Potential Beneficial Effects of Wine Flavonoids on Allergic Diseases
Abstract
:1. Introduction
2. Flavonoids, the Major Ingredient in Red Wine for Promoting Health
3. Anti-Inflammatory and Anti-Allergic Activities of Flavonoids Observed by In Vitro Experiments
4. Effects of Flavonoids on Allergic Diseases
5. Future Perspectives of Red Wine Flavonoids for Allergic Diseases
Funding
Conflicts of Interest
References
- Pawankar, R.; Canonica, G.W.; Holgate, S.T.; Lockey, R.F.; Blaiss, M. The WAO White Book on Allergy (Update. 2013). Available online: https://www.worldallergy.org/wao-white-book-on-allergy (accessed on 14 January 2019).
- Genuneit, J.; Seibold, A.M.; Apferlbacher, C.J.; Konstantinou, G.N.; Koplin, J.J.; La Grutta, S.; Logan, K.; Perkin, M.R.; Flohr, C. Task Force “Overview of Systematic Reviews in Allergy Epidemiology (OSRAE)” of the EAACI Interest Group on Epidemiology. Overview of systemic reviews in Allergy epidemiology. Allergy 2017, 72, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Nolte, H.; Backer, V.; Porsbjerg, C. Environmental factors as a cause for the increase in allergic disease. Ann. Allergy Asthma Immunol. 2001, 87, 7–11. [Google Scholar] [CrossRef]
- Ho, S.M. Environmental epigenetics of asthma: An update. J. Allergy Clin. Immunol. 2010, 126, 453–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kauffmann, F.; Demenais, F. Gene-environment interactions in asthma and allergic diseases: Challenges and perspectives. J. Allergy Clin. Immunol. 2012, 130, 1229–1240. [Google Scholar] [CrossRef] [PubMed]
- McKeever, T.M.; Britton, J. Diet and asthma. Am. J. Respir. Crit. Care Med. 2004, 170, 725–729. [Google Scholar] [CrossRef] [PubMed]
- Devereux, G.; Seaton, A. Diet as a risk factor for atopy and asthma. J. Allergy Clin. Immunol. 2005, 115, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Allan, K.; Devereux, G. Diet and asthma: Nutrition implications from prevention to treatment. J. Am. Diet Assoc. 2011, 111, 258–268. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Fernandes, I.; Perez-Gregorio, R.; Soares, S.; Mateus, N.; de Freitas, V. Wine flavonoid in health and disease prevention. Molecules 2017, 22, 292. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed]
- Visioli, F.; De La Lastra, C.A.; Andres-Lacueva, C.; Aviram, M.; Calhau, C.; Cassano, A.; D’Archivio, M.; Faria, A.; Fave, G.; Fogliano, V.; et al. Polyphenols and human health: A prospectus. Crit. Rev. Food Sci. Nutr. 2011, 51, 524–546. [Google Scholar] [CrossRef]
- Russo, M.; Spagnuolo, C.; Tedesco, I.; Bilotto, S.; Russo, G.L. The flavonoid quercetin in disease prevention and therapy: Facts and fancies. Biochem. Pharmacol. 2012, 83, 6–15. [Google Scholar] [CrossRef]
- USDA Database for the Flavonoid Content of Selective Foods. Release 3.3; March 2018. Available online: http://www.ars.usda.gov/nutrientdata (accessed on 15 October 2018).
- Black, L.; Kiely, M.; Kroon, P.; Plumb, J.; Gry, J. Development of EuroFIR-BASIS—A composition and biological effects database for plant-based bioactive compounds. Nutr. Bull. 2008, 33, 58–61. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Urpi-Sarda, M.; Boto-Ordonez, M.; Knox, C.; Llorach, R.; Eisner, R.; Cruz, J.; Neveu, V.; Wishart, D.; Manach, C.; et al. Phenol-Explorer 2.0: A major update of the Phenol-Explorer database integrating data on polyphenol metabolism and pharmacokinetics in humans and experimental animals. Database (Oxford) 2012, 2012, bas031. [Google Scholar] [CrossRef] [PubMed]
- Phenol-Explorer 3.6 Database on Polyphenol Content in Foods. Available online: Phenol-explorere.eu/foods (accessed on 14 January 2019).
