Is a Meal without Wine Good for Health?
Abstract
:1. Introduction
2. Free Radicals and Antioxidant Defense
2.1. Transcriptional Factors Nrf2 (Nuclear Respiratory Factor 2)
2.2. Antioxidant Defenses
2.2.1. Enzymatic Defenses Systems
2.2.2. Non-Enzymatic Antioxidant Systems
3. Wine and Cardiovascular Protection: The French Paradox
3.1. Self-Action of Ethanol
3.2. Self-Action of Polyphenols
4. Polyphenols and Cancer
5. Polyphenols and Metabolism
- -
- Stop eating before being completely satiated (Hara Hachi Bu).
- -
- Eat only small portions (kuten gwa).
- -
- Eat with the thought that food has healing powers (nuchi gusui).
- -
- Promote a variety of foods.
- -
- Eat fresh foods.
- -
- Combine raw and cooked foods.
- -
- Cook little food over low heat.
- -
- Avoid the microwave oven and barbecue.
- -
- Give preference to colors on the plate.
6. Polyphenols and Alzheimer
7. Hormesis
8. Conclusions
Funding
Conflicts of Interest
References
- Palanque, J.-R. La règle de saint Benoit, Tomes I et II, introd., trad. et notes par Adalbert de Vogüé. Revue D’histoire de l’Église de France 1972, 59, 181–182. [Google Scholar]
- Ganesan, K.; Xu, B. A Critical Review on Polyphenols and Health Benefits of Black Soybeans. Nutrients 2017, 9, 455. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Free radicals and antioxidants: A personal view. Nutr. Rev. 1994, 52, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Cadenas, E.; Boveris, A.; Ragan, C.I.; Stoppani, A.O. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch. Biochem. Biophys. 1977, 180, 248–257. [Google Scholar] [CrossRef]
- Turrens, J.F.; Boveris, A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 1980, 191, 421–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turrens, J.F.; Alexandre, A.; Lehninger, A.L. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 1985, 237, 408–414. [Google Scholar] [CrossRef]
- Voet, D.; Voet, J.G. Biochimie, 2nd ed.; De Boeck Université: Louvain-la-Neuve, Belgium, 2005. [Google Scholar]
- Lee, J.M.; Calkins, M.J.; Chan, K.; Kan, Y.W.; Johnson, J.A. Identification of the NF-E2-r elated factor -2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide micr oarray analysis. J. Biol. Chem. 2003, 278, 12029–12038. [Google Scholar] [CrossRef] [PubMed]
- Howden, R. Nrf2 and cardiovascular defense. Oxid. Med. Cell. Longev. 2013, 2013, 104308. [Google Scholar] [CrossRef] [PubMed]
- Itoh, K.; Wakabayashi, N.; Katoh, Y.; Tetsuro, I.; Kazuhiko, I.; James, D.E.; Masayuki, Y. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 throughbinding to the amino-terminal Neh2 domain. Genes Dev. 1999, 13, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.J.; Sun, Z.; Chen, W.; Li, Y.; Villeneuve, N.F.; Zhang, D.D. Activation of Nrf2 by arsenite and monomethylarsonous acid is independent of Keap1—C151: Enhanced Keap1–Cul3 interaction. Toxicol. Appl. Pharmacol. 2008, 230, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Tatsuhiro, S.; Tsutomu, O.; Kit, I.T.; Akiko, K.; Reiko, O.; Koji, T.; Hisao, A.; Masayuki, Y.; Setsuo, H. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc. Natl. Acad. Sci. USA 2008, 105, 13568–13573. [Google Scholar] [Green Version]
- Artaud-Wild, S.M.; Connor, S.L.; Sexton, G.; Connor, W.E. Differences in coronary mortality can be explained by differences in cholesterol and saturated fat intakes in 40 countries but not in France and Finland. A paradox. Circulation 1993, 88, 2771–2779. [Google Scholar] [CrossRef] [PubMed]
