Assessment of Growth Differentiation Factor 15 Levels on Coronary Flow in Patients with STEMI Undergoing Primary PCI
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Coronary Angiography and PCI Procedure
2.3. Laboratory Analysis and Echocardiography
2.4. Follow-Up and Major Adverse Cardiac Events
2.5. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Funding
Conflicts of Interest
References
- Niccoli, G.; Lanza, G.A.; Spaziani, C.; Altamura, L.; Romagnoli, E.; Leone, A.M.; Fusco, B.; Trani, C.; Burzotta, F.; Mazzari, M.A.; et al. Baseline systemic inflammatory status and no-reflow phenomenon after percutaneous coronary angioplasty for acute myocardial infarction. Int. J. Cardiol. 2007, 117, 306–311. [Google Scholar] [CrossRef] [PubMed]
- GUSTO Angiographic Investigators. The effects of tissue plasminogen activator, streptokinase, or both on coronary-artery patency, ventricular function, and survival after acute myocardial infarction. NEjM 1993, 329, 1615–1622. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-W.; Her, S.-H.; Park, M.-W.; Cho, J.S.; Kim, T.-S.; Kang, H.; Sim, D.S.; Hong, Y.J.; Kim, J.H.; Ahn, Y.; et al. Impact of Postprocedural TIMI Flow on Long-Term Clinical Outcomes in Patients with Acute Myocardial Infarction. Int. Heart J. 2017, 58, 674–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, H.; Maruyama, A.; Iwakura, K.; Takiuchi, S.; Masuyama, T.; Hori, M.; Higashino, Y.; Fujii, K.; Minamino, T. Clinical implications of the ’no reflow’ phenomenon. A predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction. Circulation 1996, 93, 223–228. [Google Scholar] [CrossRef]
- Huczek, Z.; Kochman, J.; Filipiak, K.J.; Horszczaruk, G.J.; Grabowski, M.; Piatkowski, R.; Wilczynska, J.; Zielinski, A.; Meier, B.; Opolski, G. Mean platelet volume on admission predicts impaired reperfusion and long-term mortality in acute myocardial infarction treated with primary percutaneous coronary intervention. J. Am. Coll. Cardiol. 2005, 46, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Pereg, D.; Berlin, T.; Mosseri, M. Mean platelet volume on admission correlates with impaired response to thrombolysis in patients with ST-elevation myocardial infarction. Platelets 2010, 21, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Magadle, R.; Hertz, I.; Merlon, H.; Weiner, P.; Mohammedi, I.; Robert, D. The relation between preprocedural C-reactive protein levels and early and late complications in patients with acute myocardial infarction undergoing interventional coronary angioplasty. Clin. Cardiol. 2004, 27, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Tomoda, H.; Aoki, N. Prognostic value of C-reactive protein levels within six hours after the onset of acute myocardial infarction. Am. Heart J. 2000, 140, 324–328. [Google Scholar] [CrossRef]
