; Pereira, G.F.M.; Wendland, E.M. Sex differences in the prevalence and determinants of HPV related external genital lesions in young adults: A national cross-sectional survey in Brazil. BMC Infect. Dis. 2020, 20, 683. [Google Scholar] [CrossRef] [PubMed]
- Egawa, N.; Doorbar, J. The low-risk papillomaviruses. Virus Res. 2017, 231, 119–127. [Google Scholar] [CrossRef]
- Roberts, J.R.; Siekas, L.L.; Kaz, A.M. Anal intraepithelial neoplasia: A review of diagnosis and management. World J. Gastrointest. Oncol. 2017, 9, 50–61. [Google Scholar] [CrossRef]
- Yang, E.J.; Quick, M.C.; Hanamornroongruang, S.; Lai, K.; Doyle, L.A.; McKeon, F.D.; Xian, W.; Crum, C.P.; Herfs, M. Microanatomy of the cervical and anorectal squamocolumnar junctions: A proposed model for anatomical differences in HPV-related cancer risk. Mod. Pathol. 2015, 28, 994–1000. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.; Rödel, F.; Balermpas, P.; Rödel, C.; Fokas, E. The immune microenvironment and HPV in anal cancer: Rationale to complement chemoradiation with immunotherapy. Biochim. Biophys. Acta Rev. Cancer 2017, 1868, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Scholefield, J.H.; Castle, M.T.; Watson, N.F. Malignant transformation of high-grade anal intraepithelial neoplasia. Br. J. Surg. 2005, 92, 1133–1136. [Google Scholar] [CrossRef] [PubMed]
- Wigfall, L.T.; Bynum, S.A.; Brandt, H.M.; Sebastian, N.; Ory, M.G. HPV-Related Cancer Prevention and Control Programs at Community-Based HIV/AIDS Service Organizations: Implications for Future Engagement. Front. Oncol. 2018, 8, 422. [Google Scholar] [CrossRef] [PubMed]
- Chiao, E.Y.; Krown, S.E.; Stier, E.A.; Schrag, D. A population-based analysis of temporal trends in the incidence of squamous anal canal cancer in relation to the HIV epidemic. J. Acquir. Immune Defic. Syndr. 2005, 40, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Crane, L. Diagnosis, treatment, and prevention of anal cancer. Curr. Infect. Dis. Rep. 2012, 14, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Shiels, M.S.; Pfeiffer, R.M.; Gail, M.H.; Hall, H.I.; Li, J.; Chaturvedi, A.K.; Bhatia, K.; Uldrick, T.S.; Yarchoan, R.; Goedert, J.J.; et al. Cancer burden in the HIV-infected population in the United States. J. Natl. Cancer Inst. 2011, 103, 753–762. [Google Scholar] [CrossRef]
- Jin, F.; Poynten, I.; Grulich, A. HIV treatment and anal cancer: Emerging clarity. Lancet HIV 2020, 7, e220–e221. [Google Scholar] [CrossRef]
- Schofield, A.M.; Sadler, L.; Nelson, L. A prospective study of anal cancer screening in HIV-positive and negative MSM. AIDS 2016, 30, 1375–1383. [Google Scholar] [CrossRef]
- Forman, D.; de Martel, C.; Lacey, C.J.; Soerjomatarama, I.; Lortet-Tieulent, J.; Bruni, L.; Vignat, J.; Ferlay, J.; Bray, F.; Plummer, M.; et al. Global burden of human papillomavirus and related diseases. Vaccine 2012, 30, F12–F23. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, A.A.; Suk, R.; Shiels, M.S.; Sonawane, K.; Nyitray, A.G.; Liu, Y.; Gaisa, M.M.; Palefsky, J.M.; Sigel, K. Recent trends in squamous cell carcinoma of the anus incidence and mortality in the United States, 2001–2015. J. Natl. Cancer Inst. 2020, 112, 829–838. [Google Scholar] [CrossRef]
