Prevention of Progression in Myopia: A Systematic Review
Abstract
:1. Introduction
2. Methods
3. Etiopathogenesis
3.1. Genetic Background
3.2. Physiopathology and Biological Mechanisms of Myopia
4. The Role of the Environment
4.1. Outdoor Activities
4.2. Near Work Activity
5. Treatments
5.1. Biofeedback Visual Training
5.2. Spectacles and Contact Lenses
5.2.1. Soft Bifocal Contact Lenses
5.2.2. Orthokeratology
5.3. Pharmacological Treatments
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fledelius, H.C. Ophthalmic changes from age of 10 to 18 years. A longitudinal study of sequels to low birth weight. IV. Ultrasound oculometry of vitreous and axial length. Acta Ophthalmol. 1982, 60, 403–411. [Google Scholar] [CrossRef]
- Dolgin, E. The myopia boom. Nature 2015, 519, 276–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delcourt, C.; Korobelnik, J.F.; Buitendijk, G.H.; Foster, P.J.; Hammond, C.J.; Piermarocchi, S.; Peto, T.; Jansonius, N.; Mirshahi, A.; Hogg, R.E.; et al. Ophthalmic epidemiology in Europe: The “European Eye Epidemiology” (E3) consortium. Eur. J. Epidemiol. 2016, 31, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.J.; Resnikoff, S. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- French, A.N.; O’Donoghue, L.; Morgan, I.G.; Saunders, K.J.; Mitchell, P.; Rose, K.A. Comparison of refraction and ocular biometry in European Caucasian children living in Northern Ireland and Sydney, Australia. Investig. Ophthalmol. Vis. Sci. 2012, 53, 4021–4031. [Google Scholar] [CrossRef] [PubMed]
- Verhoeven, V.J.; Wong, K.T.; Buitendijk, G.H.; Hofman, A.; Vingerling, J.R.; Klaver, C.C. Visual consequences of refractive errors in the general population. Ophthalmology 2015, 122, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Goss, D.A. Variables related to the rate of childhood myopia progression. Optom. Vis. Sci. 1990, 67, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wen, D.; Wang, Q.; McAlinden, C.; Flitcroft, I.; Chen, H.; Saw, S.M.; Chen, H.; Bao, F.; Zhao, Y.; et al. Efficacy Comparison of 16 Interventions for Myopia Control in Children: A Network Meta-analysis. Ophthalmology 2016, 123, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Vasudevan, B.; Ciuffreda, K.J.; Zhou, H.J.; Mao, G.Y.; Wang, N.L.; Liang, Y.B. Myopigenic activity change and its risk factors in urban students in Beijing: Three-year report of Beijing myopia progression study. Ophthalmic Epidemiol. 2017, 24, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Ip, J.M.; Saw, S.M.; Rose, K.A.; Morgan, I.G.; Kifley, A.; Wang, J.J.; Mitchell, P. Role of near work in myopia: Findings in a sample of Australian school children. Investig. Ophthalmol. Vis. Sci. 2008, 49, 2903–2910. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, Q. Insight into the molecular genetics of myopia. Mol. Vis. 2017, 23, 1048–1080. [Google Scholar] [PubMed]
- Dirani, M.; Shekar, S.N.; Baird, P.N. The role of educational attainment in refraction: The genes in myopia (GEM) twin study. Investig. Ophthalmol. Vis. Sci. 2008, 49, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Zhao, D.; Kim, W.; Lim, D.H.; Song, Y.M.; Guallar, E.; Cho, J.; Sung, J.; Chung, E.S.; Chung, T.Y. Heritability of myopia and ocular biometrics in Koreans: The healthy twin study. Investig. Ophthalmol. Vis. Sci. 2013, 54, 3644–3649. [Google Scholar] [CrossRef] [PubMed]
- Ramessur, R.; Williams, K.M.; Hammond, C.J. Risk factors for myopia in a discordant monozygotic twin study. Ophthalmic Physiol. Opt. 2015, 35, 643–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammond, C.J.; Snieder, H.; Gilbert, C.E.; Spector, T.D. Genes and environment in refractive error: The twin eye study. Investig. Ophthalmol. Vis. Sci. 2001, 42, 1232–1236. [Google Scholar]
- Wang, D.; Liu, B.; Huang, S.; Huang, W.; He, M. Relationship between refractive error and ocular biometrics in twin children: The Guangzhou Twin Eye Study. Eye Sci. 2014, 29, 129–133. [Google Scholar] [PubMed]
- Verhoeven, V.J.; Hysi, P.G.; Wojciechowski, R.; Fan, Q.; Guggenheim, J.A.; Hohn, R.; MacGregor, S.; Hewitt, A.W.; Nag, A.; Cheng, C.Y.; et al. Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nat. Gen. 2013, 45, 314–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verhoeven, V.J.; Buitendijk, G.H.; Rivadeneira, F.; Uitterlinden, A.G.; Vingerling, J.R.; Hofman, A.; Klaver, C.C.W. Education influences the role of genetics in myopia. Eur. J. Epidemiol. 2013, 28, 973–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiesel, T.N.; Raviola, E. Myopia and eye enlargement after neonatal lid fusion in monkeys. Nature 1977, 266, 66–68. [Google Scholar] [CrossRef] [PubMed]
- Belkin, M.; Yinon, U.; Rose, L.; Reisert, I. Effect of visual environment on refractive error of cats. Doc. Ophthalmol. 1977, 42, 433–437. [Google Scholar] [CrossRef]
- Sherman, S.M.; Norton, T.T.; Casagrande, V.A. Myopia in the lid-sutured tree shrew (Tupaia glis). Brain Res. 1977, 124, 154–157. [Google Scholar] [CrossRef]
- Schaeffel, F.; Glasser, A.; Howland, H.C. Accommodation, refractive error and eye growth in chickens. Vis. Res. 1988, 28, 639–657. [Google Scholar] [CrossRef] [Green Version]
