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Abstract: Aplastic anaemia (AA) is a rare hypocellular bone marrow disease with a large number of
mutations in the telomerase reverse transcriptase gene (TERT), leading to bone marrow failure. We
used our benchmarked whole exome sequencing (WES) pipeline to identify variants in adult Indian
subjects with apparently acquired AA. For 36 affected individuals, we sequenced coding regions to a
mean coverage of 100x and a sufficient depth was achieved. Downstream validation and filtering to
call mutations in patients treated with Cyclosporin A (CsA) identified variants associated with AA.
We report four mutations across the genes associated with the AA, TERT and CYP3A5, in addition
to other genes, viz., IFNG, PIGA, NBS/NBN, and MPL. We demonstrate the application of WES to
discover the variants associated with CsA responders and non-responders in an Indian cohort.
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1. Introduction

Aplastic anaemia (AA) is a rare hypocellular bone marrow disease with bone marrow
containing very few hematopoietic cells [1]. Nearly 10-30% patients with apparently ac-
quired AA have mutations in the telomerase reverse transcriptase gene (TERT), leading
to bone marrow failure [2]. The TERT gene is known for maintaining the telomerase ri-
bonucleoprotein complex and plays a crucial role in its regulation, which otherwise causes
short telomeres leading to AA. Currently the treatment options for AA include hematopoi-
etic stem cell transplantation (HSCT), anti-thymocyte globulin (ATG), and cyclosporine
A (CsA) administered as a standard mode of efficacy. HSCT is the treatment of choice
for AA patients with TERT mutations; however, many of them respond to Androgens. In
view of the costs associated with HSCT and ATG therapies, many patients are prescribed
CsA-Androgen therapy combination. CsA along with Danazol, an anabolic steroid, are
administered for treating AA, and they have been assessed in various populations [3-5].
When these patients do not respond to immunosuppressive therapy (standard of care),
bone marrow transplantation (BMT) is the treatment of choice for AA with documented
telomerase mutations [6—11].

Over the years, genetic characterization associated with AA has steadily progressed
through studies using whole exome sequencing (WES) and mutational screening as-
says [12,13]. Recently, Zhang et al. have identified potential pathogenic genes for severe AA
(SAA) and explored the possible genetic variants in CD8+ T cells [14]. In addition, unlike
WES, the evaluation frequency of targeted next-generation sequencing (NGS) in capturing
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variations with lower allelic burden could be detected with higher rate as the somatic
mutation frequency ranges between 5-70% across the NGS studies [15-17]. However, the
occurrence of such mutations corresponds with the duration of disease, suggesting selective
pressure favouring cell survival [18]. Recent efforts have paved the way for identification
of AA variants and the likelihood of the effects they cause; for example, the association
between homozygous MPL mutations and familial AA is well regarded [19,20]. Intense
research over the years has paved the way for diagnosis and treatment of bone therapies,
including allogeneic bone marrow transplantation for AA [21,22]. Furthermore, alloimmu-
nization and overall survival are associated in patients with SAA, and recently, granulocyte
transfusions have been helpful towards developing a treatment that can bridge patients to
curative treatment with HSCT [23]. On the other hand, treatment of newly diagnosed SAA
in children has been studied based on evidence-based recommendations [24,25], and this
evidence shows high variability after SARS-CoV-2 infection or vaccination [26]. Various
drugs, such as eltrombopag, have been checked for efficacy alongside immunosuppressive
therapy combined with eltrombopag for the treatment of SAA [27,28]. Cyclosporine plus
eltrombopag have been shown to have a similar response and less side effects compared to
standard immunosuppressive therapy [29]. There are intended guidelines for the diagnosis
and management of SAA and adult AA, which have been in use [30]. Although studies
on the magnitude of the problem have elucidated morphological changes associated with
AA determinants, there are no published data on TERT mutations in Indian patients with
acquired AA [31]. Our earlier pilot study was an attempt to identify TERT mutations with
apparently acquired AA, but the knowledge of using the NGS approaches had not been
translated from Telomere dysfunction in the Indian cohort [32]. This could be because of
the divergent choice of treatment rendered in those individuals. Therefore, measurement
of telomere length and identifying inherent candidate variants would be interesting to
understand the disease condition. In this study, we sought to underpin the candidate
genetic variants associated with AA from the Indian population using the WES approach.
The majority of these patients were of very low socioeconomic status, but because we
enrolled transfusion-independent CsA responders, all patients in our cohort were treated
with CsA and Danazol. The samples were analysed for variants predicted to be associated
with/causal, and further downstream annotation yielded bona fide variants with a marked
impact on the risk of AA.