- Wang, C.J.; Sparano, J.; Palefsky, J.M. Human immunodeficiency virus/AIDS, human papillomavirus, and anal cancer. Surg. Oncol. Clin. N. Am. 2017, 26, 17–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, A.T.; Harwig, A.; Berkhout, B. The HIV-1 Tat protein has a versatile role in activating viral transcription. J. Virol. 2011, 85, 9506–9516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strickler, H.D.; Burk, R.D.; Fazzari, M.; Anastos, K.; Minkoff, H.; Massad, L.S.; Hall, C.; Bacon, M.; Levine, A.M.; Watts, D.H.; et al. Natural history and possible reactivation of human papillomavirus in human immunodeficiency virus-positive women. J. Natl. Cancer Inst. 2005, 97, 577–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkhatib, G. The biology of CCR5 and CXCR4. Curr. Opin. HIV AIDS 2009, 4, 96–103. [Google Scholar] [CrossRef]
- McElrath, M.J.; Smythe, K.; Randolph-Habecker, J.; Melton, K.R.; Goodpaster, T.A.; Hughes, S.M.; Mack, M.; Sato, A.; Diaz, G.; Steinbach, G.; et al. Comprehensive assessment of HIV target cells in the distal human gut suggests increasing HIV susceptibility toward the anus. J. Acquir. Immune Defic. Syndr. 2013, 63, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Mele, A.R.; Marino, J.; Chen, K.; Pirrone, V.; Janetopoulos, C.; Wigdahl, B.; Klase, Z.; Nonnemacher, M.R. Defining the molecular mechanisms of HIV-1 Tat secretion: PtdIns(4,5)P2at the epicenter. Traffic 2018, 19, 655–665. [Google Scholar] [CrossRef] [Green Version]
- Rayne, F.; Debaisieux, S.; Bonhoure, A.; Beaumelle, B. HIV-1 Tat is unconventionally secreted through the plasma membrane. Cell Biol. Int. 2010, 34, 409–413. [Google Scholar] [CrossRef]
- Rice, A.P. The HIV-1 Tat protein: Mechanism of action and target for HIV-1 cure strategies. Curr. Pharm. Des. 2017, 23, 4098–4102. [Google Scholar] [CrossRef] [Green Version]
- Tornesello, M.L.; Buonaguro, F.M.; Beth-Giraldo, E.; Giraldo, G. Human immunodeficiency virus type 1 Tat gene enhances human papillomavirus early gene expression. Intervirology 1993, 36, 57–64. [Google Scholar] [CrossRef]
- Syrjänen, S. Human papillomavirus infection and its association with HIV. Adv. Dent. Res. 2011, 23, 84–89. [Google Scholar] [CrossRef]
- Barillari, G.; Palladino, C.; Bacigalupo, I.; Leone, P.; Falchi, M.; Ensoli, B. Entrance of the Tat protein of HIV-1 into human uterine cervical carcinoma cells causes upregulation of HPV-E6 expression and a decrease in p53 protein levels. Oncol. Lett. 2016, 12, 2389–2394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williamson, A.L. The interaction between human immunodeficiency virus and human papillomaviruses in heterosexuals in Africa. J. Clin. Med. 2015, 4, 579–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, M.; Nakagawa, M.; Moscicki, A.B. Cell-mediated immune response to human papillomavirus infection. Clin. Diagn. Lab. Immunol. 2001, 8, 209–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Gaisa, M.M.; Wang, X.; Swartz, T.H.; Arens, Y.; Dresser, K.A.; Sigel, C.; Sigel, K. Differences in the immune microenvironment of anal cancer precursors by HIV status and association with ablation outcomes. J. Infect. Dis. 2018, 217, 703–709. [Google Scholar] [CrossRef]
- Singh, M.; Thakral, D.; Rishi, N.; Kar, H.K.; Mitra, D.K. Functional characterization of CD4 and CD8 T cell responses among human papillomavirus infected patients with ano-genital warts. Virusdisease 2017, 28, 133–140. [Google Scholar] [CrossRef]
- Hu, W.H.; Miyai, K.; Cajas-Monson, L.C.; Luo, L.; Liu, L.; Ramamoorthy, S.L. Tumor-infiltrating CD8(+) T lymphocytes associated with clinical outcome in anal squamous cell carcinoma. J. Surg. Oncol. 2015, 112, 421–426. [Google Scholar] [CrossRef]
- Gilbert, D.C.; Serup-Hansen, E.; Linnemann, D.; Høgdall, E.; Bailey, C.; Summers, J.; Havsteen, H.; Thomas, G.J. Tumour-infiltrating lymphocyte scores effectively stratify outcomes over and above p16 post chemo-radiotherapy in anal cancer. Br. J. Cancer 2016, 114, 134–137. [Google Scholar] [CrossRef]