- Benavente-Perez, A.; Nour, A.; Troilo, D. Axial eye growth and refractive error development can be modified by exposing the peripheral retina to relative myopic or hyperopic defocus. Investig. Ophthalmol. Vis. Sci. 2014, 55, 6765–6773. [Google Scholar] [CrossRef] [PubMed]
- Troilo, D.; Totonelly, K.; Harb, E. Imposed anisometropia, accommodation, and regulation of refractive state. Optom. Vis. Sci. 2009, 86, E31–E39. [Google Scholar] [CrossRef] [PubMed]
- Benavente-Perez, A.; Nour, A.; Troilo, D. The effect of simultaneous negative and positive defocus on eye growth and development of refractive state in marmosets. Investig. Ophthalmol. Vis. Sci. 2012, 53, 6479–6487. [Google Scholar] [CrossRef] [PubMed]
- Wallman, J.; Gottlieb, M.D.; Rajaram, V.; Fugate-Wentzek, L.A. Local retinal regions control local eye growth and myopia. Science 1987, 237, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Liu, S.; Qin, W.; Li, F.; Wu, X.; Tan, Q. Levodopa inhibits the development of form-deprivation myopia in guinea pigs. Optom. Vis. Sci. 2010, 87, 53–60. [Google Scholar] [PubMed]
- Carr, B.J.; Mihara, K.; Ramachandran, R.; Saifeddine, M.; Nathanson, N.M.; Stell, W.K.; Hollenberg, M.D. Myopia-inhibiting concentrations of muscarinic receptor antagonists block activation of α2a-adrenoceptors in vitro. Investig. Ophthalmol. Vis. Sci. 2018, 59, 2778–2791. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yang, J.; Reinach, P.S.; Wang, F.; Zhang, L.; Fan, M.; Ying, H.; Pan, M.; Qu, J.; Zhou, X. Dopamine receptor subtypes mediate opposing effects on form deprivation myopia in pigmented guinea pigs. Investig. Ophthalmol. Vis. Sci. 2018, 59, 4441–4448. [Google Scholar] [CrossRef] [PubMed]
- Stone, R.A.; Lin, T.; Iuvone, P.M.; Laties, A.M. Postnatal control of ocular growth: Dopaminergic mechanisms. Ciba Found. Symp. 1990, 155, 45–57. [Google Scholar] [PubMed]
- Megaw, P.; Morgan, I.; Boelen, M. Vitreal dihydroxyphenylacetic acid (DOPAC) as an index of retinal dopamine release. J. Neurochem. 2001, 76, 1636–1644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohngemach, S.; Hagel, G.; Schaeffel, F. Concentrations of biogenic amines in fundal layers in chickens with normal visual experience, deprivation, and after reserpine application. Vis. Neurosci. 1997, 14, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Ashby, R.; McCarthy, C.S.; Maleszka, R.; Megaw, P.; Morgan, I.G. A muscarinic cholinergic antagonist and a dopamine agonist rapidly increase ZENK mRNA expression in the form-deprived chicken retina. Exp. Eye Res. 2007, 85, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Legros, J.; Versaux-Botteri, C.; Vernier, P. Dopamine receptor localization in the mammalian retina. Mol. Neurobiol. 1999, 19, 181–204. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Yan, T.; Shi, F.; An, J.; Xie, R.; Zheng, F.; Li, Y.; Chen, J.; Qu, J.; Zhou, X. Activation of dopamine D2 receptor is critical for the development of form-deprivation myopia in the C57BL/6 mouse. Investig. Ophthalmol. Vis. Sci. 2014, 55, 5537–5544. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Long, K.; Schaeffel, F.; Zhou, X.; Zheng, Y.; Ying, H.; Lu, F.; Stell, W.K.; Qu, J. Effects of dopaminergic agents on progression of naturally occurring myopia in albino guinea pigs (Cavia porcellus). Investig. Ophthalmol. Vis. Sci. 2014, 55, 7508–7519. [Google Scholar] [CrossRef] [PubMed]
- Jobling, A.I.; Wan, R.; Gentle, A.; Bui, B.V.; McBrien, N.A. Retinal and choroidal TGF-beta in the tree shrew model of myopia: Isoform expression, activation and effects on function. Exp. Eye Res. 2009, 88, 458–466. [Google Scholar] [CrossRef] [PubMed]
- McBrien, N.A.; Cornell, L.M.; Gentle, A. Structural and ultrastructural changes to the sclera in a mammalian model of high myopia. Investig. Ophthalmol. Vis. Sci. 2001, 42, 2179–2187. [Google Scholar]
- Luo, X.; Li, B.; Li, T.; Di, Y.; Zheng, C.; Ji, S.; Ma, Y.; Zhu, J.; Chen, X.; Zhou, X. Myopia induced by flickering light in guinea pig eyes is associated with increased rather than decreased dopamine release. Mol. Vis. 2017, 23, 666–679. [Google Scholar] [PubMed]
- Trier, K.; Olsen, E.B.; Kobayashi, T.; Ribel-Madsen, S.M. Biochemical and ultrastructural changes in rabbit sclera after treatment with 7-methylxanthine, theobromine, acetazolamide, or L-ornithine. Br. J. Ophthalmol. 1999, 83, 1370–1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trier, K.; Munk, R.-M.S.; Cui, D.; Brogger, C.S. Systemic 7-methylxanthine in retarding axial eye growth and myopia progression: A 36-month pilot study. J. Ocul. Biol. Dis. Infor. 2008, 1, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Rada, J.A.; Wiechmann, A.F. Melatonin receptors in chick ocular tissues: Implications for a role of melatonin in ocular growth regulation. Investig. Ophthalmol. Vis. Sci. 2006, 47, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Kearney, S.; O’Donoghue, L.; Pourshahidi, L.K.; Cobice, D.; Saunders, K.J. Myopes have significantly higher serum melatonin concentrations than non-myopes. Ophthalmic Physiol. Opt. 2017, 37, 557–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashby, R.; Ohlendorf, A.; Schaeffel, F. The effect of ambient illuminance on the development of deprivation myopia in chicks. Investig. Ophthalmol. Vis. Sci. 2009, 50, 5348–5354. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.L., 3rd; Hung, L.F.; Huang, J. Protective effects of high ambient lighting on the development of form-deprivation myopia in rhesus monkeys. Investig. Ophthalmol. Vis. Sci. 2012, 53, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Karouta, C.; Ashby, R.S. Correlation between light levels and the development of deprivation myopia. Investig. Ophthalmol. Vis. Sci. 2014, 56, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Cohen, Y.; Peleg, E.; Belkin, M.; Polat, U.; Solomon, A.S. Ambient illuminance, retinal dopamine release and refractive development in chicks. Exp. Eye Res. 2012, 103, 33–40. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Xiang, F.; Zeng, Y.; Mai, J.; Chen, Q.; Zhang, J.; Smith, W.; Rose, K.; Morgan, I.G. Effect of time spent outdoors at school on the development of myopia among children in China: A randomized clinical trial. JAMA J. Am. Med. Assoc. 2015, 314, 1142–1148. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.C.; Tsai, C.L.; Wu, H.L.; Yang, Y.H.; Kuo, H.K. Outdoor activity during class recess reduces myopia onset and progression in school children. Ophthalmology 2013, 120, 1080–1085. [Google Scholar] [CrossRef] [PubMed]
- Li, S.M.; Li, H.; Li, S.Y.; Liu, L.R.; Kang, M.T.; Wang, Y.P.; Zhang, F.; Zhan, S.Y.; Gopinath, B.; Mitchell, P.; et al. Time outdoors and myopia progression over 2 years in Chinese children: The Anyang childhood eye study. Investigig. Ophthalmol. Vis. Sci. 2015, 56, 4734–4740. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Gao, T.Y.; Vasudevan, B.; Ciuffreda, K.J.; Liang, Y.B.; Jhanji, V.; Fan, S.J.; Han, W.; Wang, N.L. Near work, outdoor activity, and myopia in children in rural China: The Handan offspring myopia study. BMC Ophthalmol. 2017, 17, 203. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Sankaridurg, P.; Naduvilath, T.; Zang, J.; Zou, H.; Zhu, J.; Lv, M.; He, X.; Xu, X. Time spent in outdoor activities in relation to myopia prevention and control: A meta-analysis and systematic review. Acta Ophthalmol. 2017, 95, 551–566. [Google Scholar] [CrossRef] [PubMed]
- Mahayana, I.T.; Indrawati, S.G.; Pawiroranu, S. The prevalence of uncorrected refractive error in urban, suburban, exurban and rural primary school children in Indonesian population. Int. J. Ophthalmol. 2017, 10, 1771–1776. [Google Scholar] [PubMed]
- Read, S.A.; Collins, M.J.; Vincent, S.J. Light exposure and physical activity in myopic and emmetropic children. Optom Vis. Sci. 2014, 91, 330–341. [Google Scholar] [CrossRef] [PubMed]
- Rose, K.A.; Morgan, I.G.; Ip, J.; Kifley, A.; Huynh, S.; Smith, W.; Mitchell, P. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology 2008, 115, 1279–1285. [Google Scholar] [CrossRef] [PubMed]
- Quek, T.P.; Chua, C.G.; Chong, C.S.; Chong, J.H.; Hey, H.W.; Lee, J.; Lim, Y.F.; Saw, S.M. Prevalence of refractive errors in teenage high school students in Singapore. Ophthalmic Physiol. Opt. 2004, 24, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Vasudevan, B.; Mao, G.Y.; Ciuffreda, K.J.; Jhanji, V.; Li, X.X.; Zhou, H.J.; Wang, N.L.; Liang, Y.B. The influence of near work on myopic refractive change in urban students in Beijing: A three-year follow-up report. Graefes. Arch. Clin. Exp. Ophthalmol. 2016, 254, 2247–2255. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.M.; Chang, D.S.; Wu, P.C. The Association between Near Work Activities and Myopia in Children-A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0140419. [Google Scholar] [CrossRef] [PubMed]
- Morgan, I.G.; Rose, K.A. Myopia and international educational performance. Ophthalmic Phys. Opt. 2013, 33, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.M.; Bertelsen, G.; Cumberland, P.; Wolfram, C.; Verhoeven, V.J.; Anastasopoulos, E.; Buitendijk, G.H.; Cougnard-Grégoire, A.; Creuzot-Garcher, C.; Erke, M.G.; et al. Increasing Prevalence of Myopia in Europe and the Impact of Education. Ophthalmology 2015, 122, 1489–1497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aller, T.A.; Liu, M.; Wildsoet, C.F. Myopia control with bifocal contact lenses: A randomized clinical trial. Optom. Vis. Sci. 2016, 93, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.S.; Tang, W.C.; Tse, D.Y.; Tang, Y.Y.; To, C.H. Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: A 2-year randomised clinical trial. Br. J. Ophthalmol. 2014, 98, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Cho, P.; Cheung, S.W.; Edwards, M. The longitudinal orthokeratology research in children (LORIC) in Hong Kong: A pilot study on refractive changes and myopic control. Curr. Eye Res. 2005, 30, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Cho, P.; Cheung, S.W. Retardation of myopia in Orthokeratology (ROMIO) study: A 2-year randomized clinical trial. Investig. Ophthalmol. Vis. Sci. 2012, 53, 7077–7085. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.T.; Lam, D.S.; Chua, W.H.; Fang, S.-P.D.; Crockett, R.S. One-year multicenter, double-masked, placebo-controlled, parallel safety and efficacy study of 2% pirenzepine ophthalmic gel in children with myopia. Ophthalmology 2005, 112, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Siatkowski, R.M.; Cotter, S.A.; Crockett, R.S.; Miller, J.M.; Novack, G.D.; Zadnik, K. Two-year multicenter, randomized, double-masked, placebo-controlled, parallel safety and efficacy study of 2% pirenzepine ophthalmic gel in children with myopia. J. AAPOS 2008, 12, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Chua, W.H.; Balakrishnan, V.; Chan, Y.H.; Tong, L.; Ling, Y.; Quah, B.L.; Tan, D. Atropine for the treatment of childhood myopia. Ophthalmology 2006, 113, 2285–2291. [Google Scholar] [CrossRef] [PubMed]
