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Abstract: Pentagamavunon-1 (PGV-1), a potential chemopreventive agent with a strong cytotoxic
effect, modulates prometaphase arrest. Improvement to get higher effectiveness of PGV-1 is a new
challenge. A previous study reported that the natural compound, galangin, has antiproliferative
activity against cancer cells with a lower cytotoxicity effect. This study aims to develop a combi-
natorial treatment of PGV-1 and galangin as an anticancer agent with higher effectiveness than a
single agent. In this study, 4T1, a TNBC model cell, was treated with a combination of PGV-1 and
galangin. As a result, PGV-1 and galangin showed a cytotoxic effect with IC50 values of 8 and 120 µM,
respectively. Combining those chemicals has a synergistic impact, as shown by the combination
index (CI) value of 1. Staining with the May Grunwald-Giemsa reagent indicated mitotic catastrophe
evidence, characterized by micronuclear and multinucleated morphology. Moreover, the senescence
percentage was higher than the single treatment. Furthermore, bioinformatics investigations showed
that PGV-1 and galangin target CDK1, PLK1, and AURKB, overexpression proteins in TNBC that
are essential in regulating cell cycle arrest. In conclusion, the combination of PGV-1 and galangin
exhibit a synergistic effect and potential to be a chemotherapeutic drug by the mechanism of mitotic
catastrophe and senescence induction.
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1. Introduction

The National Cancer Institute has tested about 3000 plant species for anticancer thera-
peutic potential [1]. Galangal (Alpinia galanga L.) is one of them, and its bioactive chemical,
galangin, could prevent cancer development [2]. Galangin restrains the proliferation of
various types of cancer cells through a variety of pathways. Galangin elicits cell death in
the ovarian cancer cells models, namely A2780/CP70 and OVCAR-3 [3]. Galangin-induced
apoptosis could be initiated by increasing ROS generation. Galangin also inhibits cancer
cell cycle progression by downregulating cell cycle proteins machinery [4]. In addition,
galangin treatment on LuminalA breast cancer cell MCF-7 and T47D resulting in lowering
cell population. Apoptosis on those cells was characterized by the increasing CL-caspase 3,
CL-caspase 9, and Bax protein. In another study, galangin regulated cell-cycle-associated
proteins, causing cell cycle arrest in MCF-7 cells. Galangin also performs the advantage of
being selective for normal cells [5].

Galangin seems to have the ability to stop the proliferation of another type of breast
cancer, especially for TNBC subtypes. Despite all that evidence, galangin exhibits relatively
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low cytotoxic activity that is not preferable to be considered as a chemotherapeutic agent.
Since it is safer for normal cells, galangin may be used in combinatorial therapy with
standard cancer chemotherapy. For further application, galangin needs to be combined
with another anticancer agent to support its efficacy against cancer cells. Galangin increases
the cytotoxic activities of imatinib mesylate against K562 leukemia cells [6]. Galangin also
decreased the cardiotoxicity of doxorubicin, a chemotherapeutic drug commonly used in
TNBC subtypes [7]. In addition, galangal (Kaempferia galanga) ethanolic extract performs
synergistically with doxorubicin against 4T1 cells and reduces oxidative stress in normal
cells [8].

We have developed a new anticancer candidate, namely pentagamavunon-1 (PGV-1),
a monocarbonyl curcumin analog with strong cytotoxic activities against several cancer
cell lines, including 4T1 cells, a mouse TNBC cell line, and an in vivo model [9,10]. PGV-1
showed an excellent cytotoxic effect via apoptosis, induction of senescence, ROS generation,
and cell cycle arrest [9,11]. PGV-1 also performed high cytotoxic selectivity on several
cancer cells rather than normal cells and did not show toxic evidence in animal models [11].
However, the cytotoxic activity of PGV-1 still needs to be improved. Considering the
potency of PGV-1, the targeted molecule in 4T1 cells needs to be explored in more detail.
Galangin is proposed to be the candidate of PGV-1 combinatorial treatment in TNBC to
improve PGV-1 effectiveness.

