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Abstract: Background: Urinary stones (urolithiasis) have been categorized as kidney stones
(renal calculus), ureteric stones (ureteral calculus and ureterolith), bladder stones (bladder
calculus), and urethral stones (urethral calculus); however, the mechanisms underlying their
promotion and related injuries in glomerular and tubular cells remain unclear. Although
lifestyle-related diseases (LSRDs) such as hyperglycemia, type 2 diabetic mellitus, non-
alcoholic fatty liver disease/non-alcoholic steatohepatitis, and cardiovascular disease are
risk factors for urolithiasis, the underlying mechanisms remain unclear. Recently, heat
shock protein 90 (HSP90) on the membrane of HK-2 human proximal tubular epithelium
cells has been associated with the adhesion of urinary stones and cytotoxicity. Further,
HSP90 in human pancreatic and breast cells can be modified by various advanced glycation
end-products (AGEs), thus affecting their function. Hypothesis 1: We hypothesized that
HSP90s on/in human proximal tubular epithelium cells can be modified by various types
of AGEs, and that they may affect their functions and it may be a key to reveal that
LSRDs are associated with urolithiasis. Hypothesis 2: We considered the possibility that
Japanese traditional medicines for urolithiasis may inhibit AGE generation. Of Choreito
and Urocalun (the extract of Quercus salicina Blume/Quercus stenophylla Makino) used in the
clinic, Choreito is a Kampo medicine, while Urocalun is a characteristic Japanese traditional
medicine. As Urocalun contains quercetin, hesperidin, and p-hydroxy cinnamic acid, which
can inhibit AGE generation, we hypothesized that Urocalun may inhibit the generation of
AGE-modified HSP90s in human proximal tubular epithelium cells.

Keywords: ureteric stone; lifestyle-related disease; heat shock protein 90; advanced
glycation end-products; MG-H1; argpyrimidine; GLAP; traditional Japanese medicine;
urocalun; quercetin
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1. Introduction
Urinary stones (urolithiasis) have been categorized as kidney stones (renal calcu-

lus), ureteric stones (ureteral calculus and ureterolith), bladder stones (bladder calculus),
and urethral stones (urethral calculus) [1–4]. Stones with calcium oxalate monohydrate
and calcium phosphate crystals as the main components are generated in each region
of the kidney, and move and adhere to glomerular and tubular cell membranes [3,5,6].
Although these stones induce cytotoxicity and inflammation in glomerular and tubular
cells [1–3], along with strong pain [4–6], the mechanisms underlying their generation
remain unclear. Some studies indicate that urinary stones are associated with lifestyle-
related diseases (LSRDs) such as hyperglycemia [7], diabetes [8], non-alcoholic fatty liver
disease (NAFLD)/non-alcoholic steatohepatitis (NASH) [9], and cardiovascular disease
(CVD) [10]. However, the mechanisms involved in (i) urinary stone generation or promo-
tion by LSRDs and (ii) the increased cytotoxicity from urinary stones in renal cells, because
of LSRDs remain to be revealed. Yoodee et al. and Heng et al. recently indicated the
possibility that (i) the growth of ureteric stones may be affected by heat shock protein 90
(HSP90) on the cell membrane, and that (ii) the adhesion of ureteric stones may promote
HSP90 expression and induce cytotoxicity in the proximal tubular epithelium cells [11,12].
HSP90 contains two isomers, HSP90α and HSP90β; it maintains cellular homeostasis by
acting as a molecular chaperone as well as by regulating autophagy and apoptosis [13–16].
HSP90 may, thus, be a key to understanding the relationship between urinary stones and
LSRDs. Notably, advanced glycation end-products (AGEs) are associated with LSRDs,
and some types of AGEs promote the symptoms and stages of LSRDs [17–20]. AGEs are
generated from saccharides and their metabolic intermediate/sub-products (e.g., glycer-
aldehyde and methylglyoxal) react with proteins [17–20]. HSP90s in some cells which were
treated with glyceraldehyde and methylglyoxal can be modified by some type of AGE
structures (e.g., argpyrimidine, glyceraldehyde-derived pyridinium (GLAP), Nδ-(5-hydro-
5-methyl-4-imidazolone-2-yl)-ornithine (MG-H1), and an unidentified type of glyceralde-
hyde (GA)-derived AGE (GA-AGE)) [21–23]. We hypothesized that HSP90s on/in human
proximal tubular epithelium cells can be modified by various types of AGEs, and that they
may affect their functions and it may be the key to revealing that LSRDs are associated
with urolithiasis. To inhibit AGE accumulation in cells, (i) AGE generation is inhibited
via a carbonyl trap reaction system and glyoxalase-1 (GLO-1) activation [19,24,25], and
(ii) AGE degradation (i.e., through autophagy and proteasomal degradation [26,27]) is pro-
moted. In Japan, the following agents have been used to remove urinary stones or inhibit
their generation: tamulosine [28], magnesium oxide [29], potassium citrate and sodium
citrate hydrate [30], cystine-binding thiol drugs (e.g., tiopronin) [31], thiazide diuretics [32],
febuxostat [33], Choreito (Chinese name: Zhu-Ling-Tang; Polyporus Decoction) [34,35],
and Urocalun (The extract of Quercus salicina Blume/Quercus stenophylla Makino) [36,37].
Choreito is a Japanese traditional medicine (Kampo medicine) based on traditional Chinese
medicine, while Urocalun is a characteristic Japanese traditional medicine, whose informa-
tion has been inherited for some centuries in Japan [34–37]. We researched the components
of these modern and traditional medicines and their ability to inhibit AGE generation or
promote AGE degradation. Quercetin, hesperidine, and p-hydroxycinnamic acid in the
extract of Quercus salicina Blume/Quercus stenophylla Makino are known to inhibit AGE
generation via a carbonyl trap reaction system [19,25,38,39]. Thus, we hypothesized that
Urocalun may inhibit the generation of AGE-modified HSP90s in human proximal tubular
epithelium cells.
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2. Urinary Stones
2.1. Types of Urinary Stones