- Hyman, L.; Gwiazda, J.; Marsh-Tootle, W.L.; Norton, T.T.; Hussein, M. The Correction of Myopia Evaluation Trial (COMET): Design and general baseline characteristics. Control Clin. Trials 2001, 22, 573–592. [Google Scholar] [CrossRef]
- Angi, M.R.; Caucci, S.; Pilotto, E.; Racano, E.; Rupolo, G.; Sabbadin, E. Changes in myopia, visual acuity, and psychological distress after biofeedback visual training. Optom. Vis. Sci. 1996, 73, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Rupolo, G.; Angi, M.; Sabbadin, E.; Caucci, S.; Pilotto, E.; Racano, E.; Bertolini de, C. Treating myopia with acoustic biofeedback: A prospective study on the evolution of visual acuity and psychological distress. Psychosom. Med. 1997, 59, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Rosen, R.C.; Schiffman, H.R.; Meyers, H. Behavioral treatment of myopia: Refractive error and acuity changes in relation to axial length and intraocular pressure. Am. J. Optom. Physiol. Opt. 1984, 61, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Gil, K.M.; Collins, F.L., Jr.; Odom, J.V. The effects of behavioral vision training on multiple aspects of visual functioning in myopic adults. J. Behav. Med. 1986, 9, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Koslowe, K.C.; Spierer, A.; Rosner, M.; Belkin, M. Evaluation of accommotrac biofeedback training for myopia control. Optom. Vis. Sci. 1991, 68, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.T.; Li, S.M.; Peng, X.; Li, L.; Ran, A.; Meng, B.; Sun, Y.; Liu, L.R.; Li, H.; Millodot, M.; et al. Chinese Eye Exercises and Myopia Development in School Age Children: A Nested Case-control Study. Sci. Rep. 2016, 6, 28531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goss, D.A.; Rainey, B.B. Relationship of accommodative response and nearpoint phoria in a sample of myopic children. Optom. Vis. Sci. 1999, 76, 292–294. [Google Scholar] [CrossRef] [PubMed]
- Rosenfield, M.; Desai, R.; Portello, J.K. Do progressing myopes show reduced accommodative responses? Optom. Vis. Sci. 2002, 79, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Parssinen, O.; Hemminki, E.; Klemetti, A. Effect of spectacle use and accommodation on myopic progression: Final results of a three-year randomised clinical trial among schoolchildren. Br. J. Ophthalmol. 1989, 73, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Hyman, L.; Gwiazda, J. The Correction of Myopia Evaluation Trial: Lessons from the study design. Ann. Acad. Med. Singap. 2004, 33, 44–48. [Google Scholar] [PubMed]
- Gwiazda, J.E.; Hyman, L.; Norton, T.T.; Hussein, M.E.; Marsh-Tootle, W.; Manny, R.; Wang, Y.; Everett, D. Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children. Investig. Ophthalmol. Vis. Sci. 2004, 45, 2143–2151. [Google Scholar] [CrossRef]
- Correction of Myopia Evaluation Trial 2 Study Group for the Pediatric Eye Disease Investigator Group. Progressive-addition lenses versus single-vision lenses for slowing progression of myopia in children with high accommodative lag and near esophoria. Investig. Ophthalmol. Vis. Sci. 2011, 52, 2749–2757. [Google Scholar] [CrossRef] [PubMed]
- Berntsen, D.A.; Sinnott, L.T.; Mutti, D.O.; Zadnik, K. A randomized trial using progressive addition lenses to evaluate theories of myopia progression in children with a high lag of accommodation. Investig. Ophthalmol. Vis. Sci. 2012, 53, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Hasebe, S.; Ohtsuki, H.; Nonaka, T.; Nakatsuka, C.; Miyata, M.; Hamasaki, I.; Kimura, S. Effect of progressive addition lenses on myopia progression in Japanese children: A prospective, randomized, double-masked, crossover trial. Investig. Ophthalmol. Vis. Sci. 2008, 49, 2781–2789. [Google Scholar] [CrossRef] [PubMed]
- Hasebe, S.; Jun, J.; Varnas, S.R. Myopia control with positively aspherized progressive addition lenses: A 2-year, multicenter, randomized, controlled trial. Investig. Ophthalmol. Vis. Sci. 2014, 55, 7177–7188. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Woo, G.C.; Drobe, B.; Schmid, K.L. Effect of bifocal and prismatic bifocal spectacles on myopia progression in children: Three-year results of a randomized clinical trial. JAMA Ophthalmol. 2014, 132, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Leung, J.T.; Brown, B. Progression of myopia in Hong Kong Chinese schoolchildren is slowed by wearing progressive lenses. Optom. Vis. Sci. 1999, 76, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Hasebe, S.; Nakatsuka, C.; Hamasaki, I.; Ohtsuki, H. Downward deviation of progressive addition lenses in a myopia control trial. Ophthalmic Physiol. Opt. 2005, 25, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Anstice, N.S.; Phillips, J.R. Effect of dual-focus soft contact lens wear on axial myopia progression in children. Ophthalmology 2011, 118, 1152–1161. [Google Scholar] [CrossRef] [PubMed]