- Perez-Jimenez, J.; Fezeu, L.; Touvier, M.; Arnault, N.; Manach, C.; Hercberg, S.; Galan, P.; Scalbert, A. Dietary intake of 337 polyphenols in French adults. Am. J. Clin. Nutr. 2011, 93, 1220–1228. [Google Scholar] [CrossRef] [Green Version]
- Zamora-Ros, R.; Knaze, V.; Lujan-Barroso, L.; Romieu, I.; Scalbert, A.; Slimani, N.; Hjartaker, A.; Engeset, D.; Skeje, G.; Overvad, K.; et al. Differences in dietary intakes, food sources and determinants of total flavonoids between Mediterranean and non-Mediterranean countries participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Br. J. Nutr. 2013, 109, 1498–1507. [Google Scholar] [CrossRef]
- German, J.B.; Walzem, R.L. The health benefits of wine. Annu. Rev. Nutr. 2000, 20, 561–593. [Google Scholar] [CrossRef]
- Apostolidou, C.; Adamopoulos, K.; Lymperaki, E.; Iliadis, S.; Papapreponis, P.; Kourtidou-Papadeli, C. Cardiovascular risk and benefits from antioxidant dietary intervention with red wine in asymptomatic hypercholesteromics. Clin. Nutr. ESPEN 2015, 10, e224–e233. [Google Scholar] [CrossRef]
- Renaud, S.; de Lorgeri, M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 1992, 339, 1523–1526. [Google Scholar] [CrossRef]
- Nijveldt, R.J.; van Nood, E.; van Hoorn, D.E.C.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A.M. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 2011, 74, 418–425. [Google Scholar] [CrossRef]
- Korkina, L.G.; Afanas’ev, I.B. Antioxidant and chelating properties of flavonoids. Adv. Pharmacol. 1997, 38, 151–163. [Google Scholar] [PubMed]
- Sahiner, U.M.; Birden, E.; Erzurum, S.; Sackesen, C.; Kalayci, O. Oxidative stress in asthma. World Allergy Organ. J. 2011, 4, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Kumazawa, Y.; Takimoto, H.; Matsumoto, T.; Kawaguchi, K. Potential use of dietary natural products, especially polyphenols, for improving type-1 allergic symptoms. Curr. Pharm. Des. 2014, 20, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Castell, M.; Perez-Cano, F.J.; Abril-Gil, M.; Franch, A. Flavonoids on allergy. Curr. Pharm. Des. 2014, 20, 973–987. [Google Scholar] [CrossRef]
- Fewtrell, C.M.; Gomperts, B.D. Effect of flavone inhibitors on transport ATPases on histamine secretion from rat mast cells. Nature 1997, 265, 635–636. [Google Scholar] [CrossRef]
- Middleton, E.J.; Kandaswami, C. Effects of flavonoids on immune and inflammatory cell functions. Biochem. Pharmacol. 1992, 43, 1167–1179. [Google Scholar] [CrossRef]
- Cheong, H.; Ryu, S.Y.; Oak, M.H.; Cheon, S.H.; Yoo, G.S.; Kim, K.M. Studies of structure activity relationship of flavonoids for the anti-allergic actions. Arch. Pharm. Res. 1998, 21, 478–480. [Google Scholar] [CrossRef]
- Hagenlocher, Y.; Lorentz, A. Immunomodulation of mast cells by nutrients. Mol. Immunol. 2015, 63, 25–31. [Google Scholar] [CrossRef]
- Kimata, M.; Shichijo, M.; Miura, T.; Serizawa, I.; Inagaki, N.; Nagai, H. Effects of luteolin, quercetin and baicalein on immunoglobulin E-mediated mediator release from human cultured mast cells. Clin. Exp. Allergy 2000, 30, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Kimata, M.; Inagaki, N.; Nagai, H. Effects of luteolin and other flavonoids on IgE-mediated allergic reactions. Plant Med. 2000, 66, 25–29. [Google Scholar] [CrossRef]