Urinary stones (urolithiasis) have been categorized as kidney stones (renal calculus),
ureteric stones (ureteral calculus and ureterolith), bladder stones (bladder calculus), and
urethral stones (urethral calculus) (Figure 1) [1–4]. Renal and ureteral calculus are found in
the upper urinary tract, while bladder and urethral calculus are found in the lower urinary
tract. The main components of these stones are calcium oxalate monohydrate and calcium
phosphate crystals, while struvite stones are composed of magnesium, ammonium, and
phosphate [3]; these stones are generated in the respective regions of the kidney, and they
move and adhere to the glomerular and tubular cell membrane [3,5,6]. Although four
groups of stones have been categorized, they can be aggregated and combined through
movement in the glomeruli and tubules [1–6]. Therefore, identifying the original location
at which the stones were first generated is difficult, and their removal in clinical treatment
is more common than this identification. Further, although these stones can adhere to the
glomerular and tubular epithelial cells, the mechanism underlying their adhesion remains
unclear [1–4,12]. We have previously described ureteric stones located in the proximal
convoluted tubule [1–4]. Further, Heng et al. have reported that annexin A1, hyaluronic
acid synthase 3 (HAS3), osteopontin, cluster of differentiation 44 (CD44), and HSP90 on
HK-2 cells (human renal proximal convoluted tubule cell line) may act as receptors for
nano-calcium oxalate monohydrate (nano-COM) in vitro (HSP90 is described in detail in
Section 3) [12].
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Figure 1. Urinary stones (urolithiasis) include kidney stones, ureteral stones, bladder stones, and
urethral stones. The open red box indicates the upper urinary tract. An open green box indicates the
lower urinary tract.

2.2. Urinary Stones (Urolithiasis) and LSRDs

LSRDs are a serious problem globally, especially in developed countries because
of the consumption of excess nutrients, including saccharides, lipids, and proteins, as
well as the lack of heavy manual labor [17–19]. Excess nutrient intake and calorie con-
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sumption results in obesity [40,41], promoting various LSRDs such as hyperglycemia and
type 2 diabetes (T2DM) [42–44], NAFLD/NASH [44,45], CVD [16], cancer [46], and ob-
structive sleep apnea syndrome [47]. Some reports indicate that hyperglycemia [7,48,49],
T2DM [8,50–52], NAFLD/NASH [9,53,54], and CVD [10,55–57] are risk factors for urinary
stones (Figure 2). However, the mechanisms by which LSRDs promote urinary stone gener-
ation and their growth, their adhesion to cell membranes, and their cytotoxicity remain
unclear. Furthermore, whether urinary stone progression promotes LSRDs also remains
unexamined (Figure 2). Thus, various phenomena in LSRDs may affect urinary stones and
these need to be examined to reveal the underlying relationships.
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diabetes mellites; CVD, cardiovascular disease; NAFLD, non-alcoholic fatty liver disease; NASH,
non-alcoholic steatohepatitis.