Triple-negative breast cancer (TNBC) differed to other breast cancer subtypes in its
lacking expression of estrogen receptors (ER), progesterone receptors (PR), and human
epidermal growth factor (HER-2) receptors [12]. As a result of the lack of expression
of a specific receptor, chemotherapy with nonspecific targets is the first-line treatment
for TNBC [13]. Furthermore, combining PGV-1 with other anticancer drugs such as 5-
FU and doxorubicin improves its cytotoxic activities [14,15]. Combining two (or more)
anticancer drugs is a frequent way to improve the effectiveness of cancer treatment. Because
lower chemotherapy doses can be used in combination treatment, systemic toxicity from
chemotherapy may be reduced. This has led us to explore the cytotoxic effects of galangin
in combination with PGV-1 to enhance the efficacy of PGV-1’s anticancer properties. In
this work, we evaluated the cytotoxic effects of galangin and its combination with PGV-1
and induction of mitotic catastrophe. The protein targets of galangin and PGV-1 in TNBC,
its expression, and the patient’s survival rate were also explored through bioinformatics
analysis. In addition, molecular docking was employed to identify the inhibitory effect
of galangin and PGV-1 in the TNBC protein targets. Hopefully, all the data reveal the
molecular basis of the synergistic effect of PGV-1 and galangin on TNBC cells.

2. Materials and Methods
2.1. Cells Culture

The 4T1 was obtained from Professor Masashi Kawaichi, Nara Institute of Science
and Technology, Japan. The cells were maintained in Dulbecco’s modified Eagle medium
(DMEM) high glucose (Gibco, Carlsbad, CA, USA) supplemented with 10% v/v fetal
bovine serum (FBS) (Sigma, St. Louis, MO, USA). 150 IU/mL penicillin, and 150 µg/mL
streptomycin (Gibco, Grand Island, NY, USA).

2.2. PGV-1 and Galangin

Cancer Chemoprevention Research Center (CCRC), Faculty of Pharmacy, Universitas
Gadjah Mada, provided the PGV-1 with 95% purity. Galangin was obtained from Sigma
Chemical Co. (St. Louis, MO, USA).

2.3. Sample Preparation

Each PGV-1 and galangin solution was dissolved in dimethylsulfoxide (DMSO) in a
stock solution at a concentration of 0.1 µM. Each solution is then diluted by DMEM in a
series of concentrations.



Sci. Pharm. 2021, 89, 38 3 of 14

2.4. Cytotoxicity Assay

Cells were grown into each well of a 96-well plate at a concentration of 8 × 103 cells/mL.
Then, cells were treated with various concentrations of galangin, PGV-1, or its combination
for 24 h. After incubation, cells were washed in phosphate buffer saline (PBS) (Sigma).
Each well got an additional 100 mL of MTT reagent (Sigma) diluted in DMEM (1:9) for
4 h. The 10% sodium dodecyl sulfate (SDS) was added to stop the reaction and incubated
overnight, followed by the absorbance measurement at 595 nm under a microplate reader.

2.5. MayGrünwald-Giemsa Staining

8 × 104 4T1 cells/well cells were seeded on 6-well plates and treated with various
concentrations of galangin, PGV-1, and its combination for 24 h. Then, cells were washed
with 1 mL of PBS 1× (pH 7) and received 200 µL of May-Grünwald Stain solution. After
that, each well was added by 1 mL of phosphate buffer saline 1× in 5 min. Following that,
each well was given a diluted Giemsa solution (1:20 v/v) with 200 µL. Next, the cells were
washed with 200 µL deionized water and dried in the open air. Observation of cells was
carried out by inverted microscopy and documented with a camera.

2.6. Senescence-Associated β-Galactosidase Assay

In total, 8 × 104 4T1 cells/well cells were distributed on 6-well plates, incubated
with several concentrations of galangin, PGV-1, and its combination for 24 h. After PBS
washing, the cells were fixed with 2% formaldehyde −0.2% glutaraldehyde for 10 min and
then washed again using PBS 1×. Cells staining was performed by using X-gal solution,
40 mM PBS 2× (pH 6.0), 5 mM K4Fe(CN)6, 5 mM K3Fe(CN)6, and 2 mM MgCl2. Following
the incubation, for 3 days, the stained cells were observed under an inverted microscope
(100×magnification). The β-D-galactosidase positive cells were characterized by green
color and then quantified using ImageJ software.

2.7. Statistical Analysis

All data are represented as means, standard deviations, or standard errors. The one-
way ANOVA analysis of variance was used to analyze the experimental data, followed
by Tukey post hoc analysis in SPSS (SPSS Inc., Chicago, IL, USA, version 21). Significant
p values were less than 0.05.