- Hong, Y.J.; Jeong, J.-O.; Choi, Y.H.; Ko, J.S.; Lee, M.-G.; Kang, W.Y.; Lee, S.E.; Kim, S.H.; Park, K.H.; Sim, D.S.; et al. Predictors of no-reflow after percutaneous coronary intervention for culprit lesion with plaque rupture in infarct-related artery in patients with acute myocardial infarction. J. Cardiol. 2009, 54, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Bootcov, M.R.; Bauskin, A.R.; Valenzuela, S.M.; Moore, A.G.; Bansal, M.; He, X.Y.; Zhang, H.P.; Donnellan, M.; Mahler, S.; Pryor, K.; et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-β superfamily. Proc. Natl. Acad. Sci. USA 1997, 94, 11514–11519. [Google Scholar] [CrossRef] [Green Version]
- Corre, J.; Hébraud, B.; Bourin, P. Concise Review: Growth Differentiation Factor 15 in Pathology: A Clinical Role? STEM CELLS Transl. Med. 2013, 2, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, Y.; Kumagai, H.; Motozawa, Y.; Suzuki, J.-I. Growth Differentiation Factor 15 (GDF15) as a Reliable Biomarker for Cardiovascular Risk Assessment. Int. Heart J. 2016, 57, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wollert, K.C.; Kempf, T.; Lagerqvist, B.; Lindahl, B.; Olofsson, S.; Allhoff, T.; Peter, T.; Siegbahn, A.; Venge, P.; Drexler, H.; et al. Growth Differentiation Factor 15 for Risk Stratification and Selection of an Invasive Treatment Strategy in Non–ST-Elevation Acute Coronary Syndrome. Circulation 2007, 116, 1540–1548. [Google Scholar] [CrossRef]
- Eggers, K.M.; Kempf, T.; Lagerqvist, B.; Lindahl, B.; Olofsson, S.; Jantzen, F.; Peter, T.; Allhoff, T.; Siegbahn, A.; Venge, P.; et al. Growth-Differentiation Factor-15 for Long-Term Risk Prediction in Patients Stabilized After an Episode of Non–ST-Segment–Elevation Acute Coronary Syndrome. Circ. Cardiovasc. Genet. 2010, 3, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Eitel, I.; Blase, P.; Adams, V.; Hildebrand, L.; Desch, S.; Schuler, G.; Thiele, H. Growth-differentiation factor 15 as predictor of mortality in acute reperfused ST-elevation myocardial infarction: Insights from cardiovascular magnetic resonance. Heart 2011, 97, 632–640. [Google Scholar] [CrossRef]
- The TIMI Study Group* The Thrombolysis in Myocardial Infarction (TIMI) Trial. N. Engl. J. Med. 1985, 312, 932–936. [CrossRef] [PubMed]
- Niccoli, G.; Marino, M.; Spaziani, C.; Crea, F. Prevention and treatment of no-reflow. Acute Card. Care 2010, 12, 81–91. [Google Scholar] [CrossRef]
- Rezkalla, S.H.; Kloner, R.A. No-reflow phenomenon. Circulation 2002, 105, 656–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A Brown, D.; Breit, S.N.; Buring, J.; Fairlie, W.; Bauskin, A.R.; Liu, T.; Ridker, P.M. Concentration in plasma of macrophage inhibitory cytokine-1 and risk of cardiovascular events in women: A nested case-control study. Lancet 2002, 359, 2159–2163. [Google Scholar] [CrossRef]
- Lind, L.; Wallentin, L.; Kempf, T.; Tapken, H.; Quint, A.; Lindahl, B.; Olofsson, S.; Venge, P.; Larsson, A.; Hulthe, J.; et al. Growth-differentiation factor-15 is an independent marker of cardiovascular dysfunction and disease in the elderly: Results from the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) Study. Eur. Heart J. 2009, 30, 2346–2353. [Google Scholar] [CrossRef] [Green Version]