3. Urinary Stones and HSP90
3.1. Various Functions of HSP90 in Certain Cells

HSP90 exists in two isoforms, HSP90α (inducible form) and HSP90β (consti-
tutively expressed form), and their amino acid sequences show approximately 85%
similarity [14–16,58,59]. The heat shock-induced enhancement of HSP90α expression
is more profound than that of HSP90β [14]; HSP90 is generated as a dimer and localized
predominantly in the cytoplasm [15]. It is reported to exert various functions, including
acting as a molecular chaperone [15,58–62] and regulating the ubiquitin–proteasome degra-
dation system [63,64], autophagy [65,66], and apoptosis [23]. HSP90 dimers are needed to
repair various proteins as a part of the molecular chaperone system. Although homodimers
(HSP90α-HSP90α and HSP90β-HSP90β) are produced more commonly, heterodimers
(HSP90α-HSP90β) can also be generated, and these HSP90 heterodimers are activated with
adenosine triphosphate [58–61]. In this step, heat shock protein organizer protein (HOP)
and heat shock protein 70 (HSP70) act as co-chaperones to generate the HSP90-HSP70-HOP
protein complex [62]. This chaperone system can then regulate the ubiquitin–proteasome
degradation system [62,63]. Proteins whose conformations are changed by the HSP90
dimer are degraded by this system in the second step [62,63]. In the autophagy sys-
tem, activated HSP90 induces Atg7 and Beclin-1 expression to induce and upregulate
microtubule-associated protein 1 light chain 3-II (LC3-II) [65,66]. Ectopic HSP90 on the
plasma membrane and secreted HSP90 have also been reported even though HSP90 has
been previously considered an intracellular protein in the past [67,68].

3.2. Adhesion of COM to Renal Proximal Tubule Epithelial Cells and the Expression and Function
of HSP90

HSP90 is expressed in human renal proximal convoluted tubule epithelial cells [12,69].
Zhu et al. revealed that HSP90 expression in HK-2 human renal proximal tubule epithelial
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cells was less than that in 786-O and ACHN cells (other cell lines of human renal origin),
and that AUY922, an inhibitor of HSP90, inhibited the proliferation of 786-O and ACHN
cells [69]. HSP90 may also be a target of anti-tumor treatment. In contrast, Heng et al.
suggested that (i) HSP90, CD44, annexin A1, HAS3, and osteopontin on the membrane of
HK-2 cells may act as a receptor for nano-COM and that (ii) the adhesion of nano-COM
with HK-2 membrane proteins induces the upregulation of HSP90 and CD44 (Figure 3) [12].
Although HSP90 is generally an intracellular protein [14–16,58,59], it can penetrate the
membrane to act as a receptor, as reported in HK-2 cells [12]. The adhesion of nano-COM
to HK-2 cells induces (i) an increase in reactive oxygen species (ROS), (ii) a decrease in
G1-phase cells and an increase in S-phase cells, and (iii) the upregulation of phosphoserine
(Figure 3) [12]. Owing to these phenomena, cell viability decreases. Although the expression
of HSP90, CD44, annexin A1, HAS3, and osteopontin is increased under these conditions,
the underlying mechanisms remain unknown [12]. HSP90 upregulation may, thus, be
associated with cytotoxicity. Because the ratio of the HSP90 located on the membrane is
increased, it remains unclear whether stimulation by nano-COM leads to increased HSP90
expression as a receptor. However, we believe that the increased HSP90 may induce various
cellular maintenance and/or cytotoxicity processes [14–16,58,59].
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Figure 3. Nano-COM binds to five proteins acting as receptors and induces various processes in
HK-2 cells. HSP90, HAS3, annexin A1, CD44, and osteopontin located on the membrane act as its
receptors. Closed blue prickly leaves indicate nano-COM. The closed red, orange, green, brown,
and pink squares indicate HSP90, HAS3, annexin A1, CD44, and OPN, respectively. The open red
square shows the cell cycle effects. COM, calcium oxalate monohydrate; HSP90, heat shock protein
90; HAS3, hyaluronic acid synthase 3; CD44, cluster of differentiation 44; OPN, osteopontin. ROS,
reactive oxygen species.

4. Hypothesis for the Generation of AGE-Modified HSP90s in Human
Proximal Tubular Epithelium Cells
4.1. Generation and Accumulation of AGEs

AGEs originate from saccharides (e.g., glucose and fructose) and their metabolic
intermediates/sub-products (e.g., glyceraldehyde, glycolaldehyde, methylglyoxal, and
glyoxal) (Figure 4) [17–20]. As glyceraldehyde is a triose, it is categorized as a saccharide
even though it is produced through metabolism and a non-enzymatic reaction based on
glucose and fructose [19,70,71]. In our previous study, Wistar/ST rats subjected to an intake
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of high-fructose corn syrup (fructose–glucose = 55:45) (HFCS) for 8 or 13 weeks showed the
significant generation and accumulation of glyceraldehyde-derived AGEs (GA-AGEs) in
their liver and blood (intracellular GA-AGEs were quantified using a slot blot analysis with
Takata’s lysis buffer and a poly vinylidene difluoride (PVDF) membrane) [19,70–72]. We
considered that most AGEs are generated in cells because glyceraldehyde, glycolaldehyde,
methylglyoxal, glyoxal, and 3-deoxyglucosone are generally produced in cells and their
reactivity is high. However, as these intermediates have also been detected and quantified
in blood [73–76], AGEs can be generated in blood, and the category of extracellular AGEs
needs to be corrected as (i) those secreted and leaked from cells, and (ii) those introduced
from the intake of dietary AGEs [17–19]. Thus, the molecules shown in Figure 4 are
classical AGEs based on their origin, while lactaldehyde and melibiose have been reported
to give rise to novel AGEs (lactaldehyde-derived AGEs and melibiose-derived AGEs
(MAGE)) [77,78].
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Figure 4. The origin of AGEs. The open green box indicates hexoses. The open red box indicates a
triose. Glucose, fructose, and glyceraldehyde are saccharides. In contrast, glyceraldehyde, glycolalde-
hyde, methylglyoxal, glyoxal, and 3-deoxyglycosone are the metabolic intermediates/non-enzymatic
reaction sub-products of glucose and fructose.