- Higa, S.; Hirano, T.; Kotani, M.; Matsumoto, M.; Fujita, A.; Suemura, M.; Kawase, I.; Tanaka, T. Fisetin, a flavonol, inhibits TH2-type cytokine production by activated human basophils. J. Allergy Clin. Immunol. 2003, 111, 1299–1306. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T.; Higa, S.; Arimitsu, J.; Naka, T.; Shima, Y.; Ohshima, S.; Fujimoto, M.; Yamadori, T.; Kawase, I.; Tanaka, T. Flavonoids such as luteolin, fisetin and apigenin are inhibitors of interleukin-4 and interleukin-13 production by activated human basophils. Int. Arch. Allergy Immunol. 2004, 134, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Kawai, M.; Hirano, T.; Higa, S.; Arimitsu, J.; Maruta, M.; Kuwahara, Y.; Ohkawara, T.; Hagihara, K.; Yamadori, T.; Shima, Y.; et al. Flavonoids and related compounds as anti-allergic substances. Allergol. Int. 2007, 56, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.R.; Perez-G, M.; Rivas, M.D.; Zamorano, J. Kaempferol inhibits IL-4-induced STAT6 activation by specifically targeting JAK3. J. Immunol. 2007, 179, 3881–3887. [Google Scholar] [CrossRef] [PubMed]
- Tamura, S.; Yoshihira, K.; Fujiwara, K.; Murakami, N. New inhibitors for expression of IgE receptor on human mast cell. Bioorg. Med. Chem. Lett. 2010, 20, 2299–2302. [Google Scholar] [CrossRef] [PubMed]
- Connor, K.T.; Aylward, L.L. Human response to dioxin: Aryl hydrocarbon receptor (AhR) molecular structure, function, and dose-response data for enzyme induction indicate an impaired human AhR. J. Toxicol. Environ. Health B Crit. Rev. 2006, 9, 147–171. [Google Scholar] [CrossRef]
- Amakura, Y.; Tsutsumi, T.; Sasaki, K.; Nakamura, M.; Yoshida, T.; Maitani, T. Influence of food polyphenols on aryl hydrocarbon receptor-signaling pathway estimated by in vitro bioassay. Phytochemistry 2008, 69, 3117–3130. [Google Scholar] [CrossRef]
- Quintana, F.J.; Basso, A.S.; Iglesias, A.H.; Korn, T.; Farez, M.F.; Bettelli, E.; Caccamo, M.; Qukka, M.; Weiner, H.L. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 2008, 453, 65–71. [Google Scholar] [CrossRef]
- Veldhoen, M.; Hirota, K.; Westendorf, A.M.; Buer, J.; Dumoutier, L.; Renauld, J.C.; Stockinger, B. The aryl hydrocarbon receptor links Th17-cell-mediated autoimmunity to environmental toxins. Nature 2008, 453, 106–109. [Google Scholar] [CrossRef] [PubMed]
- Kimura, A.; Naka, T.; Nohara, K.; Fujii-Kuriyama, Y.; Kishimoto, T. Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proc. Natl. Acad. Sci. USA 2008, 105, 9721–9726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, N.B.; Kerkvliet, N.I. Dioxin and immune regulation: Emerging role of aryl hydrocarbon receptor in the generation of regulatory T cells. Ann. NY Acad. Sci. 2010, 1183, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Imanifooladi, A.A.; Yazdani, S.; Nourani, M.R. The role of nuclear factor-kappaB in inflammatory lung disease. Inflamm. Allergy Drug Targets 2010, 9, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as anti-inflammatory agents. Proc. Nutr. Soc. 2010, 69, 273–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prieto-Dominquez, N.; Garcia-Mediavilla, M.V.; Sanchez-Campos, S.; Mauriz, J.L.; Gonzalez-Gallego, J. Autophagy as a molecular target of flavonoid underlying their protective effects in human disease. Curr. Med. Chem. 2018, 25, 814–838. [Google Scholar] [CrossRef]
