The Effects of Use of Long-Term Second-Generation Antipsychotics on Liver and Kidney Function: A Prospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Biochemical/Hematological Assessment
2.3. Anthropometric Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vassilopoulou, E.; Efthymiou, D.; Papatriantafyllou, E.; Markopoulou, M.; Sakellariou, E.-M.; Popescu, A.C. Long Term Metabolic and Inflammatory Effects of Second-Generation Antipsychotics: A Study in Mentally Disordered Offenders. J. Pers. Med. 2021, 11, 1189. [Google Scholar] [CrossRef] [PubMed]
- Marston, L.; Nazareth, I.; Petersen, I.; Walters, K.; Osborn, D.P.J. Prescribing of antipsychotics in UK primary care: A cohort study. BMJ Open 2014, 4, e006135. [Google Scholar] [CrossRef] [Green Version]
- Correll, C.U.; Detraux, J.; De Lepeleire, J.; De Hert, M. Effects of antipsychotics, antidepressants and mood stabilizers on risk for physical diseases in people with schizophrenia, depression and bipolar disorder. World Psychiatry 2015, 14, 119–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correll, C.U.; Lencz, T.; Malhotra, A.K. Antipsychotic drugs and obesity. Trends Mol. Med. 2011, 17, 97–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musil, R.; Obermeier, M.; Russ, P.; Hamerle, M. Weight gain and antipsychotics: A drug safety review. Expert Opin. Drug Saf. 2014, 14, 73–96. [Google Scholar] [CrossRef]
- Salvi, V.; Barone-Adesi, F.; D’Ambrosio, V.; Albert, U.; Maina, G. High H1-affinity antidepressants and risk of metabolic syndrome in bipolar disorder. Psychopharmacology 2015, 233, 49–56. [Google Scholar] [CrossRef]
- De Hert, M.; Detraux, J.; Van Winkel, R.; Yu, W.; Correll, C.U. Metabolic and cardiovascular adverse effects associated with antipsychotic drugs. Nat. Rev. Endocrinol. 2011, 8, 114–126. [Google Scholar] [CrossRef]
- Hwang, Y.J.; Dixon, S.N.; Reiss, J.P.; Wald, R.; Parikh, C.R.; Gandhi, S.; Shariff, S.Z.; Pannu, N.; Nash, D.M.; Rehman, F.; et al. Atypical Antipsychotic Drugs and the Risk for Acute Kidney Injury and Other Adverse Outcomes in Older Adults: A Population-Based Cohort Study: A Population-Based Cohort Study. Ann. Intern. Med. 2014, 161, 242–248. [Google Scholar] [CrossRef]
- Jiang, Y.; McCombs, J.S.; Park, S.H. A Retrospective Cohort Study of Acute Kidney Injury Risk Associated with Antipsychotics. CNS Drugs 2017, 31, 319–326. [Google Scholar] [CrossRef]
- Tzeng, N.-S.; Hsu, Y.-H.; Ho, S.-Y.; Kuo, Y.-C.; Lee, H.-C.; Shinn-Ying, H.; Chen, H.-A.; Chen, W.-L.; Chu, W.C.-C.; Huang, H.-L. Is schizophrenia associated with an increased risk of chronic kidney disease? A nationwide matched-cohort study. BMJ Open 2015, 5, e006777. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-Y.; Huang, C.L.-C.; Feng, I.J.; Tsuang, H.-C. Second-generation antipsychotic medications and risk of chronic kidney disease in schizophrenia: Population-based nested case–control study. BMJ Open 2018, 8, e019868. [Google Scholar] [CrossRef] [PubMed]
- Højlund, M.; Lund, L.C.; Herping, J.L.E.; Haastrup, M.B.; Damkier, P.; Henriksen, D.P. Second-generation antipsychotics and the risk of chronic kidney disease: A population-based case-control study. BMJ Open 2020, 10, e038247. [Google Scholar] [CrossRef] [PubMed]
