Testosterone/Epitestosterone Ratios—Further Hints to Explain Hyperandrogenemia in Children with Autism
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants
2.2. Study Design
2.3. Methods
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gillberg, C.; Fernell, E.; Kočovská, E.; Minnis, H.; Bourgeron, T.; Thompson, L.; Allely, C.S. The role of cholesterol metabolism and various steroid abnormalities in autism spectrum disorders: A hypothesis paper. Autism Res. 2017, 10, 1022–1044. [Google Scholar] [CrossRef] [PubMed]
- Gasser, B.A.; Kurz, J.; Dick, B.; Mohaupt, M.G. Are Steroid Hormones Dysregulated in Autistic Girls? Diseases 2020, 8, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasser, B.A.; Kurz, J.; Dick, B.; Mohaupt, M.G. Steroid Metabolites Support Evidence of Autism as a Spectrum. Behav. Sci. 2019, 9, 52. [Google Scholar] [CrossRef] [Green Version]
- Baron-Cohen, S.; Auyeung, B.; Nørgaard-Pedersen, B.; Hougaard, D.M.; Abdallah, M.W.; Melgaard, L.; Cohen, A.S.; Chakrabarti, B.; Ruta, L.; Lombardo, M.V. Elevated fetal steroidogenic activity in autism. Mol. Psychiatry 2014, 20, 369–376. [Google Scholar] [CrossRef] [Green Version]
- El-Baz, F.; Hamza, R.T.; Ayad, M.S.; Mahmoud, N.H. Hyperandrogenemia in male autistic children and adolescents: Relation to disease severity. Int. J. Adolesc. Med. Health 2014, 26, 79–84. [Google Scholar] [CrossRef]
- Ruta, L.; Ingudomnukul, E.; Taylor, K.; Chakrabarti, B.; Baron-Cohen, S. Increased serum androstenedione in adults with autism spectrum conditions. Psychoneuroendocrinology 2011, 36, 1154–1163. [Google Scholar] [CrossRef]
- Ingudomnukul, E.; Baron-Cohen, S.; Wheelwright, S.; Knickmeyer, R. Elevated rates of testosterone-related disorders in women with autism spectrum conditions. Horm. Behav. 2011, 51, 597–604. [Google Scholar] [CrossRef]
- Knickmeyer, R.; Baron-Cohen, S.; Fane, B.A.; Wheelwright, S.; Mathews, G.A.; Conway, G.S.; Brook, C.G.; Hines, M. Androgens and autistic traits: A study of individuals with congenital adrenal hyperplasia. Horm. Behav. 2006, 50, 148–153. [Google Scholar] [CrossRef]
- Majewska, M.D.; Hill, M.; Urbanowicz, E.; Rok-Bujko, P.; Bieńkowski, P.; Namysłowska, I.; Mierzejewski, P. Marked elevation of adrenal steroids, especially androgens, in saliva of prepubertal autistic children. Eur. Child Adolesc. Psychiatry 2014, 23, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Takagishi, H.; Takahashi, T.; Yamagishi, T.; Shinada, M.; Inukai, K.; Tanida, S.; Mifune, N.; Horita, Y.; Hashimoto, H.; Yang, Y.; et al. Salivary testosterone levels and autism-spectrum quotient in adults. Neuro. Endocrinol. Lett. 2010, 31, 837–841. [Google Scholar]
- Tordjman, S.; Anderson, G.M.; McBride, P.A.; Hertzig, M.E.; Snow, M.E.; Hall, L.M.; Ferrari, P.; Cohen, D.J. Plasma androgens in autism. J. Autism Dev. Disord. 1995, 25, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, B.; Dudbridge, F.; Kent, L.; Wheelwright, S.; Hill-Cawthorne, G.; Allison, G.; Banerjee-Basu, S.; Baron-Cohen, S. Genes related to sex steroids, neural growth, and social-emotional behavior are associated with autistic traits, empathy, and Asperger syndrome. Autism Res. 2009, 2, 157–177. [Google Scholar] [CrossRef] [PubMed]
- Janšáková, K.; Hill, M.; Čelárová, D.; Celušáková, H.; Repiská, G.; Bičíková, M.; Macova, L.; Ostatnikova, D. Alteration of the steroidogenesis in boys with autism spectrum disorders. Nature 2020, 10, 340. [Google Scholar]
- Lapcík, O.; Hampl, R.; Hill, M.; Stárka, L. Plasma levels of Epitestosterone from prepuberty to adult life. J. Steroid Biochem. Mol. Biol. 1995, 55, 405–408. [Google Scholar] [CrossRef]