- Walline, J.J.; Greiner, K.L.; McVey, M.E.; Jones-Jordan, L.A. Multifocal contact lens myopia control. Optom. Vis. Sci. 2013, 90, 1207–1214. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Alcocer, J. Analysis of the power profile of a new soft contact lens for myopia progression. J. Optom. 2017, 10, 266–268. [Google Scholar] [CrossRef] [PubMed]
- Sankaridurg, P. Contact lenses to slow progression of myopia. Clin. Exp. Optom. 2017, 100, 432–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, P.; McAlinden, C.; Wildsoet, C.F. Effects of multifocal soft contact lenses used to slow myopia progression on quality of vision in young adults. Acta Ophthalmol. 2017, 95, e43–e53. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Xu, J.; Chehab, K.; Exford, J.; Brennan, N. Soft contact lenses with positive spherical aberration for myopia control. Optom. Vis. Sci. 2016, 93, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Sankaridurg, P.; Holden, B.; Smith, E., 3rd; Naduvilath, T.; Chen, X.; de la Jara, P.L.; Martinez, A.; Kwan, J.; Ho, A.; Frick, K.; et al. Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: One-year results. Investig. Ophthalmol. Vis. Sci. 2011, 52, 9362–9367. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Moody, K.; Tan, D.T.; Yew, K.C.; Ming, P.Y.; Long, Q.B. Contact lenses in pediatrics study in Singapore. Eye Contact Lens 2009, 35, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Walline, J.J.; Gaume, A.; Jones, L.A.; Rah, M.J.; Manny, R.E.; Berntsen, D.A.; Chitkara, M.; Kim, A.; Quinn, N. Benefits of contact lens wear for children and teens. Eye Contact Lens 2007, 33, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Jessen, G.N. World wide summary of contact lens techniques. Am. J. Optometry Arch. Am. Acad. Optometry 1962, 39, 680–682. [Google Scholar] [CrossRef]
- Katz, J.; Schein, O.D.; Levy, B.; Cruiscullo, T.; Saw, S.M.; Rajan, U.; Chan, T.K.; Yew Khoo, C.; Chew, S.J. A randomized trial of rigid gas permeable contact lenses to reduce progression of children’s myopia. Am. J. Ophthalmol. 2003, 136, 82–90. [Google Scholar] [CrossRef]
- Queiros, A.; Gonzalez-Meijome, J.M.; Jorge, J.; Villa-Collar, C.; Gutierrez, A.R. Peripheral refraction in myopic patients after orthokeratology. Optom Vis. Sci. 2010, 87, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Mathur, A.; Atchison, D.A. Effect of orthokeratology on peripheral aberrations of the eye. Optom. Vis. Sci. 2009, 86, E476–E484. [Google Scholar] [CrossRef] [PubMed]
- Walline, J.J.; Jones, L.A.; Sinnott, L.T. Corneal reshaping and myopia progression. Br. J. Ophthalmol. 2009, 93, 1181–1185. [Google Scholar] [CrossRef] [PubMed]
- Santodomingo-Rubido, J.; Villa-Collar, C.; Gilmartin, B.; Gutierrez-Ortega, R. Myopia control with orthokeratology contact lenses in Spain: Refractive and biometric changes. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5060–5065. [Google Scholar] [CrossRef] [PubMed]
- Si, J.K.; Tang, K.; Bi, H.S.; Guo, D.D.; Guo, J.G.; Wang, X.R. Orthokeratology for myopia control: A meta-analysis. Optom. Vis. Sci. 2015, 92, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.W.; Fang, S.Y.; Tsai, D.C.; Huang, N.; Hsu, C.C.; Chen, S.Y.; Chiu, A.W.H.; Liu, C.J.L. Prevalence and association of refractive anisometropia with near work habits among young schoolchildren: The evidence from a population-based study. PLoS ONE 2017, 12, e0173519. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.T.; Cho, P. Discontinuation of orthokeratology and myopic progression. Optom. Vis. Sci. 2010, 87, 1053–1056. [Google Scholar] [CrossRef] [PubMed]
- Cho, P.; Cheung, S.W. Discontinuation of orthokeratology on eyeball elongation (DOEE). Cont. Lens Anterior Eye 2017, 40, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Guo, X.; Xie, P. Observation of orthokeratology discontinuation. Chin. J. Ophthalmol. 2015, 51, 178–182. [Google Scholar]
- Hsiao, C.H.; Lin, H.C.; Chen, Y.F.; Ma, D.H.; Yeh, L.K.; Tan, H.Y.; Huang, S.C.M.; Lin, K.K. Infectious keratitis related to overnight orthokeratology. Cornea 2005, 24, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.C.; Li, E.Y.; Wong, V.W.; Jhanji, V. Orthokeratology-associated infectious keratitis in a tertiary care eye hospital in Hong Kong. Am. J. Ophthalmol. 2014, 158, 1130. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, K.; Apel, A. Infectious keratitis in orthokeratology. Clin. Exp. Ophthalmol. 2002, 30, 49–51. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhao, H.; Deng, S.; Zhang, Y.; Wang, Z.; Li, R.; Luo, S.; Jin, X. Infectious keratitis related to orthokeratology. Ophthalmic Physiol. Opt. 2006, 26, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Wilhelmus, K.R. Acanthamoeba keratitis during orthokeratology. Cornea 2005, 24, 864–866. [Google Scholar] [CrossRef] [PubMed]