- Liu, J.N.; Suh, D.H.; Trinh, H.K.; Chwae, Y.J.; Park, H.S.; Shin, Y.S. The role of autophagy in allergic inflammation: A new target for severe asthma. Exp. Mol. Med. 2016, 48, e243. [Google Scholar] [CrossRef]
- Tanaka, T. Flavonoids for allergic diseases: Present evidence and future perspective. Curr. Pharm. Des. 2014, 20, 879–885. [Google Scholar] [CrossRef]
- Matsuda, H.; Watanabe, N.; Geba, G.P.; Sperl, J.; Tsudzuki, M.; Hiroi, J.; Matsumoto, M.; Ushio, H.; Saito, S.; Askenase, P.W.; et al. Development of atopic dermatitis-like skin lesion with IgE hyperproduction in NC/Nga mice. Int. Immunol. 1997, 9, 461–466. [Google Scholar] [CrossRef] [Green Version]
- Kotani, M.; Matsumoto, M.; Fujita, A.; Higa, S.; Wang, W.; Suemura, M.; Kishimoto, T.; Tanaka, T. Persimmon leaf extract and astragalin inhibit development of dermatitis and IgE elevation in NC/Nga mice. J. Allergy Clin. Immunol. 2000, 106 Pt 1, 159–166. [Google Scholar] [CrossRef]
- Oku, H.; Ishiguro, K. Antipruritic and antidermatitic effects of extract and compounds of Impatiens balsamina L. in atopic dermatitis model NC mice. Phytother. Res. 2001, 15, 506–510. [Google Scholar] [CrossRef]
- Yano, S.; Umeda, D.; Yamashita, S.; Yamada, K.; Tachibana, H. Dietary apigenin attenuates the development of atopic dermatitis-like skin lesions in NC/Nga mice. J. Nutr. Biochem. 2009, 20, 876–881. [Google Scholar] [CrossRef]
- Yun, M.Y.; Yang, J.H.; Kim, D.K.; Cheong, K.J.; Song, H.H.; Kim, D.H.; Cheong, K.J.; Kim, Y.I.; Shin, S.C. Therapeutic effects of Baicalein on atopic dermatitis-like skin lesions of NC/Nga mice induced by dermatophagoides pteronyssinus. Int. Immunopharmacol. 2010, 10, 1142–1148. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Ram, A.; Ghosh, B. Luteolin alleviates bronchoconstriction and airway hyperreactivity in ovalbumin sensitized mice. Inflamm. Res. 2003, 52, 101–106. [Google Scholar] [PubMed]
- Wu, Y.Q.; Zhou, C.H.; Tao, J.; Li, S.N. Antagonistic effects of nobiletin, a polymethoxyflavonoid, on eosinophilic airway inflammation of asthmatic rats and relevant mechanisms. Life Sci. 2006, 78, 2689–2696. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Takahashi, R. Flavonoids and asthma. Nutrients 2013, 5, 2128–2143. [Google Scholar] [CrossRef] [PubMed]
- Shishebor, F.; Behroo, L.; Ghafouriyan Broujerdnia, M.; Namjoyan, F.; Latifi, S.M. Quercetin effectively quells peanut-induced anaphylactic reactions in the peanut sensitized rats. Iran. J. Allergy Asthma Immunol. 2010, 9, 27–34. [Google Scholar]
- Knekt, P.; Kumpulainen, J.; Jarvinen, R.; Rissanen, H.; Heliovaara, M.; Reunanen, A.; Hakulinen, T.; Aromaa, A. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 2002, 76, 560–568. [Google Scholar] [CrossRef] [Green Version]
- Shaheen, S.O.; Sterne, J.A.; Thompson, R.L.; Songhurst, C.E.; Margetts, B.M.; Burney, P.G. Dietary antioxidants and asthma in adults: Population-based case-control study. Am. J. Respir. Crit. Care Med. 2001, 164, 1823–1828. [Google Scholar] [CrossRef]
