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Abstract: In this work, antiparasitic peptidomimetics inhibitors (PEP) of falcipain-3 (FP3) of Plas-
modium falciparum (Pf ) are proposed using structure-based and computer-aided molecular design.
Beginning with the crystal structure of Pf FP3-K11017 complex (PDB ID: 3BWK), three-dimensional
(3D) models of FP3-PEPx complexes with known activities ( ICexp

50 ) were prepared by in situ modifi-
cation, based on molecular mechanics and implicit solvation to compute Gibbs free energies (GFE)
of inhibitor-FP3 complex formation. This resulted in a quantitative structure–activity relationships
(QSAR) model based on a linear correlation between computed GFE (∆∆Gcom) and the experimen-
tally measured ICexp

50 . Apart from the structure-based relationship, a ligand-based quantitative
pharmacophore model (PH4) of novel PEP analogues where substitutions were directed by compara-
tive analysis of the active site interactions was derived using the proposed bound conformations of
the PEPx. This provided structural information useful for the design of virtual combinatorial libraries
(VL), which was virtually screened based on the 3D-QSAR PH4. The end results were predictive
inhibitory activities falling within the low nanomolar concentration range.

Keywords: drug design; falcipain; malaria; peptidomimetics; Plasmodium falciparum; virtual screening;
pharmacophore

1. Introduction

Malaria is a widespread disease, with causative agent Plasmodium falciparum (Pf ),
transmitted mainly by female Anopheles mosquito bites [1]. The disease has been declared
a public health concern by the World Health Organization (WHO) in many developing
countries [2,3]. Additionally, since the implementation of artemisinin-combined therapy
(ACT) in 2006, resistance cases have been recorded [4–7]. Meanwhile, the treatment of
malaria mainly depends on ACT, despite resistance to this combination. This suggests the
need for industry–academia partnerships for the search of new antimalarials which act via
alternative modes of action. Two strategic approaches have been suggested in the search
for new remedies against malaria; one focused on eliminating the parasite or preventing its
contact with potential human hosts, and a second aimed at developing efficacious drugs to
treat infected patients [1]. The latter is often aimed at the inhibition of a therapeutic target,
often a vital enzyme involved in the parasite’s life cycle. This often requires the search for
or the design of new molecules capable of binding in a specific manner to known parasite
vital enzymes.
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During the last two decades, the identification of drug targets against Pf has increased
tremendously [4–7], thus favouring the second approach. This is known as “rational
drug design and discovery”. As an example, the parasite breaks down a large amount of
haemoglobin (Hb) from human red blood cells in order to obtain the required nutrients for
its growth during the blood stage [8]. This involves several proteases, known as validated
drug targets in [9]. These drug targets could be divided into two major groups:

(i) those which are directly involved in the invasion and rupture of the red blood
cells, and

(ii) those dedicated to the breakdown of Hb [10].
Two protease families are involved in Hb breakdown by hydrolysis. These include

aspartic proteases (plasmepsins) and cysteine proteases (falcipains, FPs) [10]. One metallo-
protease called falcilysin [11], and one dipeptidyl aminopeptidase [12] are also involved.

Previous studies have focused on the search for inhibitors of falcipains 2 and 3 (FP2
and FP3), respectively [13], even though FP3, shown to be expressed later in the parasite
life cycle, appeared to be a more efficient haemoglobinase than FP2 [14]. This indicates
that FP3 inhibition is lethal to the parasite and, therefore, constitutes an attractive target
in Pf drug discovery. Several FP3 inhibitors have been identified and described in the
literature, which are capable of blocking the enzyme’s activity by forming reversible or
irreversible covalent bonds within the enzyme active site [12]. These inhibitors could
be sub-classified into three categories: peptide-based, non-peptidic, and peptidomimetic
inhibitors [15,16], although preference has been given to those known to be reversible
and, hence, considered to be potentially more effective than irreversible ones [17,18]. The
most promising inhibitors so far are those discovered by chemical synthesis [19–24], by
molecular docking [25] and virtual screening studies [18,26–29], particularly from the
peptidomimetics class of compounds.

Weldon et al. recently designed, synthesised and evaluated a series of peptidomimetic
pseudo-prolyl-homophenylalanyl ketones for their inhibition of the Pf cysteine proteases
FP2 and FP3 [24]. One of these compounds showed nanomolar range activities against
both enzymes (i.e., 80 nM against FP2 and 60 nM against FP3 [24]. These interesting results
have been improved by the presence of the crystal structures of the FP3 apo structure co-
crystallised with the inhibitor within the protein data bank [30,31]. These have constituted
the foundation of this work, which involves the design of PEP2 peptidomimetic analogues
with the goal of identifying even more potent candidates via quantitative structure-activity
relationship (QSAR) with FP3 inhibition pharmacophores. This is intended to further
orientate the design of more potent non-peptidic FP3 inhibitors.