- Chan, M.M.; Santhanakrishnan, R.; Chong, J.P.; Chen, Z.; Tai, B.C.; Liew, O.W.; Ng, T.P.; Ling, L.H.; Sim, D.; Leong, K.T.G.; et al. Growth differentiation factor 15 in heart failure with preserved vs. reduced ejection fraction. Eur. J. Heart Fail. 2015, 18, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Kempf, T.; Björklund, E.; Olofsson, S.; Lindahl, B.; Allhoff, T.; Peter, T.; Tongers, J.; Wollert, K.C.; Wallentin, L. Growth-differentiation factor-15 improves risk stratification in ST-segment elevation myocardial infarction. Eur. Heart J. 2007, 28, 2858–2865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velders, M.A.; Wallentin, L.; Becker, R.C.; Van Boven, A.J.; Himmelmann, A.; Husted, S.; Katus, H.A.; Lindholm, D.; Morais, J.; Siegbahn, A.; et al. Biomarkers for risk stratification of patients with ST-elevation myocardial infarction treated with primary percutaneous coronary intervention: Insights from the Platelet Inhibition and Patient Outcomes trial. Am. Heart J. 2015, 169, 879–889.e7. [Google Scholar] [CrossRef] [PubMed]
- Schlittenhardt, D.; Schober, A.; Strelau, J.; Bonaterra, G.A.; Schmiedt, W.; Unsicker, K.; Metz, J.; Kinscherf, R. Involvement of growth differentiation factor-15/macrophage inhibitory cytokine-1 (GDF-15/MIC-1) in oxLDL-induced apoptosis of human macrophages in vitro and in arteriosclerotic lesions. Cell Tissue Res. 2004, 318, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-F.; Wu, S.; Hsu, S.-Y.; Yeh, K.-H.; Chou, H.-H.; Cheng, S.-T.; Wu, T.-Y.; Hsu, W.-T.; Yang, C.-C.; Ko, Y.-L. Growth-Differentiation Factor-15 and Major Cardiac Events. Am. J. Med. Sci. 2014, 347, 305–311. [Google Scholar] [CrossRef]
- Ago, T.; Sadoshima, J. GDF15, a cardioprotective TGF-beta superfamily protein. Circ. Res. 2006, 98, 294–297. [Google Scholar] [CrossRef] [Green Version]
- Widera, C.; Pencina, M.J.; Meisner, A.; Kempf, T.; Bethmann, K.; Marquardt, I.; Katus, H.A.; Giannitsis, E.; Wollert, K.C. Adjustment of the GRACE score by growth differentiation factor 15 enables a more accurate appreciation of risk in non-ST-elevation acute coronary syndrome. Eur. Heart J. 2011, 33, 1095–1104. [Google Scholar] [CrossRef]
- Kempf, T.; Eden, M.; Strelau, J.; Naguib, M.; Willenbockel, C.; Tongers, J.; Heineke, J.; Kotlarz, D.; Xu, J.; Molkentin, J.D.; et al. The Transforming Growth Factor-β Superfamily Member Growth-Differentiation Factor-15 Protects the Heart From Ischemia/Reperfusion Injury. Circ. Res. 2006, 98, 351–360. [Google Scholar] [CrossRef]
- Kempf, T.; Zarbock, A.; Widera, C.; Butz, S.; Stadtmann, A.; Rossaint, J.; Bolomini-Vittori, M.; Korf-Klingebiel, M.; Napp, L.C.; Hansen, B.; et al. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat. Med. 2011, 17, 581–588. [Google Scholar] [CrossRef]
- Taddei, S.; Virdis, A. Growth differentiation factor-15 and cardiovascular dysfunction and disease: Malefactor or innocent bystander? Eur. Heart J. 2010, 31, 1168–1171. [Google Scholar] [CrossRef]