- Vally, H.; de Klerk, N.; Thmpson, P.J. Alcoholic drinks: Important triggers for asthma. J. Allergy Clin. Immunol. 2000, 105, 462–467. [Google Scholar] [CrossRef]
- Garcia, V.; Arts, I.C.; Sterne, J.A.; Thompson, R.L.; Shaheen, S.O. Dietary intake of flavonoids and asthma in adults. Eur. Respir. J. 2005, 26, 449–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Larsen, V.; Thawer, N.; Charles, D.; Cassidy, A.; van Zele, T.; Thilsing, T.; Ahlstrom, M.; Haahtela, T.; Keil, T.; Matricardi, P.M.; et al. Dietary intake of flavonoids and ventilator function in European adults: A GA2LEN study. Nutrients 2018, 10, 95. [Google Scholar] [CrossRef] [PubMed]
- Takano, H.; Osakabe, N.; Sanbongi, C.; Yanagisawa, R.; Inoue, K.; Yasuda, A.; Natsume, M.; Baba, S.; Ichiishi, E.; Yoshikawa, T. Extract of Perilla frutescens enriched for rosmarinic acid, a polyphenolic phytochemical, inhibits seasonal allergic rhinoconjunctivitis in humans. Exp. Biol. Med. (Maywood) 2004, 229, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Kishi, K.; Saito, M.; Saito, T.; Kumemura, M.; Okamatsu, H.; Okita, M.; Takazawa, K. Clinical efficacy of apple polyphenol for treating cedar pollinosis. Biosci. Biotechnol. Biochem. 2005, 69, 829–832. [Google Scholar] [CrossRef]
- Enomoto, T.; Nagasako-Akazome, Y.; Kanda, T.; Ikeda, M.; Dake, T. Clinical effects of apple polyphenols on persistent allergic rhinitis: A randomized double-blind placebo-controlled parallel arm study. J. Investig. Allergol. Clin. Immunol. 2006, 16, 283–289. [Google Scholar] [PubMed]
- Segawa, S.; Takata, Y.; Wakita, Y.; Kaneko, T.; Kaneda, H.; Watari, J.; Enomoto, T.; Enomoto, T. Clinical effects of a hop water extract on Japanese cedar pollinosis during the pollen season: A double-blind, placebo-controlled trial. Biosci. Biotechnol. Biochem. 2007, 71, 1955–1962. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, M.; Enomoto, T.; Dake, Y.; Okuno, Y.; Ikeda, H.; Cheng, L.; Obata, A. An evaluation of the clinical efficacy of tomato extract for perennial allergic rhinitis. Allergol. Int. 2007, 56, 225–230. [Google Scholar] [CrossRef]
- Kawai, M.; Hirano, T.; Arimitsu, J.; Higa, S.; Kuwahara, Y.; Hagihara, K.; Shima, Y.; Narazaki, M.; Ogata, A.; Koyanagi, M.; et al. Enzymatically modified isoquercitrin, a flavonoid, on symptoms of Japanese cedar pollinosis: A randomized double-blind placebo-controlled trial. Int. Arch. Allergy Immunol. 2009, 149, 359–368. [Google Scholar] [CrossRef]
- Hirano, T.; Kawai, M.; Arimitsu, J.; Ogawa, M.; Kuwahara, Y.; Hagihara, K.; Shima, Y.; Narazaki, M.; Ogata, A.; Koyanagi, M.; et al. Preventative effect of a flavonoid, enzymatically modified isoquercitrin on ocular symptoms of Japanese cedar pollinosis. Allergol. Int. 2009, 58, 373–382. [Google Scholar] [CrossRef]
- Bakhshaee, M.; Jabbari, F.; Hoseini, S.; Farid, R.; Sadeghian, M.H.; Rajati, M.; Mohamadpoor, A.H.; Movahhed, R.; Zamani, M.A. Effect of silymarin in the treatment of allergic rhinitis. Otolaryngol. Head Neck Surg. 2011, 145, 904–909. [Google Scholar] [CrossRef]