- Grabenbauer, G.G.; Lahmer, G.; Distel, L.; Niedobitek, G. Tumor-infiltrating cytotoxic T cells but not regulatory T cells predict outcome in anal squamous cell carcinoma. Clin. Cancer Res. 2006, 12 Pt 1, 3355–3360. [Google Scholar] [CrossRef] [Green Version]
- Deeks, S.G.; Tracy, R.; Douek, D.C. Systemic effects of inflammation on health during chronic HIV infection. Immunity 2013, 39, 633–645. [Google Scholar] [CrossRef] [Green Version]
- Gulzar, N.; Copeland, K.F. CD8+ T-cells: Function and response to HIV infection. Curr. HIV Res. 2004, 2, 23–37. [Google Scholar] [CrossRef]
- Mudd, J.C.; Lederman, M.M. CD8 T cell persistence in treated HIV infection. Curr. Opin. HIV AIDS 2014, 9, 500–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allouch, S.; Malki, A.; Allouch, A.; Gupta, I.; Vranic, S.; Al Moustafa, A.E. High-risk HPV oncoproteins and PD-1/PD-L1 interplay in human cervical cancer: Recent evidence and future directions. Front. Oncol. 2020, 10, 914. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, R.; Gujja, S.; Siegel, E.R.; Batra, A.; Saeed, A.; Lai, K.; James, J.D.; Fogel, B.J.; Williamson, S. Programmed cell death-ligand 1 (PD-L1) expression in anal cancer. Am. J. Clin. Oncol. 2018, 41, 638–642. [Google Scholar] [CrossRef] [PubMed]
- Wessely, A.; Heppt, M.V.; Kammerbauer, C.; Steeb, T.; Kirchner, T.; Flaig, M.J.; French, L.E.; Berking, C.; Schmoeckel, E.; Reinholz, M. Evaluation of PD-L1 expression and HPV genotyping in anal squamous cell carcinoma. Cancers 2020, 12, 2516. [Google Scholar] [CrossRef]
- Papasavvas, E.; Surrey, L.F.; Glencross, D.K.; Azzoni, L.; Joseph, J.; Omar, T.; Feldman, M.D.; Williamson, A.-L.; Siminya, M.; Swarts, A.; et al. High-risk oncogenic HPV genotype infection associates with increased immune activation and T cell exhaustion in ART-suppressed HIV-1-infected women. Oncoimmunology 2016, 5, e1128612. [Google Scholar] [CrossRef] [Green Version]
- Yaghoobi, M.; Le Gouvello, S.; Aloulou, N.; Duprez-Dutreuil, C.; Walker, F.; Sobhani, I. FoxP3 overexpression and CD1a+ and CD3+ depletion in anal tissue as possible mechanisms for increased risk of human papillomavirus-related anal carcinoma in HIV infection. Colorectal Dis. 2011, 13, 768–773. [Google Scholar] [CrossRef]
- Marabelle, A.; Cassier, P.A.; Fakih, M.; Kao, S.C.-H.; Nielsen, D.; Italiano, A.; Guren, T.; Van Dongen, M.; Spencer, K.R.; Bariani, G.M.; et al. Pembrolizumab for previously treated advanced anal squamous cell carcinoma: Pooled results from the KEYNOTE-028 and KEYNOTE-158 studies. J. Clin. Oncol. 2020, 38, 4020. [Google Scholar] [CrossRef]
- Ott, P.A.; Piha-Paul, S.A.; Munster, P.; Pishvaian, M.J.; van Brummelen, E.M.J.; Cohen, R.B.; Gomez-Roca, C.; Ejadi, S.; Stein, M.; Chan, E.; et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with recurrent carcinoma of the anal canal. Ann. Oncol. 2017, 28, 1036–1041. [Google Scholar] [CrossRef]
- Dignass, A.; Lindsay, J.O.; Sturm, A.; Windsor, A.; Colombel, J.F.; Allez, M.; D’Haens, G.; D’Hoore, A.; Mantzaris, G.; Novacek, G.; et al. Second European evidence-based consensus on the diagnosis and management of ulcerative colitis part 2: Current management. J. Crohns Colitis 2012, 6, 991–1030. [Google Scholar] [CrossRef] [Green Version]
- Thomas, M.; Bienkowski, R.; Vandermeer, T.J.; Trostle, D.; Cagir, B. Malignant transformation in perianal fistulas of Crohn’s disease: A systematic review of literature. J. Gastrointest. Surg. 2010, 14, 66–73. [Google Scholar] [CrossRef]