We focused on glyceraldehyde and methylglyoxal because they show high reactiv-
ity and generate various AGE structures (Figure 5). Although AGEs are generated from
saccharides and their metabolic intermediates/non-enzymatic reaction sub-products and
proteins, the structures produced from the former are also named “AGEs” (free-type
AGEs) (Figure 5) [19,79,80]. We introduce free-type AGEs containing one and two amino
acid residues in Figure 5. Nε-carboxymethyl-lysine (CML), Nε-carboxyethyl-lysine
(CEL), Nε-carboxyethyl-lysine, Nδ-(5-hydroxy-5-methyl-4-imidazolone-2-yl)-ornithine
(methylglyoxal-derived hydroimidazolone) (MG-H1), argpyrimidine, 3-hydroxy-5-hydro-
xymethyl-1-pyridinium (GLAP), and 6-{1-(5S)-5-ammonio-6-oxido-6-oxyohexyl-}-4-methyl-
imidazolium-3-yl-L-norlecucine (methylglyoxal dimer) (MOLD) are generated from methyl-
glyoxal [17–19,79,80]. In contrast, MG-H1, argpyrimidine, GLAP, trihydroxy-triosidine,
and pyrrolopyridinium-lysine dimer 1 and 2 (PPG1 and 2) are derived from glyceralde-
hyde [17–19,79–82]. MG-H1, argpyrimidine, and GLAP have been revealed as AGEs
capable of being generated from glyceraldehyde and methylglyoxal and thus belong to
both GA-AGEs and methylglyoxal-derived AGEs (MGO-AGEs) (Figure 5) [17,19,79]. We
previously reported the quantification of some types of GA-AGEs named as “Toxic AGEs
(TAGEs)” by Takeuchi et al. using a slot blot analysis with Takata’s lysis buffer (or modified
Takata’s lysis buffer) and a PVDF membrane [17,23,70–72]. The TAGEs named by Takeuchi
et al. did not include major GA-AGEs such as MG-H1, argpyrimidine, GLAP, triosidines,
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PPG1, and PPG2. Although Takeuchi et al. hypothesized the two free-type AGE structures
containing two and three amino acid residues, respectively, as the structures of TAGEs in
2024, this remains to be proved [83]. (Notes: Lee et al. demonstrated that extracellular
MOLD combined with the receptor for AGEs (RAGE) and induced ROS production and
mitochondrial dysfunction, and they, thus, named MOLD as a TAGE [84].) Furthermore,
Shen et al. categorized GA-AGEs, MGO-AGEs, glycolaldehyde-derived AGEs (GO-AGEs),
and 3-deoxyglucosone-derived AGEs (3-DG-AGEs) as TAGEs [85]. TAGEs, as described by
Shen, belong to a wide range of various AGEs.
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Figure 5. Free-type AGEs containing one or two amino acid residues. The AGEs in the upper tier con-
tain one amino acid residue. The AGEs in the lower tier contain two amino acid residues. Lys, lysine;
Arg, arginine [19,80]; CML, Nε-carboxymethyl-lysine [17–19,80]; Nε-carboxyethyl-lysine [17–19,80];
MG-H1, Nδ-(5-hydrox-5-methyl-4-imidazolone-2-yl)-ornithine (methylglyoxal-derived hydroim-
idazolone) [17–19,79,80]; GLAP, 3-hydroxy-5-hydroxymethyl-1-pyridinium [17,19,79,80]; MOLD,
6-{1-(5S)-5-ammonio-6-oxido-6-oxyohexyl-}-4-methyl-imidazolium-3-yl-L-norleucine (methylglyoxal
dimer) [17,19,80]. PPG1 and 2, pyrrolopyridinium-lysine dimer derived from glyceraldehyde 1 and
2 [19,82]. The open blue box indicates free-type AGEs generated from both glyceraldehyde and
methylglyoxal [18,19,79].