- Shehadeh-Masha’our, R.; Segev, F.; Barequet, I.S.; Ton, Y.; Garzozi, H.J. Orthokeratology associated microbial keratitis. Eur. J. Ophthalmol. 2009, 19, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Carnt, N.; Willcox, M.D.; Keay, L.; Flanagan, J.; Stapleton, F. Pathogenesis of contact lens-associated microbial keratitis. Optom. Vis. Sci. 2010, 87, 612–613. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.H.; Leung, S.L.; Hoekman, H.W.; Beekhuis, W.H.; Mulder, P.G.; Geerards, A.J.; Kijlstra, A. Incidence of contact-lens-associated microbial keratitis and its related morbidity. Lancet. 1999, 354, 181–185. [Google Scholar] [CrossRef]
- Bullimore, M.A.; Sinnott, L.T.; Jones-Jordan, L.A. The risk of microbial keratitis with overnight corneal reshaping lenses. Optom. Vis. Sci. 2013, 90, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Kam, K.W.; Yung, W.; Li, G.K.H.; Chen, L.J.; Young, A.L. Infectious keratitis and orthokeratology lens use: A systematic review. Infection 2017, 45, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Hoddenbach, J.G.; Boekhoorn, S.S.; Wubbels, R.; Vreugdenhil, W.; Van, R.J.; Geerards, A.J. Clinical presentation and morbidity of contact lens-associated microbial keratitis: A retrospective study. Graefes. Arch. Clin. Exp. Ophthalmol. 2014, 252, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Walline, J.J.; Lindsley, K.; Vedula, S.S.; Cotter, S.A.; Mutti, D.O.; Twelker, J.D. Interventions to slow progression of myopia in children. Cochrane Database Syst. Rev. 2011, CD004916. [Google Scholar]
- McBrien, N.A.; Moghaddam, H.O.; Reeder, A.P. Atropine reduces experimental myopia and eye enlargement via a nonaccommodative mechanism. Investig. Ophthalmol. Vis. Sci. 1993, 34, 205–215. [Google Scholar]
- McBrien, N.A.; Stell, W.K.; Carr, B. How does atropine exert its anti-myopia effects? Ophthalmic Phys. Opt. 2013, 33, 373–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, A.J.; McGuire, J.J.; Schaeffel, F.; Stell, W.K. Light- and focus-dependent expression of the transcription factor ZENK in the chick retina. Nat. Neurosci. 1999, 2, 706–712. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.F.; Chen, C.H.; Chou, A.C.; Ho, T.C.; Lin, L.L.; Hung, P.T. Effects of different concentrations of atropine on controlling myopia in myopic children. J. Ocul. Pharmacol. Ther. 1999, 15, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Cottriall, C.L.; McBrien, N.A.; Annies, R.; Leech, E.M. Prevention of form-deprivation myopia with pirenzepine: A study of drug delivery and distribution. Ophthalmic Physiol. Opt. 1999, 19, 327–335. [Google Scholar] [CrossRef]
- Arumugam, B.; Mcbrien, N.A. Muscarinic antagonist control of myopia: Evidence for M4 and M1 receptor-based pathways in the inhibition of experimentally-induced axial myopia in the tree shrew. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5827–5837. [Google Scholar] [CrossRef] [PubMed]
- Schwahn, H.N.; Kaymak, H.; Schaeffel, F. Effects of atropine on refractive development, dopamine release, and slow retinal potentials in the chick. Vis. Neurosci. 2000, 17, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Seltner, R.L.; Weerheim, J.A.; Sivak, J.G. Role of the lens and vitreous humor in the refractive properties of the eyes of three strains of goldfish. Vis. Res. 1989, 29, 681–685. [Google Scholar] [CrossRef]
- Cui, D.; Trier, K.; Zeng, J.; Wu, K.; Yu, M.; Hu, J.; Chen, X.; Ge, J. Effects of 7-methylxanthine on the sclera in form deprivation myopia in guinea pigs. Acta Ophthalmol. 2011, 89, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Hung, L.F.; Arumugam, B.; Ostrin, L.; Patel, N.; Trier, K.; Jong, M.; Smith, E.L., III. The Adenosine Receptor Antagonist, 7-Methylxanthine, Alters Emmetropizing Responses in Infant Macaques. Investig. Ophthalmol. Vis. Sci. 2018, 59, 472–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Nimri, N.W.; Wildsoet, C.F. Effects of topical latanoprost on intraocular pressure and myopia progression in young guinea pigs. Investig. Ophthalmol. Vis. Sci. 2018, 59, 2644–2651. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.T. Results of a monozygotic cotwin control study on a treatment for myopia. Prog. Clin. Biol. Res. 1981, 69 Pt C, 249–258. [Google Scholar]
- Franke, H.; Tauber, O.; Pauli, K. Side effects of pirenzepine. Deutsch. Med. Wochenschr. 1988, 113, 1378–1379. [Google Scholar]
- Tigges, M.; Iuvone, P.M.; Fernandes, A.; Sugrue, M.F.; Mallorga, P.J.; Laties, A.M.; Stone, R.A.; Tigges, M. Effects of muscarinic cholinergic receptor antagonists on postnatal eye growth of rhesus monkeys. Optom. Vis. Sci. 1999, 76, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Chia, A.; Chua, W.H.; Cheung, Y.B.; Wong, W.L.; Lingham, A.; Fong, A.; Tan, D. Atropine for the treatment of childhood myopia: Safety and efficacy of 0.5%, 0.1%, and 0.01% doses (Atropine for the Treatment of Myopia 2). Ophthalmology 2012, 119, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Y.; Li, P.; Mi, G.; Tu, J.; Sun, L.; Webster, T.J.; Shen, Y. Ion-paired pirenzepine-loaded micelles as an ophthalmic delivery system for the treatment of myopia. Nanomedicine: Nanotechnol. Biol. Med. 2017, 13, 2079–2089. [Google Scholar]