- De Chiara, L.; Conte, C.; Antonelli, G.; Lazzeri, E. Tubular Cell Cycle Response upon AKI: Revising Old and New Paradigms to Identify Novel Targets for CKD Prevention. Int. J. Mol. Sci. 2021, 22, 11093. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.-T.; Chen, W.-L.; Tain, Y.-L.; Hsu, C.-N. Complement Factor H and Related Proteins as Markers of Cardiovascular Risk in Pediatric Chronic Kidney Disease. Biomedicines 2022, 10, 1396. [Google Scholar] [CrossRef] [PubMed]
- Mishra, J.; Dent, C.; Tarabishi, R.; Mitsnefes, M.M.; Ma, Q.; Kelly, C.; Ruff, S.M.; Zahedi, K.; Shao, M.; Bean, J.; et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 2005, 365, 1231–1238. [Google Scholar] [CrossRef]
- Parikh, C.; Mishra, J.; Thiessen-Philbrook, H.; Dursun, B.; Ma, Q.; Kelly, C.; Dent, C.; Devarajan, P.; Edelstein, C. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2006, 70, 199–203. [Google Scholar] [CrossRef] [Green Version]
- Hosohata, K.; Ando, H.; Fujimura, A. Urinary Vanin-1 As a Novel Biomarker for Early Detection of Drug-Induced Acute Kidney Injury. J. Pharmacol. Exp. Ther. 2012, 341, 656–662. [Google Scholar] [CrossRef]
- Malhotra, R.; Katz, R.; Jotwani, V.; Ambrosius, W.T.; Raphael, K.L.; Haley, W.; Rastogi, A.; Cheung, A.K.; Freedman, B.I.; Punzi, H.; et al. Urine Markers of Kidney Tubule Cell Injury and Kidney Function Decline in SPRINT Trial Participants with CKD. Clin. J. Am. Soc. Nephrol. 2020, 15, 349–358. [Google Scholar] [CrossRef]
- Shrivastava, A.; Johnston, M.E. Weight-Gain in Psychiatric Treatment: Risks, Implications, and Strategies for Prevention and Management. Mens Sana Monogr. 2010, 8, 53–68. [Google Scholar] [CrossRef]
- Chalasani, N.; Fontana, R.J.; Bonkovsky, H.L.; Watkins, P.B.; Davern, T.; Serrano, J.; Yang, H.; Rochon, J.; Drug Induced Liver Injury Network (DILIN). Causes, Clinical Features, and Outcomes from a Prospective Study of Drug-Induced Liver Injury in the United States. Gastroenterology 2008, 135, 1924–1934.e4. [Google Scholar] [CrossRef] [Green Version]
- Aithal, G.P.; Watkins, P.B.; Andrade, R.J.; Larrey, D.; Molokhia, M.; Takikawa, H.; Hunt, C.M.; Wilke, R.A.; Avigan, M.; Kaplowitz, N.; et al. Case Definition and Phenotype Standardization in Drug-Induced Liver Injury. Clin. Pharmacol. Ther. 2011, 89, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Dumortier, G.; Cabaret, W.; Stamatiadis, L.; Saba, G.; Benadhira, R.; Rocamora, J.-F.; Aubriot-Delmas, B.; Glikman, J.; Januel, D. Hepatic tolerance of atypical antipsychotic drugs. Encephale 2002, 28 Pt 1, 542–551. [Google Scholar] [PubMed]
- Licata, A.; Minissale, M.G.; Calvaruso, V.; Craxì, A. A focus on epidemiology of drug-induced liver injury: Analysis of a prospective cohort. Eur. Rev. Med Pharmacol. Sci. 2017, 21 (Suppl. S1), 112–121. [Google Scholar] [PubMed]
- Vukotić, N.T.; Đorđević, J.; Pejić, S.; Đorđević, N.; Pajović, S.B. Antidepressants- and antipsychotics-induced hepatotoxicity. Arch. Toxicol. 2021, 95, 767–789. [Google Scholar] [CrossRef]
- Telles-Correia, D.; Barbosa, A.; Cortez-Pinto, H.; Campos, C.; Rocha, N.B.F.; Machado, S. Psychotropic drugs and liver disease: A critical review of pharmacokinetics and liver toxicity. World J. Gastrointest. Pharmacol. Ther. 2017, 8, 26–38. [Google Scholar] [CrossRef]
- Chou, A.I.W.; Lu, M.L.; Shen, W.W. Hepatotoxicity induced by clozapine: A case report and review of literature. Neuropsychiatr. Dis. Treat. 2014, 10, 1585–1587. [Google Scholar] [CrossRef] [Green Version]
- McLoughlin, C.; Cooney, C.; Mullaney, R. Clozapine-induced interstitial nephritis in a patient with schizoaffective disorder in the forensic setting: A case report and review of the literature. Ir. J. Psychol. Med. 2019, 39, 106–111. [Google Scholar] [CrossRef]