2. Materials and Methods

Patients and samples: The AA subjects were recruited from the department of gen-
eral medicine, SMS Medical College and Hospital, Jaipur during 20162021, with ethics
approval from the institutional ethics committee and Indian Council of Medical Research
(ICMR)/Department of Health Research (DHR), Government of India, New Delhi. An
informed consent was obtained from all the patients after fully explaining to them about
the study and process. The patients’ 2 mL blood sample was drawn through the periph-
eral vein for WES. A total of 36 AA subject samples with a mean age of 32 have been
sequenced, with four samples excluded because the patients were not available for follow-
up. Those subjects who responded to CsA and Danazol treatment were considered as
CsA responders, while those who underwent blood transfusion were non-responders
(Supplementary Table S1). Treatment duration ranged from 6 months to 1 year for follow-
up cases; samples for which data were not available due to insufficient follow-up were not
included in the final annotations.

Exome capture and sequencing: The WES was performed using the QIAamp® DNA
Blood Mini Kit (Thermo Fisher Scientific, Waltham, MA, USA) (Cat No: 51104). The quality
check (QC) of the genomic DNA (gDNA) was performed using a Qubit® 2.0 Fluorometer
followed by agarose gel electrophoresis. Briefly, we used 200 ng of gDNA to generate
300 bp to 350 bp fragments and performed end repair, adapter ligation, and amplification,
and adapter ligated DNA was hybridized using the Agilent V5 + UTRs chemistry (Human
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All Exon 75 Mb kit) with paired end reads (150 x 2), and an approximate 100x depth of
coverage was obtained, resulting in 6-8 GB of data per sample.

Quality control (QC) and variant calling: All raw data were analysed in a local
1 TB RAM/64 processors server using our in-house pipeline described previously [33].
The samples were checked for GC bias and duplication levels using FastQC, following
which the human genome reference (hg38) was used to align through bowtie2 [11]. After
bowtie2 mapping with the hg38 reference, variant calling was performed using VarScan
with mutations counted as heterozygous (“het”) through awk/bash scripts. The VarScan
prediction tool was employed to check variants filtered for false discovery rate (FDR). The
VarScan somatic command was used with the mpileup option, meeting the minimum
coverage of 10x to identify possible somatic variants. In this process, their corresponding
genotypes for the samples were checked to infer the somatic status. Further predictions
identifying “deleterious” mutations were screened for Sanger validation.

Telomere length analysis and Validation of SNPs: To check whether or not the AA
subjects have shortened telomere length, we used Scicell’s Absolute Human Telomere
Length Quantification qPCR Assay Kit (AHTLQ: Catalog #8918). A single copy reference
(SCR) primer set was used to amplify a 100 bp-long region on human chromosome 17 and
served as a reference for data normalization. The primer sets were validated by qPCR and
the gel electrophoresis was run to check the amplification efficiency. All SNPs were mapped
to the publicly available databases and the variant effect predictor (VEP) Ensembl suite was
used to detect the SNPs that have the minor allele frequency (MAF) cutoff of 0.05. Based
on the WES data, the shortlisted variants were cross-checked, primarily using ClinVar,
and followed by other validation databases, viz., Varsome, CADD, and GERP scores. The
variants were validated by Sanger sequencing and visualized using the Integrated Genome
Viewer (IGV) browser for internal cross checking of the variants.

Statistical analyses and population stratification: All statistical tests were performed
with the sample relationship checks maintained. The bcf/ vcf files with a MAF < 0.05 and a
minimum DP > 5 were used for mapping the pathogenic variants. First, the mean number
of heterozygous variants was calculated, then VerifyBamID was used to infer whether
reads were contaminated between samples (p-value < 0.05) (p-value < 0.05) [34].

3. Results and Discussions
TERT and CYP3Ab5 Were Shown to Be Harbouring Pathogenic Mutations

We investigated heterozygous variant calls with low-coverage SNPs/indel sites and
further explored the singleton mutations with the MAF cutoff of 0.05. We observed the
variants associated with a major difference in functional alleles when compared to un-
affected samples. From our cohort, two genes, viz., TERT (Samples 30, 38 and 50) and
CYP3Ab5 (sample 44), were shown to be harbouring pathogenic mutations (Table 1). While
IENG, PIGA, and NBS mutations were found significantly across all subpopulations, we
considered the mutations as pathogenic when reported in ClinVar.

Table 1. List of somatic mutations from our cohort associated with aplastic anaemia and matched to
ClinVar.