- Wilson, D.; Evans, M.; Guthrie, N.; Sharma, P.; Baisley, J.; Schonlau, F.; Burki, C. A randomized, double-blind, placebo-controlled exploratory study to evaluate the potential of pycnogenol for improving allergic rhinitis symptoms. Phytother. Res. 2010, 24, 1115–1119. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.; Pishnamazi, S.; Sadrzadeh, S.M.; Farid, F.; Farid, R.; Watson, R.R. Pycnogenol® in the management of asthma. J. Med. Food 2001, 4, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Lau, B.H.; Riesen, S.K.; Truong, K.P.; Lau, E.W.; Rohdewald, P.; Barreta, R.A. Pycnogenol as an adjunct in the management of childhood asthma. J. Asthma 2004, 41, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Belcaro, G.; Luzzi, R.; Cesinaro Di Rocco, P.; Cesarone, M.R.; Dugall, M.; Feragalli, B.; Errichi, B.M.; Ippolito, E.; Grossi, M.G.; Hosoi, M.; et al. Pycnogenol improvements in asthma management. Panminerva Med. 2011, 53, 57–64. [Google Scholar] [PubMed]
- Liberale, L.; Bonaventura, A.; Montecucco, F.; Dallegri, F.; Carbone, F. Impact of red wine consumption on cardiovascular health. Curr. Med. Chem. 2017, in press. [Google Scholar] [CrossRef] [PubMed]
Data Source | Phenol-Explorer (mg/100 mL) Mean (min~max) [18] | USDA (mg/100 g) Mean (min~max) [15] | |||
---|---|---|---|---|---|
Red Wine | Red Wine | Red Wine, Cabernet Franc | Red Wine, Cabernet Sauvignon | Red Wine, Syrah or Shiraz | |
Anthocyanins | 27.78 (23.20~76.51) | 19.27 (0.06~74.47) | 55.09 (55.09) | 35.59 (12.08~51.12) | 152.98 (152.98) |
Malvidin | 15.62 (1.24~54.14) | 13.84 (0.00~53.57) | 44.09 (44.09) | 26.24 (8.67~37.97) | 121.65 (121.65) |
Peonidin | 1.81 (0.25~8.09) | 1.25 (0.02~5.03) | 2.40 (2.40) | 1.85 (0.70~2.66) | 7.82 (7.82) |
Petunidin | 2.36 (0.34~6.18) | 1.98 (0.02~5.66) | 4.70 (4.70) | 3.32 (1.21~4.78) | 14.16 (14.16) |
Dihydroflavonols | 5.44 (4.58~5.98) | ||||
Dihydromyricetin | 4.47 (4.47) | ||||
Flavanols | 47.02 (11.35~113.11) | 11.08 (0~56.31) | 15.41 (15.41) | 18.36 (18.18~19.48) | 16.79 (16.79) |
(+)-Catechin | 6.81 (1.38~39.00) | 7.14 (0.00~39.00) | 6.21 (6.21) | 7.70 (6.90~8.18) | 6.82 (6.82) |
(−)-Epicatechin | 3.78 (0.00~16.50) | 3.79 (0.00~16.50) | 9.20 (9.20) | 10.66 (10.28~11.30) | 9.97 (9.97) |
Procyanidin | 35.41 (9.86~55.87) | ||||
Flavanones | 0.85 (0.78~0.94) | 2.40 (1.30~3.50) | |||
Naringenin | 0.05 (0.04~0.07) | 1.77 (1.03~2.51) | |||
Flavonols | 6.86 (2.02~15.40) | 1.57 (0~6.68) | 0.77 (0.20~1.07) | 0.89 (0.05~1.74) | 2.11 (2.11) |
Quercetin | 3.10 (0.79~7.31) | 1.04 (0.00~3.36) | 0.62 (0.14~0.84) | 0.58 (0.02~1.21) | 2.11 (2.11) |
Flavones | 0.17 (0~0.56) | 0.06 (0.01~0.13) | 0.04 (0.01~0.11) | ||
Total | 87.95 | 34.53 | 71.33 | 54.88 | 171.88 |
Test Product | Major Flavonoid(S) | Study Design | Primary Endpoint | Ref. |
---|---|---|---|---|
Extract of Perilla frutescents | Rosmarinic acid (50 mg/day or 200 mg/day) | A 21-day randomized, double-blind, placebo-controlled study (n = 29) | A significant increase in responder rates for total symptoms related to seasonal allergic rhinoconjunctivitis | [66] |
Apple polyphenols (500 mg/day) | Procyanidins, tannin, catechin, epicatechin, phlorizin, and chlorogenic acid | A 12-week randomized, double-blind, placebo-controlled study (n = 36) | A significant reduction in the sneezing score related to Japanese cedar pollinosis | [67] |