4.2. The Model of Identified and Predicted AGE-Modified HSP90s

We considered the crude AGE pattern in this study (as certain metabolites or non-
enzymic reaction products can generate various AGE structures) (Figure 6). These patterns
were applied to AGE-modified HSP90 (Figure 6) [19,79,80]. Norkin et al. reported that
argpyrimidine and MG-H1-modified HSP90 were generated in a human breast cancer cell
line (MDA-MB-231 cells) (Figures 6 and 7) [21]. They performed a Western blot analysis
using anti-argpyrimidine and anti-MG-H1 antibodies for the immunoprecipitation samples
of HSP90 in MDA-MB-231 cells treated with methylglyoxal. Furthermore, they analyzed
their samples using high-performance liquid chromatography (HPLC)–electrospray ion-
ization (ESI)–mass spectrometry (MS) (HPLC-ESI-MS), and detected some peptides which
were CEL-, argpyrimidine-, and hydroimidazolone-modified. (We considered that this
hydroimidazolone was MG-H1 (Figure S1) [21].) In contrast, Senavirathna et al. reported
that MG-H1, argpyrimidine, and GLAP were generated in a human pancreatic ductal cell
line (PANC-1) treated with glyceraldehyde [22]. Using HPLC-ESI-MS, they also deter-
mined that HSP90β in PANC-1 cells was modified with MG-H1, argpyrimidine, and GLAP.
The data obtained by Norkin et al. and Senavirathna et al. proved that various types of
AGE-modified HSP90s could be generated (Figure 6).
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Figure 7. Model of the free-type AGE combined with HSP90 and another protein (protein X) via
an intermolecular covalent bond, and with the amino acid in HSP90 via an intramolecular covalent
bond. HSP90, heat shock protein 90. D1 and D2 indicate the AGEs capable of binding two amino
acid residues simultaneously. (a) D1 combines HSP90 and protein X via an intermolecular covalent
bond. (b) D1 combines two amino acids in both HSP90 and protein X via intermolecular covalent
bonds, while D2 combines two amino acids in HSP90 via intramolecular covalent bonds. The closed
black plow represents an anti-D2-antibody in HSP90.

We previously reported that some types of GA-AGEs, which Takeuchi et al. named as
TAGEs, were generated in PANC-1 cells treated with glyceraldehyde [23]. These GA-AGEs
were quantified using a slot blot analysis with Takata’s lysis buffer and PVDF membrane
and showed glyceraldehyde dose-dependent accumulation. Notably, high molecular
weight HSP90β (HMW-HSP90β) was generated and increased with glyceraldehyde dose-
dependence as determined using a Western blot analysis [23]. Although HMW-HSP90β
may be a type of GA-AGE with a multiple AGE pattern wherein the glyceraldehyde-derived
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material combined with HSP90β and a certain protein (HSP90β or another protein), we
were unable to identify this structure. Although GA-AGEs that combine two amino acid
residues have been reported (Figure 5), we cannot prove that the individual GA-AGE
structure combines two proteins based on the Western blot analysis with their antibodies
alone because antibodies cannot recognize intermolecular or intramolecular covalent bond-
ing (Figure 7). If we reveal that an antibody against one type of GA-AGE recognizes and
binds to HSP90 using the Western blot analysis, these data will be insufficient to prove that
the structure of GA-AGEs combines two proteins bound via an intermolecular covalent
bond (Figure 7). Although AGE-modified HSP90s are detected in human pancreatic ductal
and mammary gland cells, they have not been detected in human kidney cells such as
glomerular and tubular cells.

4.3. AGEs and LSRDs

Various AGEs have been associated with LSRDs such as hyperglycemia, T2DM,
NAFLD/NASH, and CVD [17–19,70,71,79,80]. Kehm et al. reported that argpyrimidine and
pentosidine were accumulated in the pancreatic tissue of New Zealand Obese/H1BomDife
mice fed a carbohydrate-rich diet [86]. Morioka et al. revealed that GA-AGEs and MGO-
AGEs were accumulated in the pancreatic islets, in the α and β cells of STZ-induced diabetic
Wistar rats, respectively [87]. Zhang et al. reported the presence of both AGEs in the blood
and oil in the hepatic tissues of KK-Ay mice used to model T2DM with NASH [88]. In the
cardiac tissues of older people, ryanodine receptor 2 (RyR2) is modified with 2-ammnonio-6-
[4-(hydroxymetyl)-3-oxidopyridinium-1-yl]-hexanoate-lysine (4-hydroxymethyl-OP-lysine,
hydroxymethyl-OP-lysine) and various other MGO-AGEs, and may induce the excessive
leakage of Ca2+ from glycated RyR2 [19]. In contrast, F-actin–tropomyosin filaments are
modified with glyoxal-derived hydroimidazolone (GH-1) and MG-H1, and may induce a
reduction in contractile force [19]. In contrast, Wang et al. reported that the cardiomyocytes
in Sprague Dawley (SD) rats subjected to an intake of GA-AGE-modified bovine serum
albumin (GA-AGEs-BSA) underwent apoptosis, and that cultured cardiomyocytes cells
treated with GA-AGEs-BSA also underwent apoptosis [89]. Thus, GA-AGEs-BSA may act
as dietary AGEs and AGEs in body fluids such as blood.