Sample# Gene HGVSID RSID
30 TERT NM_198253.3(TERT):c.915G > A (p.Ala305=) rs2736098
38 TERT NC_000005.10:g.1255405G > A 1533954691
50 TERT NC_000005.10:g.1255405G > A 1533954691
44 CYP3A5 NC_000007.14:g.99672916T > C rs776746

Effect of variants on CsA response: All four of the mutations were observed in
CsA responders with an overall variant detection rate split between six genes, viz., TERT,
IFNG, PIGA, NBS1/NBN, MPL, and CYP3A5, which were reported in the samples. Apart
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from TERT and CYP3A5, the other four genes were not significantly reported in ClinVar.
CYP3A5 is a gene known for mode of action of immunosuppression for CsA response,
and the variant is also known to be reported in ClinVar (https://www.ncbi.nlm.nih.gov/
clinvar/variation/226021/, last accessed on 3 September 2024). However, a large number
of patients, for example, samples 40 and 51, responded within 6 months of therapy with
partial remission (free from blood transfusion dependence) maintained.

We found low-confidence CYP3A5 (NC_000007.14:g.99672916T > C) to be associated
with a splice acceptor variant in sample 44. The rs776746 variant of CYP3AS5 is associated
with intravenous plasma levels in critically ill paediatric patients, which in our case the
patient has been susceptible with the presence of this variant [35]. Although they are less
significant and benign, we argue that these observations deserve clinical attention, because
they are shown to be associated with CsA response in end stage renal failure [36,37]. The
reasons why certain patients are more susceptible to transfusion remain to be elucidated.
We attribute this to the poor prognosis of some patients, as it may be associated with somatic
mutational load [38,39]. As the mutations were reported in CsA responders, we also found
mutations attributing to IFNG’s susceptibility to have efficacy in immuno-suppressive
therapy [40,41]. All the four mutations across the TERT and CYP3AS5 genes, in addition to
other genes, viz. [IFNG, PIGA, and NBS/NBN, were validated using Sanger sequencing (see
data availability). These advances in genomic analysis have shown the complex spectrum
of somatic mutations in AA. While PIGA mutations were frequently detected in AA patients
at diagnosis, they are less studied as they have low variant allele frequencies.

Furthermore, our telomerase assay showed distinct patterns of telomere length when
compared to the normal individuals (see Supplementary Information). While we found as
many as nine samples with a telomere length less than the normal range of 10-12 kb, a set
of SNPs that exhibited statistically significant association with AA were also checked. The
TERT / TERC mutations are largely associated with pulmonary fibrosis and /or bone marrow
failure, cellular senescence, homologous recombination, and /or Dyskeratosis congenita
and are telomere-related and/or autosomal dominant [42].

However, our study has inherent limitations. We could not determine whether disease
remission was associated with non-genetic or genetic TERT, as treatment durations varied
widely between 2.5 months and 4 years in the follow-up cases. Given the paucity of patients
with TERT mutations, telomere shortening in AA may involve multiple mechanisms,
including telomere damage, genetic defects, and increased stem cell turnover; multiple
mechanisms may be involved and require further validation. Due to a lack of family
history and samples, germline mutations could not be examined. We found a number of
somatic mutations enriched in these pathways, but our exome capture was not a long-term
follow-up of patients, which could be a reason why the mutations were not significant.

4. Conclusions

In this study, WES was used to screen for mutations in subjects who responded to
CsA and those who did not. We have discovered four gene-related mutations: TERT,
CYP3A5, and several others, including IFNG, PIGA, NBS/NBN, and MPL. This research is
presumably the first to document the pathogenic variants connected to Indian AA samples
to assess the effect of CsA responders. Despite the relatively small number of samples,
and with the exception of the four samples, identifying the patterns to favour CsA is a
challenge. For samples that respond to CsA, there is room for genotyping and clinical
testing. Our study further suggested that there is no correlation between telomerase length
and pathogenesis associated with AA. Our findings should be interpreted with caution
given the multiple limitations of this study, but the results encourage future studies with
the aim to check the CsA response and assess the mutational burden with large effect size.


https://www.ncbi.nlm.nih.gov/clinvar/variation/226021/
https://www.ncbi.nlm.nih.gov/clinvar/variation/226021/

Diseases 2024, 12, 225 50f7

Supplementary Materials: The following supporting information can be downloaded at:
https:/ /www.mdpi.com/article/10.3390/ diseases12090225/s1, Supplementary Table S1: List of
samples associated with CsA response. Supplementary information: Telomerase assay results.
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