- He, L.; Peng, Y.; Fu, X.; Chen, X.; Liu, H. Dibenzodiazepine Derivative Quetiapine- and Olanzapine-Induced Chronic Interstitial Nephritis. Ren. Fail. 2013, 35, 657–659. [Google Scholar] [CrossRef]
- Kaidanovich-Beilin, O.; Cha, D.S.; McIntyre, R.S. Crosstalk between metabolic and neuropsychiatric disorders. F1000 Biol. Rep. 2012, 4, 14. [Google Scholar] [CrossRef]
- Harris, L.W.; Guest, P.C.; Wayland, M.T.; Umrania, Y.; Krishnamurthy, D.; Rahmoune, H.; Bahn, S. Schizophrenia: Metabolic aspects of aetiology, diagnosis and future treatment strategies. Psychoneuroendocrinology 2013, 38, 752–766. [Google Scholar] [CrossRef]
- Dickerson, F.B.; Brown, C.H.; Kreyenbuhl, J.A.; Fang, L.; Goldberg, R.W.; Wohlheiter, K.; Dixon, L.B. Obesity among individuals with serious mental illness. Acta Psychiatr. Scand. 2005, 113, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Vancampfort, D.; Stubbs, B.; Mitchell, A.J.; De Hert, M.; Wampers, M.; Ward, P.B.; Rosenbaum, S.; Correll, C.U. Risk of metabolic syndrome and its components in people with schizophrenia and related psychotic disorders, bipolar disorder and major depressive disorder: A systematic review and meta-analysis. World Psychiatry 2015, 14, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Yi, Z. Antipsychotic Drugs and Liver Injury. Shanghai Arch. Psychiatry 2018, 30, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Druschky, K.; Toto, S.; Bleich, S.; Baumgärtner, J.; Engel, R.R.; Grohmann, R.; Maier, H.B.; Neyazi, A.; Rudolph, Y.J.; Rüther, E.; et al. Severe drug-induced liver injury in patients under treatment with antipsychotic drugs: Data from the AMSP study. World J. Biol. Psychiatry 2020, 22, 373–386. [Google Scholar] [CrossRef] [PubMed]
- Biour, M.; Ben Salem, C.; Chazouillères, O.; Grangé, J.-D.; Serfati, L.; Poupon, R. Hépatotoxicité des médicaments 14e mise à jour du fichierbibliographique des atteinteshépatiques et des médicamentsresponsables. Gastroenterol. Clin. Biol. 2004, 28, 720–759. [Google Scholar] [CrossRef]
- Cho, E.J.; Yu, S.J.; Jung, G.C.; Kwak, M.-S.; Yang, J.I.; Yim, J.Y.; Chung, G.E. Body weight gain rather than body weight variability is associated with increased risk of nonalcoholic fatty liver disease. Sci. Rep. 2021, 11, 14428. [Google Scholar] [CrossRef]
- De Hert, M.; Schreurs, V.; Vancampfort, D.; Van Winkel, R. Metabolic syndrome in people with schizophrenia: A review. World Psychiatry 2009, 8, 15–22. [Google Scholar] [CrossRef]
- Atmaca, M.; Kuloglu, M.; Tezcan, E.; Ustundag, B. Serum Leptin and Triglyceride Levels in Patients on Treatment With Atypical Antipsychotics. J. Clin. Psychiatry 2003, 64, 598–604. [Google Scholar] [CrossRef]
- Melkersson, K.I.; Hulting, A.-L.; Brismar, K.E. Elevated Levels of Insulin, Leptin, and Blood Lipids in Olanzapine-Treated Patients with Schizophrenia or Related Psychoses. J. Clin. Psychiatry 2000, 61, 742–749. [Google Scholar] [CrossRef]
- Kathak, R.R.; Sumon, A.H.; Molla, N.H.; Hasan, M.; Miah, R.; Tuba, H.R.; Habib, A.; Ali, N. The association between elevated lipid profile and liver enzymes: A study on Bangladeshi adults. Sci. Rep. 2022, 12, 1711. [Google Scholar] [CrossRef]
- Rosenstein, K.; Tannock, L.R. Dyslipidemia in Chronic Kidney Disease. [Updated 2022 Feb 10]. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext [Internet]. MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK305899/ (accessed on 20 June 2022).