- Shiels, M.S.; Kreimer, A.R.; Coghill, A.E.; Darragh, T.M.; Devesa, S.S. Anal cancer incidence in the United States, 1977–2011: Distinct patterns by histology and behavior. Cancer Epidemiol. Biomark. Prev. 2015, 24, 1548–1556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, J.R.; Morris, E.J.A.; Downing, A.; Finan, P.J.; Aravani, A.; Thomas, J.D.; Sebag-Montefiore, D. The rising incidence of anal cancer in England 1990–2010: A population-based study. Colorectal Dis. 2014, 16, O234–O239. [Google Scholar] [CrossRef] [Green Version]
- Abel, M.E.; Chiu, Y.S.; Russell, T.R.; Volpe, P.A. Adenocarcinoma of the anal glands. Results of a survey. Dis. Colon Rectum 1993, 36, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Jensen, S.L.; Shokouh-Amiri, M.H.; Hagen, K.; Harling, H.; Nielsen, O.V. Adenocarcinoma of the anal ducts. A series of 21 cases. Dis. Colon Rectum 1988, 31, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Slesser, A.A.; Bhangu, A.; Bower, M.; Goldin, R.; Tekkis, P.P. A systematic review of anal squamous cell carcinoma in inflammatory bowel disease. Surg. Oncol. 2013, 22, 230–237. [Google Scholar] [CrossRef]
- Abramowitz, L.; Mathieu, N.; Roudot-Thoraval, F.; LeMarchand, N.; Bauer, P.; Hennequin, C.; Mitry, E.; Romelaer, C.; Aparicio, T.; Sobhani, I. Epidermoid anal cancer prognosis comparison among HIV+ and HIV- patients. Aliment. Pharmacol. Ther. 2009, 30, 414–421. [Google Scholar] [CrossRef]
- Johnson, L.G.; Madeleine, M.M.; Newcomer, L.M.; Schwartz, S.M.; Daling, J.R. Anal cancer incidence and survival: The surveillance, epidemiology, and end results experience, 1973–2000. Cancer 2004, 101, 281–288. [Google Scholar] [CrossRef]
- Ky, A.; Sohn, N.; Weinstein, M.A.; Korelitz, B.I. Carcinoma arising in anorectal fistulas of Crohn’s disease. Dis. Colon Rectum 1998, 41, 992–996. [Google Scholar] [CrossRef]
- Iesalnieks, I.; Gaertner, W.B.; Glass, H.; Strauch, U.; Hipp, M.; Agha, A.; Schlitt, H.J. Fistula-associated anal adenocarcinoma in Crohn’s disease. Inflamm. Bowel Dis. 2010, 16, 1643–1648. [Google Scholar] [CrossRef]
- Beaugerie, L.; Carrat, F.; Nahon, S.; Zeitoun, J.-D.; Sabaté, J.-M.; Peyrin-Biroulet, L.; Colombel, J.-F.; Allez, M.; Fléjou, J.-F.; Kirchgesner, J.; et al. High Risk of Anal and Rectal Cancer in Patients With Anal and/or Perianal Crohn’s Disease. Clin. Gastroenterol. Hepatol. 2018, 16, 892–899. [Google Scholar] [CrossRef] [Green Version]
- Ruel, J.; Ko, H.M.; Roda, G.; Patil, N.; Zhang, D.; Jharap, B.; Harpaz, N.; Colombel, J.-F. Anal neoplasia in inflammatory bowel disease is associated with HPV and perianal disease. Clin. Transl. Gastroenterol. 2016, 7, e148. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selimagic, A.; Dozic, A.; Husic-Selimovic, A.; Tucakovic, N.; Cehajic, A.; Subo, A.; Spahic, A.; Vanis, N. The Role of Inflammation in Anal Cancer. Diseases 2022, 10, 27. https://doi.org/10.3390/diseases10020027
Selimagic A, Dozic A, Husic-Selimovic A, Tucakovic N, Cehajic A, Subo A, Spahic A, Vanis N. The Role of Inflammation in Anal Cancer. Diseases. 2022; 10(2):27. https://doi.org/10.3390/diseases10020027
Chicago/Turabian StyleSelimagic, Amir, Ada Dozic, Azra Husic-Selimovic, Nijaz Tucakovic, Amir Cehajic, Anela Subo, Azra Spahic, and Nedim Vanis. 2022. "The Role of Inflammation in Anal Cancer" Diseases 10, no. 2: 27. https://doi.org/10.3390/diseases10020027
APA StyleSelimagic, A., Dozic, A., Husic-Selimovic, A., Tucakovic, N., Cehajic, A., Subo, A., Spahic, A., & Vanis, N. (2022). The Role of Inflammation in Anal Cancer. Diseases, 10(2), 27. https://doi.org/10.3390/diseases10020027