- Mareck, U.; Geyer, H.; Fusshöller, G.; Schwenke, A.; Haenelt, N.; Piper, T.; Thevis, M.; Schanzer, W. Reporting and managing elevated testosterone/Epitestosterone ratios—Novel aspects after five years’ experience. Drug Test Anal. 2010, 2, 637–642. [Google Scholar] [CrossRef]
- Handelsman, D.J.; Bermon, S. Detection of testosterone doping in female athletes. Drug Test Anal. 2019, 11, 1566–1571. [Google Scholar] [CrossRef]
- Havlíková, H.; Hill, M.; Hampl, R.; Stárka, L. Sex- and Age-Related Changes in Epitestosterone in Relation to Pregnenolone Sulfate and Testosterone in Normal Subjects. J. Clin. Endocrinol. Metabol. 2002, 87, 2225–2231. [Google Scholar] [CrossRef] [Green Version]
- Stárka, L.; Hampl, R.; Hill, M.; Lapcík, O.; Bílek, R.; Petrik, R. Epitestosterone in human blood and prostatic tissue. Eur. J. Clin. Chem. Clin. Biochem. 1997, 35, 469–473. [Google Scholar] [CrossRef] [Green Version]
- Stárka, L. Epitestosterone. J. Steroid Biochem. Mol. Biol. 2003, 87, 27–34. [Google Scholar] [CrossRef]
- Stárka, L.; Hampl, R.; Biciková, M.; Jelínek, R.; Doskocil, M. Observations on the biological activity of Epitestosterone. Physiol. Res. 1991, 40, 317–326. [Google Scholar]
- Raynaud, E.; Audran, M.; Pagès, J.C.; Fedou, C.; Brun, J.F.; Chanal, J.L.; Orsetti, A. Determination of urinary testosterone and Epitestosterone during pubertal development: A cross-sectional study in 141 normal male subjects. Clin. Endocrinol. 1993, 38, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Kicman, A.T.; Coutts, S.B.; Cowan, D.A.; Handelsman, D.J.; Howe, C.J.; Burring, S.; Wu, F.C.W. Adrenal and gonadal contributions to urinary excretion and plasma concentration of Epitestosterone in men—Effect of adrenal stimulation and implications for detection of testosterone abuse. Clin. Endocrinol. 1999, 50, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Kočovská, E.; Fernell, E.; Billstedt, E.; Minnis, H.; Gillberg, C. Vitamin D and autism: Clinical review. Res. Dev. Disabil. 2012, 33, 1541–1550. [Google Scholar] [CrossRef] [PubMed]
- Patrick, R.P.; Ames, B.N. Vitamin D hormone regulates serotonin synthesis. Part 1: Relevance for autism. FASEB J. 2014, 28, 2398–2413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, E.H.; Leventhal, B.L. The serotonin system in autism. Curr. Opin. Pediatr. 1996, 8, 348–354. [Google Scholar] [CrossRef]
- Di Carlo, G.E.; Aguilar, J.I.; Matthies, H.J.; Harrison, F.E.; Bundschuch, K.E.; West, A.; Hashemi, P.; Herborg, F.; Rickhag, M.; Chen, H.; et al. Autism-linked dopamine transporter mutation alters striatal dopamine neurotransmission and dopamine-dependent behaviors. J. Clin. Invest. 2019, 129, 3407–3419. [Google Scholar] [CrossRef]
- Di Salvo, M.L.; Safo, M.K.; Contestabile, R. Biomedical aspects of pyridoxal 5’-phosphate availability. Front. Biosci. 2012, 4, 897–913. [Google Scholar]
- Mahdavi, M.; Kheirollahi, M.; Riahi, R.; Khorvash, F.; Khorrami, M.; Mirsafaie, M. Meta-Analysis of the Association between GABA Receptor Polymorphisms and Autism Spectrum Disorder (ASD). J. Mol. Neurosci. 2018, 65, 1–9. [Google Scholar] [CrossRef]
- Pavăl, D. A Dopamine Hypothesis of Autism Spectrum Disorder. Dev. Neurosci. 2017, 39, 355–360. [Google Scholar] [CrossRef]
- Rojas, D.C. The role of glutamate and its receptors in autism and the use of glutamate receptor antagonists in treatment. J. Neural Transm. 2014, 121, 891–905. [Google Scholar] [CrossRef] [Green Version]