4.4. Hypothesis for AGE-Modified HSP90s in Human Proximal Tubular Epithelium Cells and
Their Functions

Various AGEs-modified HSP90s have been identified in some cultured cells treated
with glyceraldehyde and methylglyoxal which increased in the various organs and cells in
the patients with LSRDs [17–20]. We categorized these into type 1 diverse AGE patterns
(certain AGE structures that can modify the same or different amino acids in one type
of protein, and type 1 multiple AGE patterns (certain AGEs that modify a single protein
molecular but not a specific type of protein (one protein molecule but not one type of
protein) (Figures S2–S4) [19,79,80]. Norkin et al. reported various modifications of the AGE
structure in human recombinant HSP90 and naturally occurring HSP90 in MDA-MB-231
cells treated with methylglyoxal, which belong to type 1 diverse and type 1 multiple AGE
patterns. We introduce some of the peptides analyzed by Norkin et al. using HPLC-ESI-MS
in Figures S2–S4. They suggested that various modification spots in an amino acid sequence
act as molecular chaperones and as reporters for adenosine triphosphate (ATP) [21].

Various AGE modifications may induce dysfunction or excess function resulting in
cytotoxicity. We considered the possibility of the amino acids in HSP90 on the plasma
membrane being affected. Glyceraldehyde, glycolaldehyde, methylglyoxal, and glyoxal
can move through body fluids like blood [73–76]. They may also be able to move through
urine and generate various GA- and MGO-AGE-modified HSP90 molecules on the plasma
membrane of renal cells. Further, intracellular AGE-modified HSP90 may be able to transfer
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to the plasma membrane. Because Yoodee et al. suggested that HSP90s were associated
with the generation and growth of kidney stones [11], and we hypothesized that the AGE
modification of HSP90s on the cellular membranes of the renal proximal tubular epithelium
cells may affect their functions and the generation/growth of kidney stones. In contrast,
the adhesion of COM induces the upregulation of HSP90 in HK-2 cells [12]. Although
intracellular HSP90 is generated via stimulation from COM adhesion, it is modified by
various types of AGEs. In this environment, HSP90 expression may be upregulated because
a normal type of HSP90 is needed to maintain cell survival. Therefore, we hypothesized
that the generation and accumulation of AGE-modified HSP90s in the renal proximal
tubular epithelium cells may affect their functions. If AGE-modified HSP90s affect cellular
homeostasis against the stimulation of the adhesion of kidney stones, it may be a key to
reveal that LSRDs are associated with urolithiasis.

4.5. Inhibition of the Generation/Accumulation of AGEs Contained in AGE-Modified HSP90

To avoid the accumulation of AGEs in cells, we can select major methods such as (i) the
inhibition of AGE generation [19,25] and (ii) the degradation of AGEs [26,27]. The former
further includes two methods: (a) the carbonyl trap system [90–92] and (b) activation of
glyoxalase-1 (GLO-1) [93–95]. Because GLO-1 metabolizes glyoxal and methylglyoxal,
its activation can inhibit the generation of GO- and MGO-AGEs. Although aminoguani-
dine can inhibit the generation of various AGEs via the carbonyl trap system, it is un-
suitable for medical use because of its high cytotoxicity [90,91]. Several studies have
attempted to identify natural compounds that inhibit the generation of intracellular AGEs
in medicinal plants because they will be suitable and safe for human use [92,93,96,97].
Quercetin [19,25,98], hesperidin [19,99], p-hydroxy cinnamic acid [19,25,100], resvera-
trol [19,25,101–103], and curcumin [19,103] have been reported to inhibit the generation
of AGEs (Figure 8). All these natural compounds have the function of the carbonyl trap
system, and both resveratrol and curcumin can activate GLO-1. The modification of AGEs
derived from glyceraldehyde, glycolaldehyde, methylglyoxal, and glyoxal against HSP90
may, thus, be inhibited by the carbonyl trap system and GLO-1 activation.
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hesperidin [19,99], p-hydroxy cinnamic acid [19,25,100], resveratrol [19,25,101–103], and curcumin [19,103]
have the function of the carbonyl trap system. Both resveratrol and curcumin can activate GLO-1.
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5. Hypothesis of Medicines for Urolithiasis Against the
Generation/Accumulation of AGE-Modified HSP90
5.1. Preventive and Therapeutic Medication for Urolithiasis