2.8. Target Prediction of Galangin and PGV-1 in TNBC

SwissTargetPrediction [16] provides 376,342 compounds and 3068 macromolecular
targets in the database that predicted the most likely protein targets of small molecules [17].
This website was used to predict the protein target of galangin and PGV-1. The protein
target was then compared to TNBC overexpressed genes using interactivenn [18].

2.9. UALCAN Analysis

Ualcan [19], an online public database of microarray profiles and next-generation
sequencing, was used to examine the KIF11, CDK1, PLK1, and AURKB gene expression
across breast cancers and normal tissues as well as in various subgroups such as cancer
subtypes. All statistical data were taken directly from the corresponding database.

2.10. Oncolnc Database Analysis

The Oncolnc database [20], an open-access web-based platform, was employed to
analyze the IncRNA expression from transcriptome concerning survival rate [21]. A dataset
containing 21 cancer studies from more than 8000 patients was mined through this tool’s
algorithm to investigate the relative overall survival in breast cancer patients’ overexpres-
sion of CDK1, PLK1, and AURKB. The significant differences of the survival between two
different level of expression were determined based on the statistical calculation provided
by the platform.
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2.11. Molecular Docking

To validate the binding interaction between galangin and PGV-1 toward KIF11, CDK1,
PLK1, and AURKB, we conducted a molecular docking analysis using a licensed software
MOE 2010.10 for the Faculty of Pharmacy UGM. A computational study was presented to
simulate molecular binding, calculate RMSD, and visualize protein–ligand interaction. The
PDB ID of KIF11, CDK1, PLK1, and AURKB, were 2YAC, 2VGO, 6GU6, 3ZCW, respectively.
The placement setting and scoring method utilized the triangle matcher and London.
The docking results from 10 retain settings were refined using the force field method.
ChemDraw software (version 2 1. 7.0) was used to draw the chemical structure of galangin
and PGV-1 and then minimized the structural energy and generated for conformational
structure in MOE. The molecular docking study was managed on the native ligand binding
site of each protein. The output of the molecular docking explicated the affinity represented
by the docking score and the binding visualization of each compound to the target proteins.

3. Results
3.1. Anti-Proliferative Activity of Galangin and PGV-1 in TNBC

Anti-proliferative activity of galangin and PGV-1 was tested by MTT assay. Cells were
incubated in the absence and presence of PGV-1 (0.5–16 µM concentration) and galangin
(10–1000 µM concentration), resulting in suppression of viable cells depending on the
solution concentration (Figure 1a,b). The antiproliferative activity was expressed in IC50 (a
dose capable of inhibiting 50% of cell growth), respectively, as the IC50 value of galangin
and PGV-1 on 4T1 cells was 120 and 8 µM (Table 1). Interestingly, combination treatment of
both compounds reduced 4T1 cell viability better than single therapy (Figure 1c). These CI
values scored less than 1 indicate that the cotreatments have synergistic properties (Table 2).
These synergistic effects might be affected by different molecular events of each component
that lead to physiological phenomena.
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Figure 1. Cytotoxic effects of (a) galangin, (b) PGV-1, and (c) combination of galangin and PGV-1 in
4T1 cells (Dark blue: PGV-1 only; Orange: Galangin 15 µM + serial concentration of PGV-1; Grey:
Galangin 30 µM + serial concentration of PGV-1; Light Blue: Galangin 60 µM + serial concentration
of PGV-1. Cell viability was determined by using an MTT assay.
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Table 1. IC50 of galangin and PGV-1 on 4T1 cells.

Compound IC50 (µM)

Galangin 120
PGV-1 8

Table 2. CI of galangin and PGV-1 combination on 4T1 cells.

Galangin
(µM)

PGV-1 (µM)

1 2 4

15 −0.13 0.03 −0.24
30 0.12 0.10 0.04
60 0.56 0.20 0.06

3.2. Effect of Galangin and PGV-1 on Cell Cycle

PGV-1 was able to induce cycle arrest of leukemia cell K562 in prometaphase [18].
This study explored galangin and PGV-1 effect in modulation cell cycle arrest in TNBC
4T1 cells carried out by morphological observation. The 4T1 cells were stained by the May
Grünwald-Giemsa reagent to observe nuclear changes. Treatment of 4T1 breast cancer
cells with single PGV-1 or its co-treatment with galangin resulted in mitotic catastrophe
phenomena characterized by enlargement cell size (compared to the control cell), small and
numerous cell nuclei (micronuclear and polynuclear), shown by yellow arrows (Figure 2a).
By contrast, galangin treatment showed different results. In addition, 4T1 cells treated with
PGV-1 4 µM and galangin 60 µM increased the population of mitotic catastrophe (17%)
compared to PGV-1 4 µM alone (11%) (Figure 2b). As a result, galangin and PGV-1 work
synergistically to increase the occurrence of mitotic catastrophe in 4T1 breast cancer cells.
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Figure 2. May-Grunwald Giemsa staining on 4T1 cells. (a) The morphology of cells was observed
under an inverted microscope. (b) The percentage of Mitotic catastrophe was determined after
treatment. Data are expressed as mean ± SD of three independent experiments. *** p < 0.01.