- Efthymiou, D.; Zekakos, D.X.; Papatriantafyllou, E.; Ziagkas, E.; Petrelis, A.N.; Vassilopoulou, E. Gait Alterations in the Prediction of Metabolic Syndrome in Patients with Schizophrenia: A Pilot Study with PODOSmart® Insoles. Front. Psychiatry 2022, 13, 756600. [Google Scholar] [CrossRef] [PubMed]
- Sah, S.K.; Khatiwada, S.; Pandey, S.; Kc, R.; Das, B.K.L.; Baral, N.; Lamsal, M. Association of high-sensitivity C-reactive protein and uric acid with the metabolic syndrome components. SpringerPlus 2016, 5, 269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vassilopoulou, E.; Efthymiou, D.; Tsironis, V.; Athanassis, P.; Chatzioannidis, S.; Kesoglou, T.; Severin, A.V.; Bozikas, V.P. The benefits of the Mediterranean diet in first episode psychosis patients taking antipsychotics. Toxicol. Rep. 2022, 9, 120–125. [Google Scholar] [CrossRef] [PubMed]
AP1 | AP2 | |
---|---|---|
N | 17 | 18 |
Males | 16 (94%) | 15 (83.33%) |
Antipsychotics | 17 | 18 |
Anticoagulants | 5 | 1 |
Antihypertensives | 3 | 4 |
Antidiabetic | 2 | 3 |
Antilipidemic | 2 | 5 |
Medication for CVD | 7 | 7 |
Biochemical Measurement | T1 | T2 | T3 | T1-T2 p-Value | T2-T3 p-Value | T1-T3 p-Value | Overall Difference during the 3-Year Period p-Value |
---|---|---|---|---|---|---|---|
Urea (mg/dL) | 27.12 (11.77) | 27.35 (9.58) | 27.29 (8.34) | 0.89 | 0.97 ** | 0.94 ** | 0.79 |
Uric acid (mg/dL) | 4.19 (1.52) | 4.20 (1.35) | 4.30 (1.70) | 0.067 ** | 0.97 | 0.12 ** | 0.06 |
Serum creatinine (mg/dL) | 0.83 (0.24) | 0.81 (0.15) | 0.80 (0.24) | 0.88 ** | 0.28 ** | 0.400 ** | 0.53 *** |
SGOT (U/L) | 17.00 (7.00) | 18.00 (9.00) | 17.00 (10.00) | 0.79 ** | 0.48 | 0.85 ** | 0.34 |
SGPT (U/L) | 20.00 (11.00) | 18.00 (17.00) | 21.00 (19.00) | 0.22 | 0.26 | 0.14 ** | 0.39 |
γ-GT (U/L) | 26.00 (13.00) | 20.00 (13.00) | 24.00 (18.00) | 0.63 ** | 0.12 | 0.56 ** | 0.48 |
Akaline phosphatase (U/L) | 79.47 (31.35) | 79.29 (31.47) | 80.41 (36.93) | 0.93 ** | 0.71 ** | 0.81 ** | 0.86 *** |
Amylase (U/L) | 58.29 (19.66) | 57.41 (21.30) | 62.12 (14.32) | 0.57 | 0.08 | 0.27 ** | 0.19 |
Biochemical Measurement | T1 | T2 | T3 | T1-T2 (p-Value) | T2-T3 (p-Value) | T1-T3 (p-Value) | Overall Difference during the 3-Year Period (p-Value) |
---|---|---|---|---|---|---|---|
Urea (mg/dL) | 24.03 (8.46) | 23.31 (8.52) | 23.77 (10.71) | 0.39 ** | 0.81 ** | 0.86 ** | 0.94 |
Uric acid (mg/dL) | 4.21 (1.40) | 4.00 (2.18) | 4.50 (1.55) | 0.60 | 0.01 ** | 0.23 ** | 0.01 |
Serum creatinine (mg/dL) | 0.81 (0.12) | 0.84 (0.30) | 0.87 (0.31) | 0.13 | 0.41 ** | 0.03 ** | 0.16 |