To treat or prevent urolithiasis, some modern and traditional medicines have been
selected in Japan. Tamulosine [28,104], magnesium oxide [29,105], potassium citrate and
sodium citrate hydrate [30,106], cystine-binding thiol drugs (e.g., tiopronin) [31,107], thi-
azide diuretics [32,108], and febuxostat [33,109] belong to the category of modern medicines.
These act by (i) blocking the α1 receptor and inducing expansion of the proximal convo-
luted tubule [28,104]; (ii) the production of magnesium oxalate monohydrate but not
urinary stones (calcium oxalate monohydrate and calcium phosphate crystals) [29,105];
(iii) the promotion of alkaluria [30,106] and urinary stone dissolution in urine [31,107]; and
(iv) the inhibition of Ca2+ transport into urine [32,108] and inhibition of xanthinoxidase to
suppress uric acid production [33]. In addition, several researchers, doctors, and pharma-
cists have focused on traditional medicines used worldwide because modern medicines
(e.g., low-molecular organic compounds and antibodies) show several limitations against
various diseases, whereas the use of traditional medicines is based on the clinical data
from some hundred to thousand years [92,93,110–112]. In Japan, Choreito (Chinese name:
Zhu-Ling-Tang; Polyporus Decoction) [34,35] and Urocalun (the extract of Quercus salicina
Blume/Quercus stenophylla Makino) [36,37] have been selected as the traditional medicines
for urolithiasis. Choreito, a Kampo medicine (classical Japanese traditional medicine)
whose scientific/clinical data are based on Chinese traditional medicine, has been modified
in Japan [34,35]. Researchers can access the database named Standard of Reporting Kampo
Products (STORK) to research the crude drugs contained in Kampo medicines [113,114].
The extract of Quercus salicina Blume/Quercus stenophylla Makino is not included in Kampo
medicines, and is a characteristic Japanese traditional medicine because people in the
western area of Japan have used it to treat urolithiasis for some hundred years [36–39]. The
mechanisms of both Choreito and Urocalun may promote urinary stone removal from the
renal tubule by increasing the urinary volume.

5.2. Hypothesis for Urocalun Treatment for Inhibiting the Generation/Accumulation of
AGE-Modified HSP90

Although we examined the components of various modern and traditional medicines
in Japan, we could not find desirable components that could inhibit the generation of
intracellular AGEs except for Urocalun. We, thus, believe that Urocalun may be able to
inhibit the intracellular AGEs contained in AGE-modified HSP90 because the extract of
Quercus salicina Blume/Quercus stenophylla Makino contains quercetin, hesperidin, and p-
hydroxycinnamic acid (Figure 8) [36–39]. These three compounds can inhibit the generation
of intracellular AGEs. They may be metabolized through hydroxylation and glycosylation
before they are transported in renal proximal tubule epithelium cells, and it remains un-
clear [18]. However, we hypothesized that quercetin, hesperidin, and p-hydroxycinnamic
acid may inhibit the AGE modification of HSP90 under the condition that they are trans-
ported into renal cells because carbonyl trap systems can work against compounds with
aldehyde and ketone groups (origins of free-type AGEs such as glyceraldehyde, glycolalde-
hyde, methylglyoxal, and glyoxal), and suppress their reaction with universal proteins
(Figure 4).

6. Limitations
6.1. Various Types of Compounds for the Promotion or Inhibition of Kidney Stone Growth

In this article, we introduced HSP90, HAS3, annexin A1, CD44, and osteopontin as
the receptors for kidney stones based on the study by Heng et al. [12]. However, several
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other compounds have been reported as promoters or inhibitors for the growth of kidney
stones for approximately 70 years [115–121]. Glycosaminoglycans (e.g., heparan sulfate,
chondroitin sulfate, and hyaluronic acid) [115–117], sodium pentosan polysulfate [118],
saponin [119], surfactant [120], and citrate [30,106] can inhibit the growth of kidney stones
and pyrophosphate treatment reduces renal calcifications [121]. The functions of urinary
proteoglycans are complex. Although glycosaminoglycans were promoters of COM crystal
nucleation, they are inhibitors of COM aggregation [117]. In contrast, magnesium pyrophos-
phate kidney stones have been reported in clinical research, suggesting that pyrophosphates
can generate kidney stones [122]. The relationships between these compounds and AGEs
remain unclear. As proteoglycans, which are the components of cell membranes and the
extracellular matrix, contain protein, they may undergo AGE modification. However, we
have not obtained data indicating that proteoglycans are modified by free-type AGE struc-
tures such as CML, CEL, and MG-H1 (Figure 5). In contrast, hyaluronan is produced by
HAS3, and binds CD44 to induce the generation of a “Hyaluronic coat” [123,124]. However,
whether this hyaluronic coat can inhibit the AGE modification of HSP90 or suppress the
cytotoxicity of AGE-modified HSP90 remains unclear.

6.2. CML in the Kidney and Intracellular/Extracellular Glucose-Derived AGEs in the Renal
Proximal Tubule Epithelial Cells

Maejima et al. reported that autophagy controls lysosomes [125], and Takahashi
et al. revealed that AGEs are degraded by lysosomes, which are controlled by autophagy
systems based on previous investigations [126]. Takahashi et al. reported that (i) CML was
significantly accumulated in the kidney of STZ-diabetic model mice with the insufficiency
of autophagy systems, (ii) extracellular AGEs (origin, glucose) and high-glucose medium
which induce the generation of intracellular AGEs promoted the biosynthesis of lysosomes
in renal proximal tubule epithelial cells, (iii) these AGEs were degraded by lysosomes, and
(iv) lysosomes were upregulated by autophagy systems [126]. Although these findings were
reported, we cannot confirm the possibility of their association with AGE-modified HSP90.