- Yen, M.Y.; Liu, J.H.; Kao, S.C.; Shiao, C.H. Comparison of the effect of atropine and cyclopentolate on myopia. Ann. Ophthalmol. 1989, 21, 180–182. [Google Scholar] [PubMed]
- Brodstein, R.S.; Brodstein, D.E.; Olson, R.J.; Hunt, S.C.; Williams, R.R. The treatment of myopia with atropine and bifocals. A long-term prospective study. Ophthalmology 1984, 91, 1373–1379. [Google Scholar] [CrossRef]
- Tong, L.; Huang, X.L.; Koh, A.L.; Zhang, X.; Tan, D.T.; Chua, W.H. Atropine for the treatment of childhood myopia: Effect on myopia progression after cessation of atropine. Ophthalmology 2009, 116, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Chia, A.; Chua, W.H.; Wen, L.; Fong, A.; Goon, Y.Y.; Tan, D. Atropine for the treatment of childhood myopia: Changes after stopping atropine 0.01%, 0.1% and 0.5%. Am. J. Ophthalmol. 2014, 157, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Chia, A.; Lu, Q.S.; Tan, D. Five-Year Clinical Trial on Atropine for the Treatment of Myopia 2: Myopia Control with Atropine 0.01% Eyedrops. Ophthalmology 2016, 123, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Polling, J.R.; Kok, R.G.; Tideman, J.W.; Meskat, B.; Klaver, C.C. Effectiveness study of atropine for progressive myopia in Europeans. Eye (Lond.) 2016, 30, 998–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, T.Y.; Clark, R.A. Atropine 0.01% Eyedrops Significantly Reduce the Progression of Childhood Myopia. J. Ocul. Pharmacol. Ther. 2015, 31, 541–545. [Google Scholar] [CrossRef] [PubMed]
- Loughman, J.; Flitcroft, D.I. The acceptability and visual impact of 0.01% atropine in a Caucasian population. Br. J. Ophthalmol. 2016, 100, 1525–1529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schittkowski, M.P.; Sturm, V. Atropine for the prevention of progression in myopia-data, side effects, practical guidelines. Klin. Monbl. Augenheilkd 2017, 235, 385–391. [Google Scholar] [PubMed]
- Kothari, M.; Rathod, V. Efficacy of 1% atropine eye drops in retarding progressive axial myopia in Indian eyes. Indian J. Ophthalmol. 2017, 65, 1178–1181. [Google Scholar] [CrossRef] [PubMed]
- Ward, A.H.; Siegwart, J.T.; Frost, M.R.; Norton, T.T. Intravitreally-administered dopamine D2-like (and D4), but not D1-like, receptor agonists reduce form-deprivation myopia in tree shrews. Vis. Neurosci. 2017, 34, E003. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Xu, F.; Zhang, T.; Liu, M.; Wang, D.; Chen, Y.; Liu, Q. Correction: Orthokeratology to control myopia progression: A meta-analysis. PLoS ONE 2015, 10, e0130646. [Google Scholar] [CrossRef] [PubMed]
- Goss, D.A. Effect of bifocal lenses on the rate of childhood myopia progression. Am. J. Optom. Physiol. Opt. 1986, 63, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Walline, J.J.; Jones, L.A.; Sinnott, L.; Manny, R.E.; Gaume, A.; Rah, M.J.; Chitkara, M.; Lyons, S. A randomized trial of the effect of soft contact lenses on myopia progression in children. Investig. Ophthalmol. Vis. Sci. 2008, 49, 4702–4706. [Google Scholar] [CrossRef] [PubMed]
- Jones-Jordan, L.A.; Sinnott, L.T.; Cotter, S.A.; Kleinstein, R.N.; Manny, R.E.; Mutti, D.O.; Twelker, J.D.; Zadnik, K. Time outdoors, visual activity, and myopia progression in juvenile-onset myopes. Investig. Ophthalmol. Vis. Sci. 2012, 53, 7169–7175. [Google Scholar] [CrossRef] [PubMed]
- Jensen, H. Myopia progression in young school children. A prospective study of myopia progression and the effect of a trial with bifocal lenses and beta blocker eye drops. Acta Ophthalmol. Suppl. 1991, 69, 1–79. [Google Scholar]
- Walline, J.J.; Mutti, D.O.; Jones, L.A.; Rah, M.J.; Nichols, K.K.; Watson, R.; Zadnik, K. The contact lens and myopia progression (CLAMP) study: Design and baseline data. Optom. Vis. Sci. 2001, 78, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Manny, R.E.; Hussein, M.; Scheiman, M.; Kurtz, D.; Niemann, K.; Zinzer, K. Tropicamide (1%): An effective cycloplegic agent for myopic children. Investig. Ophthalmol. Vis. Sci. 2001, 42, 1728–1735. [Google Scholar]
- Pararajasegaram, R. VISION 2020-the right to sight: From strategies to action. Am. J. Ophthalmol. 1999, 128, 359–360. [Google Scholar] [PubMed]
- Wolfram, C.; Hohn, R.; Kottler, U.; Wild, P.; Blettner, M.; Buhren, J.; Pfeiffer, N.; Mirshahi, A. Prevalence of refractive errors in the European adult population: The Gutenberg Health Study (GHS). Br. J. Ophthalmol. 2014, 98, 857–861. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Qu, X.; Zhou, X. Association between parental myopia and the risk of myopia in a child. Exp. Ther. Med. 2015, 9, 2420–2428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Sekine, M.; Hamanishi, S.; Yamagami, T.; Kagamimori, S. Associations of lifestyle factors with quality of life (QOL) in Japanese children: A 3-year follow-up of the Toyama birth cohort study. Child: Care, Health Dev. 2005, 31, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.J.; Boddy, K.; Stein, K.; Whear, R.; Barton, J.; Depledge, M.H. Does participating in physical activity in outdoor natural environments have a greater effect on physical and mental wellbeing than physical activity indoors? A systematic review. Environ. Sci. Technol. 2011, 45, 1761–1772. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sekine, M.; Tatsuse, T.; Fujimura, Y.; Hamanishi, S.; Lu, F.; Zheng, X. Outdoor physical activity and its relation with self-reported health in Japanese children: Results from the Toyama birth cohort study. Child Care Health Dev. 2015, 41, 920–927. [Google Scholar] [CrossRef] [PubMed]