- Keys, A. Coronary heart disease in seven countries. Circulation 1970, 41, 186–195. [Google Scholar] [CrossRef]
- Haleng, J.; Pincemail, J.; Defraigne, J.O.; Charlier, C.; Chapelle, J.P. Oxidative stress. Rev. Med. Liege 2007, 62, 628–638. [Google Scholar] [PubMed]
- Halliwell, B. Antioxidant defence mechanisms: From the beginning to the end (of the beginning). Free Radic. Res. 1999, 31, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Brigelius-Flohe, R.; Traber, M.G. Vitamin E: Function and metabolism. FASEB J. 1999, 13, 1145–1155. [Google Scholar] [CrossRef] [PubMed]
- Liebler, D.C.; Kling, D.S.; Reed, D.J. Antioxidant protection of phospholipid bilayers by alpha-tocopherol. Control of alpha-tocopherol status and lipid peroxidation by ascorbic acid and glutathione. J. Biol. Chem. 1986, 261, 12114–12119. [Google Scholar] [PubMed]
- Burton, G.W.; Ingold, K.U. Beta-Carotene: An unusual type of lipid antioxidant. Science 1984, 224, 569–573. [Google Scholar] [CrossRef] [PubMed]
- D’Archivio, M.; Filesi, C.; Di, B.R.; Gargiulo, R.; Giovannini, C.; Masella, R. Polyphenols, dietary sources and bioavailability. Ann. Ist. Super. Sanita 2007, 43, 348–361. [Google Scholar] [PubMed]
- Macheix, J.J.; Sapis, J.C.; Fleuriet, A. Phenolic compounds and polyphenoloxidase in relation to browning in grapes and wines. Crit. Rev. Food Sci. Nutr. 1991, 30, 441–486. [Google Scholar] [CrossRef] [PubMed]
- Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat. Prod. Rep. 2009, 26, 1001–1043. [Google Scholar] [CrossRef] [PubMed]
- Dewick, P.M. The Biosynthesis of Shikimate Metabolites. Nat. Prod. Rep. 1995, 12, 579–607. [Google Scholar] [CrossRef] [PubMed]
- Renaud, S.; de Lorgeril, M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 1992, 339, 1523–1526. [Google Scholar] [CrossRef]
- St Leger, A.S.; Cochrane, A.L.; Moore, F. Factors associated with cardiac mortality in developed countries with particular reference to the consumption of wine. Lancet 1979, 1, 1017–1020. [Google Scholar] [CrossRef]
- Tunstall-Pedoe, H.; Kuulasmaa, K.; Amouyel, P.; Arveiler, D.; Rajakangas, A.M.; Pajak, A. Myocardial infarction and coronary deaths in the World Health Organization MONICA Project. Registration procedures, event rates, and case-fatality rates in 38 populations from 21 countries in four continents. Circulation 1994, 90, 583–612. [Google Scholar] [CrossRef] [PubMed]
- World Advertising Research Center (Warc). WARC World Drink Trends; World Advertising Research Center (Warc): Washington, DC, USA, 2005. [Google Scholar]
- World Health Organization. Top20 countries with highest beverage spécific adult per capita consumption. In Global Status Report on Alcohol; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- de Lorgeril, M.; Salen, P.; Paillard, F.; Laporte, F.; Boucher, F.; de Leiris, J. Mediterranean diet and the French paradox: Two distinct biogeographic concepts for one consolidated scientific theory on the role of nutrition in coronary heart disease. Cardiovasc. Res. 2002, 54, 503–515. [Google Scholar] [CrossRef]
- Pettinger, C.; Holdsworth, M.; Gerber, M. All under one roof? Differences in food availability and shopping patterns in Southern France and Central England. Eur. J. Public Health 2008, 18, 109–114. [Google Scholar]
- Bureau of Labor Statistics. The American Time Use Survey; Bureau of Labor Statistics: Washington, DC, USA, 2003.