3.3. Galangin and Its Combination with PGV-1 Induces Cell Senescence

Furthermore, the potential of the PGV-1, galangin, and their combination in inducing
senescence in PGV-1 breast cancer cells was investigated using the senescence-associated
β-galactosidase (SA-β-Gal) assay method. Senescence cells are marked with a green
color, pointed by the red arrow (Figure 3a). Treatment with PGV-1 at 4 µM concentration
induced higher senescence than control cells. The senescence of 4T1 cells in the 4 µM
concentration of PGV-1 compound treatment increased by 2% compared to control cells.
In this experiment, doxo was used as a positive control as well as a known senescence-
inducing agent. Doxorubicin treatment with a concentration of 100 nM was able to induce
senescence 10% higher than cell control.
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3.4. Galangin and PGV-1 Target Proteins Prediction on TNBC

To find out the TNBC target protein of PGV-1 and galangin, an exploration was carried
out through the website SwissTargetPrediction [16]. Moreover, a comprehensive search via
UALCAN website resulted in 243 proteins are upregulated in TNBC. We generated a Venn
diagram between those three data and resulted in seven proteins are galangin molecular
targets in TNBC: PLK-1, AURKB, CDK1, CCNB1, CCNB2, TOP2A, and NEK2 (Table 3).
While six proteins are targeted by PGV-1 in TNBC: KIF11, CHEK1, CCNE1, QPCT, CDK1,
and TOP2A (Table 4) (Figure 4).

Table 3. Role and function of galangin target proteins.

Protein Role Function Reference

PLK-1 Protein Kinase chromosome segregation, spindle assembly
and cytokinesis [22]

AURKB Protein Kinase chromosome-microtubule attachment [23]
CDK1 Protein Kinase G2/M regulator [24]

CCNB1 Subunit regulator
CDK1 G2/M regulator [25]

CCNB2 Subunit regulator
CDK1 G2/M regulator [25]

TOP2A Enzim Katalis Chromosome separation and DNA
replication [26]

NEK2 Protein Kinase Chromosome duplication and separation [27]

Table 4. Role and function of PGV-1 target proteins.

Protein Role Function Reference

CDK1 Protein Kinase G2/M regulation [24]

TOP2A Enzim Katalis Chromosome separation and DNA
replication [26]

KIF11 Enzim Katalis Forms bioplar mitotic spindles [28]
CHK1 Protein Kinase DDR mediator [29]

CCNE1 Protein Kinase G1/S regulator [30]
QPCT Enzim Biosynthesis of piroglutamil peptida [27]
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Figure 4. Venn diagram of predictive target protein for PGV-1 and galangin compounds with protein
overexpression in TNBC breast cancer. Prediction of target protein compounds PGV-1 and galangin
obtained from the website of the Swiss target prediction protein. TNBC breast cancer overexpression
proteins were obtained from the TCGA database from the UALCAN website.

Protein’s target of galangin and PGV-1 mostly play an important role, either inter-
phase or mitotic phase in cell cycle progression. In interphase, TOP2A regulates DNA
double-helix separation in S phase [26], while CCNE1 controls the shifting from G1 to
S phase [30]. Moreover, mitotic entrance and progression were regulated by PLK-1 [22],
CDK1 [24], CCNB1 [25], AURKB [23], KIF 11 [28], TOP2A [26], and NEK2 [27] proteins.
Moreover, activation of CHK1 responds in a mitotic perturbation or usually called mitotic
checkpoint [29].

3.5. Expression of CDK1, PLK-1, and AURKB in Breast Cancer

We initially evaluated three essential mitotic regulator proteins: CDK1, PLK-1, and
AURKB transcription levels in multiple cancers from TCGA. Figure 5 shows that the
expression of those proteins was significantly higher in breast cancer cells. Furthermore,
the expressions of CDK1, PLK-1, and AURKB among various breast cancers show higher
expression in breast cancers with the TNBC subtype.