SGOT (U/L) | 15.00 (4.00) | 17.00 (2.00) | 15.00 (4.00) | 0.04 | 0.01 | 0.82 | 0.02 |
SGPT (U/L) | 17.00 (12.00) | 18.50 (16.00) | 14.00 (13.00) | 0.24 ** | 0.02 ** | 0.06 | 0.05 |
Γ-gt (U/L) | 24.50 (18.00) | 24.50 (17.00) | 24.00 (9.00) | 0.72 | 0.19 | 0.42 ** | 0.54 |
Alkaline phosphatase (U/L) | 73.28 (18.10) | 72.22 (21.89) | 74.56 (22.56) | 0.63 ** | 0.33 | 0.41 | 0.09 |
Amylase (U/L) | 49.94 (21.84) | 51.94 (19.33) | 53.89 (22.13) | 0.67 | 0.78 | 0.86 | 0.86 |
Dependent Variable | Independent Variables | Β | S.E. | β | T | p |
---|---|---|---|---|---|---|
Uric acid (1) | Constant | 3.013 | 1.278 | 2.358 | 0.02 | |
Weight | 0.061 | 0.024 | 0.546 | 2.564 | 0.01 | |
BMI | −0.134 | 0.067 | −0.432 | −2.012 | 0.05 | |
CRP | −0.048 | 0.051 | −0.124 | −0.932 | 0.36 | |
Serum creatinine (2) | Constant | 0.482 | 0.174 | 2.761 | 0.01 | |
Weight | 0.001 | 0.003 | 0.066 | 0.303 | 0.76 | |
BMI | 0.012 | 0.009 | 0.280 | 1.281 | 0.21 | |
CRP | −0.003 | 0.007 | −0.050 | −0.367 | 0.71 | |
SGOT (3) | Constant | 4.205 | 7.290 | 0.577 | 0.57 | |
Weight | −0.124 | 0.135 | −0.190 | −0.914 | 0.36 | |
BMI | 0.816 | 0.381 | 0.450 | 2.141 | 0.03 | |
CRP | 0.496 | 0.292 | 0.222 | 1.698 | 0.09 | |
SGPT (4) | Constant | −1.128 | 8.832 | −0.128 | 0.89 | |
Weight | 0.011 | 0.164 | 0.014 | 0.065 | 0.95 | |
BMI | 0.733 | 0.462 | 0.342 | 1.587 | 0.12 | |
CRP | −0.366 | 0.354 | −0.139 | −1.033 | 0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papatriantafyllou, E.; Efthymiou, D.; Markopoulou, M.; Sakellariou, E.-M.; Vassilopoulou, E. The Effects of Use of Long-Term Second-Generation Antipsychotics on Liver and Kidney Function: A Prospective Study. Diseases 2022, 10, 48. https://doi.org/10.3390/diseases10030048
Papatriantafyllou E, Efthymiou D, Markopoulou M, Sakellariou E-M, Vassilopoulou E. The Effects of Use of Long-Term Second-Generation Antipsychotics on Liver and Kidney Function: A Prospective Study. Diseases. 2022; 10(3):48. https://doi.org/10.3390/diseases10030048
Chicago/Turabian StylePapatriantafyllou, Evangelia, Dimitris Efthymiou, Maria Markopoulou, Efthymia-Maria Sakellariou, and Emilia Vassilopoulou. 2022. "The Effects of Use of Long-Term Second-Generation Antipsychotics on Liver and Kidney Function: A Prospective Study" Diseases 10, no. 3: 48. https://doi.org/10.3390/diseases10030048
APA StylePapatriantafyllou, E., Efthymiou, D., Markopoulou, M., Sakellariou, E. -M., & Vassilopoulou, E. (2022). The Effects of Use of Long-Term Second-Generation Antipsychotics on Liver and Kidney Function: A Prospective Study. Diseases, 10(3), 48. https://doi.org/10.3390/diseases10030048