7. Conclusions
Although the cytotoxicity mechanism of urinary stones remains unclear, HSP90 expres-

sion in human renal proximal tubule epithelium cells may be targeted for both the adhesion
of urinary stones and the associated cellular homeostasis. In contrast, HSP90s are able
to be modified by various types of AGEs such as MG-H1, argpyrimidine, and GLAP. We
hypothesized that AGE-modified HSP90s may, thus, be the key to revealing the relationship
between LSRDs and urolithiasis. Furthermore, we hypothesized that Urocalun, which
contains quercetin, hesperidin, and p-hydroxy cinnamic acid, may inhibit the generation of
intracellular AGE-modified HSP90s.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/diseases13010007/s1. Figure S1: The structure of hydroimidazolone.
R, alkyl group. This structure can be generated from methylglyoxal. If “R” is a methyl group, this
structure is MG-H1. MG-H1, thus, belongs to this hydroimidazolone group. Figure S2: CEL- and
HIM-modified and CEL-, and Arg-P-modified human recombinant HSP90 peptides. Closed blue
circles, amino acids; black numbers, the number of amino acids; (a) CEL, Nε-carboxymethyl-lysine;
HIM, hydroimidazolone. Because the CEL and HIM are added at the 58th and 60th position in the
same peptide sequence, a type 1 multiple AGE pattern is seen. (b) Arg-P, argpyrimidine. Because
CEL and argpyrimidine are added at the 58th and 60th position in the same peptide sequence, a type
1 multiple AGE pattern is seen. (a,b) Based on the CEL- and HIM-modified human recombinant
HSP90 peptide and CEL- and Arg-modified human recombinant HSP90 peptide, a type 1 diverse
AGE pattern can be proved. Figure S3: A HIM- and Arg-P-modified human recombinant HSP90
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peptide, respectively. Closed blue circles, amino acids; black numbers, the number of amino acids;
(a) HIM, hydroimidazolone. (b) Arg-P, argpyrimidine. (a,b) The HIM and Arg-P modifications are at
the 510th position in the same peptide sequence, respectively. This proves the type 1 diverse AGE
pattern. Figure S4: Two HIM-modified human HSP90 peptides in MDA-MB-231 cells. Closed blue
circles, amino acids; black numbers, the number of amino acids; HIM, hydroimidazolone. The HIM
modifications are at the 510th and 512th positions in the same peptide sequence, indicating a type 1
diverse AGE pattern.

Author Contributions: Conceptualization: T.T., S.I. and Y.M.; methodology: T.T., S.I. and Y.M.;
writing—original draft preparation: T.T., S.I., K.K., T.M., J.M., Y.M. and K.M.; writing—review and
editing: T.T., S.I., K.K., T.M., J.M., Y.M. and K.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by JSPS KAKENHI (grant numbers, JP22K16798 (S.I.), and
JP24K14802 (T.T.)).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available from the corresponding
author upon request.

Acknowledgments: The research and checking of references were performed by Sumie Saito from
the Department of Urology at Kanazawa Medical University.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

AGEs Advanced glycation end-products
Arg-P Argpyrimidine
CEL Nε-carboxyethyl-lysine
COM Calcium oxalate monohydrate
CML Nε-carboxymethyl-lysine
CVD Cardiovascular disease
3-DG-AGEs 3-deoxyglucosone-derived advanced glycation end-products
DM Diabetes mellitus
ESI-MS Electrospray ionization-mass spectrometry
GA-AGEs Glyceraldehyde-derived advanced glycation end-products
GH-1 Glyoxal-derived hydroimidazolone
GLAP Glyceraldehyde-derived pyridinium
GLO Glyoxalase
GO-AGEs Glyoxal-derived advanced glycation end-products
HIM hydroimidazolone
HPLC High-performance liquid chromatography
HPLC-ESI-MS High-performance liquid chromatography–electrospray ionization–mass

spectrometry
HSP Heat shock protein
LSRD Lifestyle-related disease
MAGE Melibiose-derived advanced glycation end-products
MG-H1 Nδ-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine
MGO-AGEs Methylglyoxal-derived advanced glycation end-products
MOLD Methylglyoxal-lysine dimer
NAFLD Non-alcoholic fatty liver disease
NASH Non-alcoholic steatohepatitis
PPG Pyrrolopyridinium-lysine dimer derived from glyceraldehyde
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RAGE Receptor for advanced glycation end-products
TAGE Toxic advanced glycation end-products
T2DM Type 2 diabetes mellites
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