- Guilbert, P.; Perrin-Escalon, H. Baromètre Santé Nutrition 2002; Institut National de Prévention et D’éducation pour la Santé (INPES): Saint-Denis, France, 2004. [Google Scholar]
- Pettinger, C.; Holdsworth, M.; Gerber, M. Meal patterns and cooking practices in Southern France and Central England. Public Health Nutr. 2006, 9, 1020–1026. [Google Scholar] [CrossRef] [PubMed]
- Ruidavets, J.B.; Bataille, V.; Dallongeville, J.; Simon, C.; Bingham, A.; Amouyel, P.; Arveiler, D.; Ducimetière, P.; Ferrières, J. Alcohol intake and diet in France, the prominent role of lifestyle. Eur. Heart J. 2004, 25, 1153–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozin, P.; Kabnick, K.; Pete, E.; Fischler, C.; Shields, C. The ecology of eating: Smaller portion sizes in France than in the United States helps explain the french paradox. Psychol. Sci. 2003, 14, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Montaigne, L., II. chapitre 2. In Les Essais; Firmin Didot Frères et C°: Paris, French, 1848. [Google Scholar]
- Yusuf, S.; Hawken, S.; Ounpuu, S.; Dans, T.; Avezum, A.; Lanas, F.; McQueen, M.; Budaj, A.; Pais, P.; Varigos, J.; et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Lancet 2004, 364, 937–952. [Google Scholar] [CrossRef]
- O’Donnell, M.J.; Xavier, D.; Liu, L.; Zhang, H.; Chin, S.L.; Rao-Melacini, P.; Rangarajan, S.; Islam, S.; Pais, P.; McQueen, M.J.; et al. Risk factors for ischemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): A case-control study. Lancet 2010, 376, 112–123. [Google Scholar] [CrossRef]
- Miyagi, Y.; Miwa, K.; Inoue, H. Inhibition of human low-density lipoprotein oxidation by flavonoids in red wine and grape juice. Am. J. Cariol. 1997, 80, 1627–1631. [Google Scholar] [CrossRef]
- Ellison, R.C. Cheers! Epidemiology 1990, 1, 337–339. [Google Scholar] [PubMed]
- Hudelot, B.; Cottin, Y.; Blache, D.; Rifler, J.P.; Corder, R. Colloque Vin et Nutrition. In Proceedings of the Congrès Vitagora, Dijon, France, 23–25 April 2008. [Google Scholar]
- Rifler, J.-P.; Lorcerie, F.; Durand, P.; Delmas, D.; Ragot, K.; Limagne, E.; Mazué, F.; Riedinger, J.-M.; d’Athis, P.; Hudelot, B.; et al. A moderate red wine intake improves blood lipid parameters and erythrocytes membrane fluidity in post myocardial infarct patients. Mol. Nutr. Food Res. 2012, 56, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Rifler, J.-P.; Latruffe, N. Moderate Red Wine intake in Secondary Prevention for patients with cardiovascular disease. In Proceedings of the Congrès Vitagora, Dijon, France, 20–21 March 2013. [Google Scholar]
- Prost, M. Utilisation de Générateurs de Radicaux Libres dans le Domaine des Dosages Biologiques. French patent no. 2,642,526, 1989. [Google Scholar]
- Gaziano, J.; Buring, J.; Breslow, J.; Goldhaber, S.Z.; Rosner, B.; VanDenburgh, M.; Willett, W.; Hennekens, C.H. Moderate alcohol intake, increased levels of high density lipoproteins and its subfractions, and decreased risk of myocardial infarction. N. Engl. J. Med. 1993, 329, 1829–1834. [Google Scholar] [CrossRef] [PubMed]
- Scherr, P.; Lacroix, A.; Wallace, R.; Berkman, L.; Curb, J.D.; Cornoni-Huntley, J.; Evans, D.A.; Hennekens, C.H. Light to moderate alcohol consumption and mortality in the elderly. Am. J. Geriatr. 1992, 40, 651–657. [Google Scholar] [CrossRef]
- Seigneur, M.; Bonnet, J.; Dorian, B.; Benchimol, D.; Drouillet, F.; Gouverneur, G.; Larrue, J.; Crockett, R.; Boisseau, M.R.; Riberau-Gayon, P.; et al. Effect of the consumption of alcohol, white wine and red wine, on platelet function and serum lipids. J. Appl. Cardiol. 1990, 5, 215–222. [Google Scholar]