- Dominguez-Rodriguez, A.; Abreu-González, P.; Avanzas, P. Relation of Growth-Differentiation Factor 15 to Left Ventricular Remodeling in ST-Segment Elevation Myocardial Infarction. Am. J. Cardiol. 2011, 108, 955–958. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.Q.; Ng, L.L.; Dhillon, O.; Kelly, D.; Quinn, P.; Squire, I.B.; Davies, J.E. Growth differentiation factor-15 as a prognostic marker in patients with acute myocardial infarction. Eur. Heart J. 2009, 30, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; MacFadyen, J.; Libby, P.; Glynn, R.J. Relation of Baseline High-Sensitivity C-Reactive Protein Level to Cardiovascular Outcomes With Rosuvastatin in the Justification for Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER). Am. J. Cardiol. 2010, 106, 204–209. [Google Scholar] [CrossRef] [PubMed]
Variable | Group 1 (TIMI 0-2) (n:35) | Group 2 (TIMI 3) (n:45) | p Value |
---|---|---|---|
Age, years | 64 ± 11.8 | 66.8 ± 11.5 | 0.29 |
Gender, Female/Male | 7/28 | 13/32 | 0.36 |
Body mass index, kg/m2 | 26.6 ± 2.5 | 25.6 ± 2.7 | 0.08 |
Previous CAD, n (%) | 10 (28.6) | 17 (37.8) | 0.39 |
Smoking, n (%) | 12 (34.3) | 15 (33.3) | 0.92 |
Hypertension, n (%) | 14 (40) | 16 (35.6) | 0.68 |
Hypercholesterolemia, n (%) | 8 (22.9) | 4 (8.9) | 0.08 |
Diabetes mellitus, n (%) | 17 (48.6) | 11 (24.4) | 0.02 |
Blood Pressure on admission (mmHg) | |||
Systolic | 126.5 ± 21.1 | 130.1 ± 21.5 | 0.46 |
Diastolic | 76.7 ± 16.6 | 79.6 ± 15.9 | 0.43 |
Heart rate, beats/min | 88.2 ± 17.8 | 85.9 ± 14.9 | 0.53 |
Biochemical parameters | |||
Total cholesterol, mg/dl | 174.6 ± 36.5 | 174.3 ± 32.6 | 0.97 |
HDL-cholesterol, mg/dl | 36.6 ± 6.5 | 39.5 ± 11.1 | 0.18 |
LDL-cholesterol, mg/dl | 109.1 ± 32.8 | 112.4 ± 31.4 | 0.67 |
Serum triglycerides, mg/dl | 147.3 ± 84.9 | 140.9 ± 76.5 | 0.79 |
Serum glucose, mg/dL | 163.8 ± 66.7 | 123.7 ± 45.4 | 0.008 |
Blood urea nitrogen, mg/dL | 44.5 ± 13.7 | 44.7 ± 23.9 | 0.95 |
Creatinine, mg/dL | 0.92 ± 0.22 | 0.86 ± 0.43 | 0.44 |
Hs-CRP(mg/L) | 19.8 ± 10.6 | 11.3 ± 4.9 | <0.001 |
LVEF on admission | 45.1 ± 7.5 | 47.7 ± 6.2 | 0.14 |
Hemoglobine (g/dl) | 14 ± 1.8 | 13.3 ± 3 | 0.20 |
White blood cell count, × 109/L | 10.7 ± 2.9 | 10.9 ± 3.9 | 0.82 |
Platelet count, × 109/L | 244 ± 84 | 232 ± 79 | 0.53 |
Previous medications, n (%) | |||
Aspirin | 10 (28.6) | 16 (35.6) | 0.51 |
Beta-blockers | 6 (17.1) | 14 (31.1) | 0.15 |
ACE-inhibitors/ARB | 8 (22.9) | 13 (28.9) | 0.54 |
Statins | 9 (25.7) | 11 (24.4) | 0.89 |
Ca-antagonists | 6 (17.1) | 4 (8.9) | 0.27 |
Diuretics | 4 (11.4) | 4 (8.9) | 0.70 |
Glycoprotein IIb/IIIa antagonist | 10 (28.6) | 5 (11.1) | 0.04 |
Pain to balloon time (h) | 4.2 ± 0.8 | 4.0 ± 1.0 | 0.36 |
Hospitalization (day) | 7.1 ± 1.3 | 6.1 ± 1.2 | 0.001 |
Infarct related artery, n (%) | |||
RCA | 21 (60) | 23 (51.1) | 0.43 |
LAD | 13 (37.1) | 9 (20.1) | 0.09 |
Cx | 22 (62.9) | 19 (42.2) | 0.07 |
Saphenous graft or LIMA | 3 (8.6) | 2 (4.4) | 0.45 |
Coronary artery involvement | |||
Single-vessel disease | 17 (48.6) | 37 (82.2) | 0.002 |