- Marinović-Curin, J.; Marinović-Terzić, I.; Bujas-Petković, Z.; Zekan, L.; Skrabić, V.; Dogas, Z.; Terzić, J. Slower Cortisol response during ACTH stimulation test in autistic children. Eur. Child Adolesc. Psychiatry 2005, 17, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Tani, P.; Lindberg, N.; Matto, V.; Appelberg, B.; Nieminen-von Wendt, T.; von Wendt, L.; Porkka-Heiskanen, T. Higher plasma ACTH levels in adults with Asperger syndrome. Psychosom. Res. 2005, 58, 533–536. [Google Scholar] [CrossRef] [PubMed]
- Curin, J.M.; Terzić, J.; Petković, Z.B.; Zekan, L.; Terzić, I.M.; Susnjara, I.M. Lower Cortisol and higher ACTH levels in individuals with autism. J. Autism Dev. Disord. 2003, 33, 443–448. [Google Scholar] [CrossRef]
- Croonenberghs, J.; Spaas, K.; Wauters, A.; Verkerk, R.; Scharpe, S.; Deboutte, D.; Maes, M. Faulty serotonin—DHEA interactions in autism: Results of the 5-hydroxytryptophan challenge test. Neuro. Endocrinol. Lett. 2008, 29, 385–390. [Google Scholar] [PubMed]
- Konstantynowicz, J.; Porowski, T.; Zoch-Zwierz, W.; Wasilewska, J.; Kadziela-Olech, H.; Kulak, W.; Owens, S.C.; Piotrowska-Jastrzebska, J.; Kaczmarski, M. A potential pathogenic role of oxalate in autism. Eur. J. Paediatr. Neurol. 2012, 16, 485–491. [Google Scholar] [CrossRef]
- Popper, K.R. Logik der Forschung; Mohr Siebeck: Tübingen, Germany, 1969. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; American Psychiatric Association: Washington, DC, USA, 2000. [Google Scholar]
- Aufdenblatten, M.; Baumann, M.; Raio, L.; Dick, B.; Frey, B.M.; Schneider, H.; Surbek, D.; Hocher, B.; Mohaupt, M.G. Prematurity is related to high placental Cortisol in preeclampsia. Pediatr. Res. 2009, 65, 198–202. [Google Scholar] [CrossRef] [Green Version]
- Henschkowski, J.; Stuck, A.E.; Frey, B.M.; Gillmann, G.; Dick, B.; Frey, F.J.; Mohaupt, M.G. Age-dependent decrease in 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) activity in hypertensive patients. Am. J. Hypertens. 2008, 21, 644–649. [Google Scholar] [CrossRef] [Green Version]
- Krone, N.; Hughes, B.A.; Lavery, G.G.; Stewart, P.M.; Arlt, W.; Shackleton, C.H. Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS). J. Steroid Biochem. Mol. Biol. 2010, 121, 496–504. [Google Scholar] [CrossRef]
- Gustafsson, J.A.; Pousette, A.; Svensson, E. Sex-specific occurrence of androgen receptors in rat brain. J. Biol. Chem. 1976, 10, 4047–4054. [Google Scholar] [CrossRef]
- de Leon, J. Glucuronidation enzymes, genes and psychiatry. Clin. Endocrinol. 2003, 6, 57–72. [Google Scholar] [CrossRef]
- Jakobsson, J.; Ekstrom, L.; Inotsume, N.; Garle, M.; Lorentzon, M.; Ohlsson, C.; Hyung-Keun, R.; Carlstrom, C.; Rane, A. Large Differences in Testosterone Excretion in Korean and Swedish Men Are Strongly Associated with a UDP-Glucuronosyl Transferase 2B17 Polymorphism. J. Clin. Endocrinol. Metabol. 2006, 91, 687–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasser, B.; Kurz, J.; Mohaupt, M. Testosterone/Epitestosterone Ratios—Further Hints to Explain Hyperandrogenemia in Children with Autism. Diseases 2021, 9, 13. https://doi.org/10.3390/diseases9010013
Gasser B, Kurz J, Mohaupt M. Testosterone/Epitestosterone Ratios—Further Hints to Explain Hyperandrogenemia in Children with Autism. Diseases. 2021; 9(1):13. https://doi.org/10.3390/diseases9010013
Chicago/Turabian StyleGasser, Benedikt, Johann Kurz, and Markus Mohaupt. 2021. "Testosterone/Epitestosterone Ratios—Further Hints to Explain Hyperandrogenemia in Children with Autism" Diseases 9, no. 1: 13. https://doi.org/10.3390/diseases9010013
APA StyleGasser, B., Kurz, J., & Mohaupt, M. (2021). Testosterone/Epitestosterone Ratios—Further Hints to Explain Hyperandrogenemia in Children with Autism. Diseases, 9(1), 13. https://doi.org/10.3390/diseases9010013