- Camargo, C.; Williams, P.; Vranizan, K.; Albers, J.; Wood, P. The effect of moderate alcohol intake on serum apolipoprotein A-I and A-II: A controlled study. JAMA 1985, 253, 2854–2857. [Google Scholar] [CrossRef] [PubMed]
- Catapano, A. Alcohol and Atherosclerosis. In Multiple Risk Factors in Cardiovascular Disease; Kluwer Academic Publishers: Norwell, MA, USA, 1995; pp. 427–436. [Google Scholar]
- Rimm, E.; Williams, P.; Fosher, K.; Criqui, M.; Stampfer, M. Moderate alcohol intake and lower risk of coronary heart disease: Meta—analysis of effects on lipids and haemostatic factors. BMJ 1999, 319, 1523–1528. [Google Scholar] [CrossRef] [PubMed]
- Kromhout, D. On the waves of the Seven Countries Study: a public health perspective on cholesterol. Eur. Heart J. 1999, 20, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Renaud, S.; Guegen, R.; Siest, G.; Salamon, R. Wine, beer, and mortality in middle-aged men from Eastern France. Epidemiology 1998, 9, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Renaud, S.; Ruf, J.C. Effects of alcohol on platelet functions. Clin. Chim. Acta 1996, 246, 77–89. [Google Scholar] [CrossRef]
- Mennen, L.; Balkau, B.; Vol, S.; Caces, E.; Eschwege, E. Fibrinogen: A possible link between alcohol consumption and cardiovascular disease? Arterioscler. Thromb. Vasc. Biol. 1999, 19, 887–892. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.; Vaugham, D.; Stampfer, M.; Glynn, R.; Hennekens, R. Association of moderate alcohol consumption and plasma concentration of endogenous tissue-type plasminogen activator. JAMA 1994, 272, 929–933. [Google Scholar] [CrossRef] [PubMed]
- Rimm, E.; Ellison, R. Alcohol in the Mediterranean diet. Am. J. Clin. Nutr. 1995, 61, 1378S–1382S. [Google Scholar] [CrossRef] [PubMed]
- Van Der Gaag, M.; Ubbink, J.; Sillanaukee, P.; Nikkari, S.; Hendricks, H. Effect of consumption of red wine, spirits and beer on serum homocysteine. Lancet 2000, 355, 1522. [Google Scholar] [CrossRef]
- Bleich, S.; Bleich, K.; Kropp, S.; Bitterman, J.; Degner, D.; Sperling, W.; Ruther, E.; Kornhuber, J. Moderate alcohol consumption in social drinkers raises plasma homocysteine levels: A contradiction to the “french paradox”? Alcohol Alcohol. 2001, 36, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Fried, P.; Moore, R.; Pearson, T. Long term effects of cigarette smoking and moderate alcohol consumption on coronary artery diameter. Am. J. Med. 1986, 80, 27–44. [Google Scholar] [CrossRef]
- Muntwyler, J.; Hennekens, C.H.; Burings, J.E.; Gaziano, J. Mortality and light to moderate alcohol consumption after myocardial infarction. Lancet 1998, 352, 1882–1885. [Google Scholar] [CrossRef]
- Moosavi, F.; Hosseini, R.; Saso, L.; Firuzi, O. Modulation of neurotrophic signaling pathways by polyphenols. Drug Des. Dev. Ther. 2016, 10, 23–42. [Google Scholar]
- Iriti, M.; Varoni, E.M. Cardioprotective effects of moderate red wine consumption: Polyphenols vs ethanol. J. Appl. Biomed. 2014, 12, 193–202. [Google Scholar] [CrossRef]
- Martin, R. Andriantsitohaina, Mécanismes de la protection cardiaque et vasculaire des polyphénols au niveau de l’endothélium. Annales de Cardiologie et d’Angéiologie 2002, 51, 304–315. [Google Scholar] [CrossRef]
- Grønbaek, M.; Deis, A.; Sørensen, T.I.; Becker, U.; Schnohr, P.; Jensen, G. Mortality associated with moderate intakes of wine, beer, or spirits. BMJ 1995, 310, 1165–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rifler, J.P. Les polyphénols du vin rouge. Concours Médical 1995, 117, 3571–3576. [Google Scholar]
- Demrow, H.; Slane, P.; Folts, J. Administration of wine and grape juice inhibits in vivo platelet activity and thrombosis in stenosed canine coronary arterie. Circulation 1995, 9, 1182–1188. [Google Scholar] [CrossRef]