Multivessel disease | 18 (51.4) | 8 (17.8) | 0.002 |
Primery PCI | |||
Stent implantation, n (%) | 34 (97.1) | 43 (95.6) | 0.71 |
BMS, n (%) | 8 (22.9) | 16 (38.1) | 0.15 |
DES, n (%) | 26 (74.3) | 28 (62.2) | 0.25 |
Stent lenght (mm) | 20.9 ± 7.4 | 19.8 ± 8.3 | 0.65 |
Stent diameter (mm) | 2.95 ± 0.5 | 2.91 ± 0.4 | 0.55 |
GDF-15, pg/mL | 1670 ± 831 | 733 ± 124 | <0.001 |
In-hospital MACE, n (%) | 10 (28.6) | 1 (2.2) | 0.001 |
In stent thrombosis | 5 (14.3) | 1 (2.2) | 0.04 |
Nonfatal MI | 6 (17.1) | 1 (2.2) | 0.02 |
In-hospital mortality | 4 (11.4) | 0 | 0.02 |
Variable | GDF-15 < 920 (n:44) | GDF-15 ≥ 920 (n:36) | p Value |
---|---|---|---|
Age, years | 67 ± 11.3 | 63.8 ± 11.9 | 0.22 |
Gender, Female/Male | 13/31 | 7/29 | 0.30 |
Coronary risk factors | |||
Previous CAD, n (%) | 16 (36.4) | 11 (30.6) | 0.58 |
Smoking, n (%) | 14 (31.8) | 13 (36.1) | 0.68 |
Hypertension, n (%) | 16 (36.4) | 14 (38.9) | 0.81 |
Hypercholesterolemia, n (%) | 3 (6.8) | 9 (25) | 0.024 |
Diabetes mellitus, n (%) | 11 (25) | 17 (47.2) | 0.039 |
Severity of CAD | |||
Single-vessel disease | 35 (79.5) | 19 (52.8) | 0.012 |
Multivessel disease | 9 (20.5) | 17 (47.2) | 0.012 |
No-reflow, n (%) | 0 | 6 (16.7) | 0.005 |
In-hospital MACE, n (%) | 0 | 11 (30.6) | <0.001 |
In stent thrombosis | 0 | 6 (16.7) | 0.005 |
Nonfatal MI | 0 | 7 (19.4) | 0.002 |
In-hospital mortality | 0 | 4 (11.1) | 0.024 |
Variables | Unadjusted OR | 95% CI | p Value | Adjusted OR * | 95% CI | p Value |
---|---|---|---|---|---|---|
Age | 0.979 | 0.942–1.018 | 0.292 | |||
Diabetes mellitus | 2.919 | 1.130–7.545 | 0.027 | 1.488 | 0.062–35.950 | 0.807 |
Heart Rate | 1.009 | 0.982–1.037 | 0.519 | |||
BMI | 1.165 | 0.975–1.391 | 0.093 | |||
Hemoglobine | 1.120 | 0.928–1.352 | 0.238 | |||
LAD lesion | 2.364 | 0.868–6.437 | 0.092 | |||
Hs-CRP | 1.148 | 1.067–1.236 | <0.001 | 1.309 | 0.896–1.913 | 0.164 |
Multivessel disease | 4.897 | 1.781–13.467 | 0.002 | 18.85 | 0.720–493.4 | 0.078 |
GDF-15 | 1.018 | 1.007–1.029 | 0.001 | 1.021 | 1.004–1.038 | 0.018 |
DES implantation | 1.754 | 0.666–4.619 | 0.255 | |||
Glycoprotein IIb/IIIa antagonist | 3.200 | 0.979–10.457 | 0.054 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dogdu, O. Assessment of Growth Differentiation Factor 15 Levels on Coronary Flow in Patients with STEMI Undergoing Primary PCI. Diseases 2020, 8, 16. https://doi.org/10.3390/diseases8020016
Dogdu O. Assessment of Growth Differentiation Factor 15 Levels on Coronary Flow in Patients with STEMI Undergoing Primary PCI. Diseases. 2020; 8(2):16. https://doi.org/10.3390/diseases8020016
Chicago/Turabian StyleDogdu, Orhan. 2020. "Assessment of Growth Differentiation Factor 15 Levels on Coronary Flow in Patients with STEMI Undergoing Primary PCI" Diseases 8, no. 2: 16. https://doi.org/10.3390/diseases8020016
APA StyleDogdu, O. (2020). Assessment of Growth Differentiation Factor 15 Levels on Coronary Flow in Patients with STEMI Undergoing Primary PCI. Diseases, 8(2), 16. https://doi.org/10.3390/diseases8020016