3.6. Kaplan–Meier Survival Analysis

The higher expression of these three proteins exhibited an impact on patient survival.
The Kaplan–Meier plot displayed the survival of the samples with high CDK1, PLK-1,
and AURKB expression (red line) versus survival times. The result indicates that patients
with low protein expression levels had significantly better overall survival rates than the
opposite group (Figure 6).
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3.7. Molecular Docking

Inhibition of cell cycle process targeting on its molecular mechanism is essential
to combat breast cancer proliferation. Following some markers protein involved in cell
cycle progression, we then investigate the possible inhibitory activity of galangin and
PGV-1 targeting KIF11, CDK1, PLK-1, and AURKB protein through a molecular docking
simulation. Native ligands were embedded into Dinaciclib for CDK1, NMS-P937 for PLK-1,
Reversine for AURKB, and 4A2 for KIF11, respectively (Figure 7).
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Figure 7. Binding interaction model, (a) CDK-1 to its native ligand and galangin, (b) of PLK-1 to
its native ligand and galangin, (c) AURKB to its native ligand and galangin, (d) KIF11 to its native
ligand and galangin, (e) CDK-1 to its native ligand and PGV-1, (f) KIF11 to its native ligand and
PGV-1.

On CDK1, galangin and PGV-1 showed a slightly lower docking score than Dinaclib,
suggesting that CDK1 binds and reacts preferentially with galangin and PGV-1 (Table 5).
The higher docking score of galangin, also found on AURKB, suggested a lower binding
affinity than that of native ligands Reversine (Table 6). This contrasted with PLK-1 and
KIF11, whose galangin docking score was a little higher than its native ligand. Overall,
galangin performed a promising inhibitory activity on CDK1 and AURKB, while PGV-1
could target CDK1 protein (Table 6).

Table 5. Docking score of ligands toward PDK-1, CDK-1, AURKB, and KIF11 on galangin.

No. Protein PDB ID
Native Ligand Galangin

RMSD (Å)
Docking

Score (kcal/mol)
RMSD

(Å)
Docking

Score (kcal/mol)

1 PLK-1 2YAC 0.8535 −13.9847 0.7247 −13.5717
2 AURKB 2VGO 1.3148 −7.8545 1.7724 −9.0003
3 CDK-1 6GU6 1.2543 −10.8300 1.6107 −12.2080
4 KIF11 3ZCW 0.8005 −13.6193 1.1531 −13.4846

Table 6. Docking score of ligands toward CDK-1 and KIF2A on PGV-1.

No. Protein PDB ID
Native Ligand PGV-1

RMSD (Å)
Docking

Score (kcal/mol)
RMSD

(Å)
Docking

Score (kcal/mol)

1 CDK-1 6GU6 1.2543 −10.8300 1.2612 −14.0391
2 KIF11 3ZCW 0.8005 −13.6193 0.8661 −13.3464

4. Discussion

Although a previous study has revealed galangin potency in eliminating the growth of
breast cancer cells, no study reported its suppression role in TNBC, a type of breast cancer
that has negative expression of ER, PR, and HER-2. We previously found that galangin
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induces apoptosis in MCF-7 cells, which belongs to luminal A, a type of breast cancer. This
apoptosis process was related to biphasical expression of apoptosis regulator proteins Bcl-2
and Bax. Bcl-2 protein expression was downregulated, while Bax protein expression was
increased significantly [4]. Another study published galangin could perform its effects
on ROS generation. Exposure galangin to cells increased ROS production associated by
apoptosis induction [6]. In this exploration, we characterized galangin, and revealed that
galangin could inhibit the proliferation of 4T1, a TNBC cell line. In comparison to ER-
breast cancer cell, antiproliferative activity galangin on 4T1 cell (IC50 = 120 µM) was lower
than Hs578T cell (IC50 = 11 µM) [29]. Interestingly, galangin co-treatment with PGV-1
resulted in a synergistic effect, which could reduce 4T1 viability better than each single
compound treatment.