- Frankel, E.; Kanner, J.; German, J.; Parks, E.; Kinsella, J. Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet 1993, 341, 454–457. [Google Scholar] [CrossRef]
- Fuhrman, B.; Lavy, A.; Aviram, M. Consumption of red wine with meals reduces the susceptibility of human plasma and low-density lipoprotein to lipid peroxidation. Am. J. Clin. Nutr. 1995, 61, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Kanner, J.; Gorelik, S.; Ligumsky, M.; Kohen, R. The Stomach as a “Bioreactor”: When Red Meat Meets Red Wine. J. Agric. Food Chem. 2008, 56, 5002–5007. [Google Scholar] [CrossRef] [Green Version]
- Gesquière, L.; Loreau, N.; Blache, D. Impaired cellular cholesterol efflux by oxysterol-enriched high density lipoproteins. Free Radic. Biol. Med. 1997, 23, 541–547. [Google Scholar] [CrossRef]
- Arichi, H.; Kimura, Y.; Okuda, H.; Kozawa, A.; Arichi, S. Effects of stilbenes components of the roots of polygonum cuspidatum on lipid metabolism. Chem. Pharm. Bull. 1982, 30, 1766–1770. [Google Scholar] [CrossRef] [PubMed]
- Ruf, J.; Berger, J.; Renaud, S. Platelet rebound effect of alcohol withdrawal and wine drinking in rats. Relation to tannins and lipid peroxidation. Arterioscler. Thromb. Vasc. Biol. 1995, 1, 140–144. [Google Scholar] [CrossRef]
- Pace-Asciak, C.; Hahn, S.; Diamandis, E.; Soleas, G.; Goldberg, D. The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: Implications for protection against coronary heart disease. Clin. Chim. Acta 1995, 235, 207–219. [Google Scholar] [CrossRef]
- Blache, D.; Gesquière, L.; Loreau, N.; Durand, P. Oxidant stress: The role of nutrients in cell-lipoprotein interactions. Proc. Nutr. Soc. 1999, 58, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Grønbaek, M.; Becker, U.; Johansen, D.; Gottschau, A.; Schnohr, P.; Hein, H.; Jensen, G.; Sørensen, T. Type of alcohol consumed and mortality from all causes, coronary heart disease, and cancer. Ann. Intern. Med. 2000, 133, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, Z.; Zhang, L.; Wang, Y. Roles of Cells from the Arterial Vessel Wall in Atherosclerosis. Mediat. Inflamm. 2017, 2017, 8135934. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.D. Does tea prevent cancer? Evidence from laboratory and human intervention studies. Am. J. Clin. Nutr. 2013, 98, 1667S–1675S. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Niaz, K.; Maqbool, F.; Ismail Hassan, F.; Abdollahi, M.; Nagulapalli Venkata, K.C.; Nabavi, S.M.; Bishayee, A. Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update. Nutrients 2016, 8, 529. [Google Scholar] [CrossRef] [PubMed]
- Chalopin, M.; Tesse, A.; Martínez, M.C.; Rognan, D.; Arnal, J.F.; Andriantsitohaina, R. Estrogen receptor alpha as a key target of red wine polyphenols action on the endothelium. PLoS ONE 2010, 5, e8554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalopin, M.; Soleti, R.; Benameur, T.; Tesse, A.; Faure, S.; Martínez, M.C.; Andriantsitohaina, R. Red wine polyphenol compounds favor neovascularisation through estrogen receptor α-independent mechanism in mice. PLoS ONE 2014, 9, e110080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.F.; Haslam, D.E.; Terry, M.B.; Knight, J.A.; Andrulis, I.L.; Daly, M.B.; Buys, S.S.; John, E.M. Dietary isoflavone intake and all-cause mortality in breast cancer survivors: The Breast Cancer Family Registry. Cancer 2017, 123, 2070–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mocanu, M.M.; Nagy, P.; Szöllősi, J. Chemoprevention of Breast Cancer by Dietary Polyphenols. Molecules 2015, 20, 22578–22620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samavat, H.; Kurzer, M.S. Estrogen metabolism and breast cancer. Cancer Lett. 2015, 356, 231–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiva-Blanch, G.; Arranz, S.; Lamuela-Raventos, R.M.; Estruch, R. Effects of wine, alcohol and polyphenols on cardiovascular disease risk factors: Evidences from human studies. Alcohol Alcohol. 