Apple polyphenols (50 mg/day or 200 mg/day) | Procyanidins, phenol carboxylic acids | A 4-week randomized, double-blind, placebo-controlled study (n =33) | Significant improvements in sneezing attacks and nasal discharge in the 200 mg group and in sneezing attacks in the 50 mg group, related to persistent allergic rhinitis | [68] |
Hop water extract (100 mg/day) | Quercetin, kaempferol glycosides | A 12-week randomized, double-blind, placebo-controlled study (n =39) | A significant difference in the symptom score and the symptom plus medication score related to Japanese cedar pollinosis 10 weeks after the intervention | [69] |
Tomato extract (360 mg/day) | Naringenin chalcone | An 8-week randomized, double-blind, placebo-controlled study (n =33) | A significant decrease in the total symptom score related to perennial allergic rhinitis | [70] |
EMIQ (100 mg/day) | Quercetin glycoside | An 8-week randomized, double-blind, placebo-controlled study (n = 20) (therapeutic design) | A significant decrease in the ocular symptom score related to Japanese cedar pollinosis | [71] |
EMIQ (100 mg/day) | Quercetin glycoside | An 8-week randomized, double-blind, placebo-controlled study (n = 24) (preventive design) | A significant decrease in the ocular symptom plus medication score related to Japanese cedar pollinosis | [72] |
Silymarin (420 mg/day) | Silibinin, silydianine, and silychristine | A 1-month randomized, double-blind, placebo-controlled study (n = 60) | A significant improvement in the clinical symptom severity related to allergic rhinitis | [73] |
Pycnogenol (100 mg/day) | Proanthocyanidine | A 5 to 8-week randomized, double-blind, placebo-controlled study (n = 39) (preventive design) | Lower scores for the eye (−35%) and nasal (−20.5%) symptoms related to birch pollinosis | [74] |
1. Biological properties |
Antioxidant [9,10,13,24,25], anti-inflammatory [9,10,13,24,31,48], anti-allergic [28,29,30,31,32,33,34,35,36,37,38,39,40], and immune-modulating activities [31,40,42] |
2. In vivo effects in animal models |
Preventative and therapeutic beneficial effects of various flavonoids in several allergic models [53,54,55,56,57,58,59,60] |
3. Epidemiological study |
An increase of flavonoid intake is suggested to be beneficial for respiratory function [61,62,64,65] |
4. Intervention study |
Some kinds of flavonoids are efficacious for allergic rhinitis [66,67,68,69,70,71,72,73,74] |
Pycnogenol is efficacious for asthma [75,76,77] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, T.; Iuchi, A.; Harada, H.; Hashimoto, S. Potential Beneficial Effects of Wine Flavonoids on Allergic Diseases. Diseases 2019, 7, 8. https://doi.org/10.3390/diseases7010008
Tanaka T, Iuchi A, Harada H, Hashimoto S. Potential Beneficial Effects of Wine Flavonoids on Allergic Diseases. Diseases. 2019; 7(1):8. https://doi.org/10.3390/diseases7010008
Chicago/Turabian StyleTanaka, Toshio, Atsuhiko Iuchi, Hiroshi Harada, and Shoji Hashimoto. 2019. "Potential Beneficial Effects of Wine Flavonoids on Allergic Diseases" Diseases 7, no. 1: 8. https://doi.org/10.3390/diseases7010008
APA StyleTanaka, T., Iuchi, A., Harada, H., & Hashimoto, S. (2019). Potential Beneficial Effects of Wine Flavonoids on Allergic Diseases. Diseases, 7(1), 8. https://doi.org/10.3390/diseases7010008