Author(s), Year | Study Design | Intervention Investigated | Total No, Ethnicity and Age Range | Baseline SER and/or AL | Final Follow-up | Results |
---|---|---|---|---|---|---|
Aller TA, 2016 [61] | Randomized | SCLs | 186, American, 8–18 | −2.69 ± 1.40 D | 1 year | Control group: −0.79 ± 0.43 D progression Treated group: −0.22 ± 0.34 D |
Lam CS, 2014 [62] | Randomized, double-blind | SCLs | 221, Hong Kong, 8–13 | −1.00 to −5.00 D | 2 years | Control Group: 0.40 D/year and 0.18 mm/year Treated Group: 0.30 D/year and 0.13 mm/year |
Cho P, 2005 [63] | Pilot study | OrthoK lenses | 35, Hong Kong, 7–12 | 2 years | Gain of 2.09 ± 1.34 D for the treated group | |
Cho P, 2012 [64] | Randomized, single-masked | Ortho-K lenses | 102, Hong Kong, 6–10 | 0.50 to 4.00 D | 2 years | Control group: 0.63 ± 0.26 mm AL elongation Treated Group: 0.36 ± 0.24 mm |
Tan DT, 2005 [65] | Randomized, placebo-controlled, double-masked | Pir 2% ophthalmic gel | 353, Singapore, 6–12 | −0.75 to 4.00 D | 1 year | Control group: 0.84 D myopia progression Pir/PBO group = 0.70 D Pir/Pir group = 0.47 D |
Siatkowski RM, 2008 [66] | Randomized, placebo controlled, double-masked | Pir 2% ophthalmic gel | 174, American, 8–12 | −0.75 to −4.00 D astigmatism </= 1.00 D | 2 years | 0.41 D gain for the treated group |
Chua WH, 2006 (ATOM 1) [67] | Randomized, placebo-controlled, double masked | Atr 1% | 400, Asian, 6–12 | 1.00 to −6.00 D | 2 years | Control group: −1.20 ± 0.69 D and 0.38 ± 0.38 mm myopia progression Treated group: 0.28 ± 0.92 D and −0.02 ± 0.35 mm |
The Comet Group, 2001 [68] | Randomized | PALs | 469, American,9 | Between −1.25 and −4.50 D | 3 years | Treated group gain of 0.2 D |
Intervention | Mechanism of Action | Overall Gain in SER and/or Decreased AL Elongation | Degree of Efficacy (0–3) |
---|---|---|---|
Atr H | Putative non-accomodative pathway, increase retinal DA levels [126,145] | SER: 0.68 (0.52–0.84) AL: −0.21 (−0.28 to −0.16) | 3 |
Atr L | Putative non-accomodative pathway, increase retinal DA levels | SER: 0.53 (0.21–0.85) AL: −0.15 (−0.25 to −0.05) | 3 |
Pir | Selective M1 receptor antagonist, same putative mechanism of atropine | SER: 0.29 D (0.05 to 0.52) AL: −0.09 (−0.17 to −0.01) | 2 |
Cyc | Antimuscarinic agent, same putative mechanism of atropine | SER: 0.33 (−0.02 to 0.67) | 2 |
Ortho-K lenses | Reduction of the hyperopic peripheral refractive error, reshaping the temporal surface of cornea [146] | AL: −0.15 (−0.22 to −0.08) | 2 |
PDMCLs | Reduction of peripheral myopic defocus | SER: 0.21 (−0.07 to 0.48) AL: −0.11 (−0.20 to −0.03) | 2 |
PASLs | Putative reduction of the retinal hyperopic blur by decreasing the accommodative lag during near work [83] | SER: 0.14 (0.02 to 0.026) | 1 |
BSLs | Putative reduction of the retinal hyperopic blur by decreasing the accommodative lag during near work [147] | SER: 0.09 (−0.07 to 0.25) AL: −0.06 (−0.12 to 0.00) | 1 |
SCLs | Putative reduction of peripheral hyperopia [148] | SER: −0.09 (−0.29 to 0.10) | 1 |
MOA | Putative increased release of DA induced by light exposure [149] | SER: 0.14 (−0.17 to 0.46) | 1 |
Tim | Reduction of intraocular pressure would reduce scleral stretching [150] | SER: −0-02 (−0.31 to 0.27) | 0 |
RGPCLSs | Putative reduction of peripheral hyperopia [151] | AL: 0.02 (−0.05 to 0.10) | 0 |
USVSLs | Spectacles designed to reduce the peripheral hyperopic defocus | SER: −0.11 (−0.35 to 0.13) AL: 0.03 (−0.06 to 0.11) | 0 |
Trop | Cycloplegic agent, same putative mechanism of atr [152] | No randomized studies | 0 |
Biofeedback visual training | Modification of autonomic nervous system in order to help the accommodation process [69] | No randomized studies | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vagge, A.; Ferro Desideri, L.; Nucci, P.; Serafino, M.; Giannaccare, G.; Traverso, C.E. Prevention of Progression in Myopia: A Systematic Review. Diseases 2018, 6, 92. https://doi.org/10.3390/diseases6040092
Vagge A, Ferro Desideri L, Nucci P, Serafino M, Giannaccare G, Traverso CE. Prevention of Progression in Myopia: A Systematic Review. Diseases. 2018; 6(4):92. https://doi.org/10.3390/diseases6040092
Chicago/Turabian StyleVagge, Aldo, Lorenzo Ferro Desideri, Paolo Nucci, Massimiliano Serafino, Giuseppe Giannaccare, and Carlo E. Traverso. 2018. "Prevention of Progression in Myopia: A Systematic Review" Diseases 6, no. 4: 92. https://doi.org/10.3390/diseases6040092
APA StyleVagge, A., Ferro Desideri, L., Nucci, P., Serafino, M., Giannaccare, G., & Traverso, C. E. (2018). Prevention of Progression in Myopia: A Systematic Review. Diseases, 6(4), 92. https://doi.org/10.3390/diseases6040092