Galangin suppresses cell cycle progression through various phases in the cell cycle:
G1, S, or G2/M phase depend on the cancer cell line. Galangin inhibits G0/G1 progression
to the S phases. This is supported by the evidence that galangin eliminates cyclin D3
and suppresses the expression of cyclins A and E [29]. Both galangin and PGV-1 are safe
for normal cells. Treatment of PGV-1 for 48 h on mouse embryonic fibroblasts (MEFs)
cell are counted higher (120%) than leukemic cell K562 (40%) [17]. Moreover, PGV-1
is selective in normal cell HEK293T than breast cancer cell line MCF-7 by selectivity
index (SI) scored 5.57 [9]. In addition, galangin also showed its safety in normal cells,
human mesangial cells (MC), and mouse renal tubular epithelial (TMCK-1) due to no
morphological changes after treatment of 30 µM galangin for 24 h [5]. In addition, PGV-1
provided good stability properties. PGV-1 treatment is stable in leukemic cell K562 after
6 days of removal compound as counted by viability cell less than 5% [17], suggesting that
PGV-1 irreversibly prevents the proliferation of the cancer cells. Nevertheless, co-treatment
of galangin with PGV-1 on 4T1 and normal cells needs further investigation concerning the
time course effectiveness and the safety insurance.

In this experiment, galangin combined with PGV-1 shows a synergistic effect in
modulation mitotic arrest in 4T1 cells by the evidence of mitotic catastrophe, which can
be observed through May Grünwald-Giemsa staining. Mitotic catastrophe is described
as a cell-death-associated process caused by aberrant mitosis characterized with multiple
micronuclei [31] and is always followed by mitotic arrest [32]. Micronuclei are caused by
fragmented chromosomes that are not distributed among nuclear daughters, where two
or more nuclei of heterogeneous size can occur due to equilibration of karyokinesis [33].
Moreover, multinucleated cells are caused by non-condensed clusters of chromosomes
undergoing cleavage errors. Another factor that causes multinucleation is multipolar
mitosis, which is caused by multicentrosomes, resulting in the withdrawal of chromosomes
in four directions [32]. Multinucleation on mitotic catastrophe is caused by inhibition
of KIF11 that results in a multipolar spindle, as it targets prediction of PGV-1. Mitotic
catastrophe is an important target in cancer cell elimination, especially in breast cancer [34].
Galangin treatment does not allow arrest in the G2/M phase, unlike its combination with
or PGV-1 single treatment. This is probably because the galangin target in TNBC was
predicted on cyclin B and CDK1, preventing the cell from entering the mitotic phase during
the cell cycle. This evidence is supported by a previous study that galangin downregulates
cyclin B and CDK1 expression in MCF-7 cells [4].

Galangin primarily targets TNBC cell-cycle-regulating proteins covering PLK-1, AU-
RKB, CDK1, CCNB1, CCNB2, TOP2A, and NEK2, while PGV-1 targets KIF11, CHEK1,
CCNE1, QPCT, CDK1, and TOP2A (Figure 8). Since those proteins are essential regulators
in cell cycle, especially in mitosis machinery, targeting their activity may induce cell cycle
arrest in mitosis, leading to mitotic catastrophe [35,36]. This study also realizes that CDK1,
PLK-1, and AURKB expression in TNBC is significantly higher than normal cells and elicits
a lower survival rate in breast cancer patients. Thus, targeting those proteins is a promising
approach in breast cancer medication. In breast cancer (BC) patients, a high expression
level of PLK1 was noted as an essential marker for cancer progression and metastasis with
a poor prognosis [37,38]. PLK1 involves in G2/M progression. In addition, suppression
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of cyclin B1 and cyclin B2 resulted in a mitotic arrest that can be followed by mitotic
catastrophe [30]. Mitotic perturbation may also be caused by activation of Chk1, which
phosphorylates CDK1 during DNA damage [28]. Hence, this study gives insight into the
potential application of co-treatment of galangin and PGV-1 to combat TNBC problems
and the expectation to reduce the adverse risk of chemotherapy.
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5. Conclusions

PGV-1 and galangin combined exhibit a synergistic effect to suppress the cell growth
of 4T1 cells through inducing mitotic catastrophe in correlation with increasing cellular
senescent. PGV-1 alone induces cellular senescence and mitotic catastrophe TNBC cells
suggesting through the interaction of mitotic machinery proteins, namely KIF11, CHEK1,
CCNE1, and CDK1. Galangin alone does not induce mitotic catastrophe or cellular senes-
cence, but it enhances the cellular senescence by PGV-1 probably through the interaction
with mitotic protein markers, including PLK-1, AURKB, CDK1, CCNB1, and CCNB2. That
combination could be promoted as a co-chemotherapeutic treatment against TNBC with
furthermore deep exploration.
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