2013, 48, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.; Cai, L.; Udeani, G.; Slowing, K.; Thomas, C.; Beecher, C.; Fong, H.; Farnsworth, N.; Kinghorn, A.; Mehta, R.; et al. Cancer chemoprotective activity of resveratrol, a natural product derived from grapes. Science 1997, 275, 218–220. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.; Savouret, J.F.; Widerak, M.; Corvol, M.T.; Rannou, F. Resveratrol, Potential Therapeutic Interest in Joint Disorders: A Critical Narrative Review. Nutrients 2017, 9, 45. [Google Scholar] [CrossRef] [PubMed]
- Sin, T.K.; Yung, B.Y.; Siu, P.M. Modulation of SIRT1-Foxo1 signaling axis by resveratrol: Implications in skeletal muscle aging and insulin resistance. Cell. Physiol. Biochem. 2015, 35, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Maiese, K.; Chong, Z.Z.; Shang, Y.C.; Wang, S. Translating cell survival and cell longevity into treatment strategies with SIRT1. Rom. J. Morphol. Embryol. 2011, 52, 1173–1185. [Google Scholar] [PubMed]
- Hwang, J.W.; Yao, H.; Caito, S.; Sundar, I.K.; Rahman, I. Redox regulation of SIRT1 in inflammation and cellular senescence. Free Radic. Biol. Med. 2013, 61, 95–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaziri, H.; Dessain, S.K.; Ng Eaton, E.; Imai, S.; Frye, R.; Pandita, T.; Guarente, L.; Weinberg, R. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001, 107, 149–159. [Google Scholar] [CrossRef]
- Wang, C.; Chen, L.; Hou, X.; Li, Z.; Kabra, N.; Ma, Y.; Nemoto, S.; Finkel, T.; Gu, W.; Cress, W.; et al. Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat. Cell Biol. 2006, 8, 1025–1031. [Google Scholar] [CrossRef] [PubMed]
- Brunet, A.; Sweeney, L.B.; Sturgill, J.F.; Chua, K.F.; Greer, P.L.; Lin, Y.; Tran, H.; Ross, S.E.; Mostoslavsky, R.; Cohen, H.Y.; et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004, 303, 2011–2015. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.H.; Sengupta, K.; Li, C.; Kim, H.S.; Cao, L.; Xiao, C.; Kim, S.; Xu, X.; Zheng, Y.; Chilton, B.; et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 2008, 14, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, K. Silencing metabolic disorders by novel SIRT1 activators. Cell Metab. 2008, 7, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Streppel, M.; Ocke, M.; Boschuizen, H.; Kok, F.; Kromhout, D. Long term wine consumption is related to cardiovascular mortality and life expectancy independently of moderate alcohol intake: The Zutphen study. J. Epidemiol. Commun. Health 2009, 63, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Moskovitz, J.; Bar-Noy, S.; Williams, W.; Requena, J.; Berlett, B.; Stadtman, R. Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc. Nat. Acad. Sci. USA 2001, 98, 12920–12925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baur, J. Resveratrol, sirtuins, and the promise of a DR mimetic. Mech. Ageing Dev. 2010, 131, 261–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letenneur, L. Risk of Dementia and Alcohol and Wine Consumption: A Review of Recent Results. Biol. Res. 2004, 37, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Orgogozo, J.; Dartigues, J.; Lafont, S.; Letenneur, L.; Commenges, D.; Salamon, R.; Renaud, S.; Breteler, M.M. Wine consumption and dementia in the elderly: A prospective community study in the Bordeaux area. Rev. Neurol. 1997, 153, 185–192. [Google Scholar] [PubMed]
- Ruitenberg, A.; Van Swieten, J.C.; Witteman, J.C.; Mehta, K.M.; Van Duijn, C.M.; Hofman, A.; Breteler, M.M. Alcohol consumption and risk of dementia: The Rotterdam Study. Lancet 2002, 359, 281–286. [Google Scholar] [CrossRef]
- Stampfer, M.; Kang, J.; Chen, J.; Cherry, R.; Grodstein, F. Effects of moderate alcohol consumption on cognitive function in women. N. Engl. J. Med. 2005, 352, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Tan, M.S.; Yu, J.T.; Tan, L. Resveratrol as a therapeutic agent for Alzheimer’s disease. Biomed. Res. Int. 2014, 2014, 350516. [Google Scholar] [CrossRef] [PubMed]
- Plauth, A.; Geikowski, A.; Cichon, S.; Wowro, S.J.; Liedgens, L.; Rousseau, M.; Weidner, C.; Fuhr, L.; Kliem, M.; Jenkins, G.; et al. Hormetic shifting of redox environment by pro-oxidative resveratrol protects cells against stress. Free Radic. Biol. Med. 2016, 99, 608–622. [Google Scholar] [CrossRef] [PubMed]
- Stefanson, A.L.; Bakovic, M. Dietary regulation of Keap1/Nrf2/ARE pathway: Focus on plant-derived compounds and trace minerals. Nutrients 2014, 6, 3777–3801. [Google Scholar] [CrossRef] [PubMed]
- Juhasz, B.; Mukherjee, S.; Das, D.K. Hormetic response of resveratrol against cardioprotection. Exp. Clin. Cardiol. 2010, 15, e134–e138. [Google Scholar] [PubMed]
- Li, Y.; Pan, A.; Wang, D.D.; Liu, X.; Dhana, K.; Franco, O.H.; Kaptoge, S.; Di Angelantonio, E.; Stampfer, M.; Willett, W.C.; et al. Impact of Healthy Lifestyle Factors on Life Expectancies in the US Population. Circulation 2018, 138, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Xi, B.; Veeranki, S.P.; Zhao, M.; Ma, C.; Yan, Y.; Mi, J. Relationship of Alcohol Consumption to All-Cause, Cardiovascular, and Cancer-Related Mortality in U.S. Adults. J. Am. Coll. Cardiol. 2017, 70, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Rasines-Perea, Z.; Teissedre, P.L. Grape Polyphenols’ Effects in Human Cardiovascular Diseases and Diabetes. Molecules 2017, 22, 68. [Google Scholar] [CrossRef] [PubMed]
- Latruffe, N.; Rifler, J.P. Bioactive polyphenols from grapes and wine emphasized with resveratrol. Curr. Pharm. Des. 2013, 19, 6053–6063. [Google Scholar] [CrossRef] [PubMed]
- GBD 2016 Healthcare Access and Quality Collaborators. Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: A systematic analysis from the Global Burden of Disease Study 2016. Lancet 2018, 391, 2236–2271. [Google Scholar] [CrossRef]
- Lanzmann-Petithory, D. CANCERALCOOL: Consommation de Boissons Alcoolisées (vin, bière et alcools forts) et Mortalité par Différents Types de Cancers sur une Cohorte de 100,000 Sujets Suivie Depuis 25 ans. Colloque de Clôture du PNRA (Programme National de Recherche en Alimentation et Nutrition Humaine) 2005. 10-12 mars 2009. Espace Reuilly -Mairie de Paris- 21 rue Hénard 75012 Paris. Available online: http://www.agence-nationale-recherche.fr/fileadmin/user_upload/documents/uploaded/2009/BOOK-PNRA-2005.pdf (accessed on 15 September 2018).
- Kawas, C.; Corrada, M. The 90+ Study—UCI MIND. Available online: http://www.mind.uci.edu/research-studies/90plus-study/ (accessed on 15 September 2018).
- Cornaro, L. The Art of Living Long and Discourses on the Sober Life; reprint; Kessinger Publishing: New York, NY, USA, 2005. [Google Scholar]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rifler, J.-P. Is a Meal without Wine Good for Health? Diseases 2018, 6, 105. https://doi.org/10.3390/diseases6040105
Rifler J-P. Is a Meal without Wine Good for Health? Diseases. 2018; 6(4):105. https://doi.org/10.3390/diseases6040105
Chicago/Turabian StyleRifler, Jean-Pierre. 2018. "Is a Meal without Wine Good for Health?" Diseases 6, no. 4: 105. https://doi.org/10.3390/diseases6040105
APA StyleRifler, J. -P. (2018). Is a Meal without Wine Good for Health? Diseases, 6(4), 105. https://doi.org/10.3390/diseases6040105