In the present work, we have built and validated a Hansch-type “complexation”FP3
inhibition QSAR models based on the in vitro activities of twelve (12) selected PEP deriva-
tives against FP3. As a starting point, we chosethe experimental (X-ray crystal) structure of
the protein-ligand complex of the enzyme and the potent inhibitor K11017 (PDB ID:3BWK)
to build each selected inhibitor by in situ modifying of the native ligand. [24,30]. This
consisted of computing the Gibbs free energies for the formation of the ligand-receptor com-
plexes (∆∆Gcom) based on Molecular Mechanics Poisson-Boltzmann (MM-PB) approach
for the training set molecules, followed by the correlation with the experimentally tested
biological activities pICexp

50 . The established QSAR equation was then used to predict the
activities of newly designed analogues based on the initial compound scaffold. Addition-
ally, a FP3 inhibition pharmacophore model (PH4) from the bound conformation of the
training set of PEPs was used to screen the virtual library of proposed PEP analogues to
identify the best candidates, which have predicted ADMET profiles within the acceptable
range for 95% of known drugs.

2. Materials and Methods

Scheme 1 displays the workflow of different steps involved for the computer-aided
drug design of the new peptidomimetics analogues.
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Scheme 1. Novel peptidomimetic analogues design methodology workflow.

2.1. Biological Activities of Compounds Included in the Training and Validation Sets

The biological activities (ICexp
50 ) of the compounds included in training and validation

sets of PEP Pf FP3 inhibitors were found in the literature, covering a range of activities from
60 nM to about 47,230 nM [24]. Weldon and co-workers synthesised 22 molecules, but not
all showed detected biological activities against FP3 to be included in a QSAR study (e.g.,
activities recorded as >50 µM would not be included in our study). Finally, 12 compounds
(almost the threshold for an acceptable QSAR study) have been used in our study.

2.2. Molecular Modeling

3D models of the enzyme-inhibitor (E:I) complexes were built starting from the free
enzyme (E) and the free inhibitors (I), both derived from a well -refined X-ray crystal struc-
ture (PDB ID: 3BWK) of the co-crystallised potent inhibitor K11017 (or Mu-Leu-Hph-VSPh,
where VSPh: phenyl vinyl sulfone; Hph:homophenylalanyl;Mu:morpholino urea) retrieved
from the PDB [32]. Chain A was employed in all computations and modellingwas carried
out on the graphical user interface of Discovery Studio 2.5 [33], using a previously well de-
scribed protocol [34–48]. Thus, the pH values were kept at 7.0, while all N- and C-terminal
residues were kept neutral. All water molecules originally in the crystal structure were
deleted. Finally, protonated and ionised amino acid residues were charged. Each inhibitor
was built into the crystal reference structure by modifying the original K11017 inhibitor
in situ. During this process, all rotatable bonds of the replacing residues underwent an
exhaustive conformational search by a careful and gradual energy minimisation of each
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modified inhibitor within the active site residues of FP3 within 5Å of the inhibitor, leading
to the identification of low-energy bound conformations of each modified inhibitor. The
various low-energy structures of the E:I complexes were then carefully refined by energy
minimisation of the whole complex.

2.3. Molecular Mechanics

The simulation of each inhibitor, FP3 and E:I complex were carried out by molecular
mechanics (MM) as implemented in the CHARMm forcefield [49]. All MM calculations
used a dielectric constant of 4 for representing dielectric shielding effects in the proteins.
The optimisation (energy minimisation process) of the free enzymes E, free inhibitors I and
enzyme-inhibitor complexes E:I were carried out by a gradual relaxation of the structures,
beginning by adding H-atoms, then the residue side chain heavy atoms, and ending up with
the relaxation of the protein backbone. A large number of the steepest descent, followed by
conjugate gradient iterative cycles were employed. A convergence criterion for the average
gradient was set to of 0.01 kcal·mol−1 A−1 in each geometry optimisation procedure.

2.4. Conformational Search

The conformation of each free inhibitor was obtained from its bound conformation
in the E:I complex, which had been previously obtained by the gradual relaxation to
the nearest local energy minimum (see Section 2.3). Next, low energy structures of the
free inhibitors were found by the quenching dynamics protocol available in the module
Forcite Plus of Accelrys Materials Studio 4.4 [50]. Quench molecular dynamics performs
a standard molecular dynamics calculation with an additional geometry optimisation
step, in which a geometry optimisation is performed on every frame in the trajectory file.
Forcite Plus calculations were carried out using Compass forcefield [49], ultra-fine quality
options and nonbond cut-off distance equal to 30 Å.For each free inhibitor, 5000 steps
(time step is 1 fs, total simulation time equal 5 ps) are used to run dynamics simulation at
350 K. A quench, or geometry optimisation, is performed every 25 steps. On completion of
the quench dynamics calculation, 200 unique conformations are generated per inhibitor.
Finally, the lowest energy conformer of each inhibitor is selected and minimised again
using CHARMm forcefield of Discovery Studio. During this minimisation, the inhibitor’s
dielectric constant was kept at ε = 4.

2.5. Solvation Gibbs Free Energy

The electrostatic component of solvation Gibbs free energy was computed using the
DelPhi package in Discovery Studio [33]. This incorporates the effects of ionic strength
by solving the nonlinear Poisson–Boltzmann equation [51,52]. This DelPhi program treats
the solvent as a continuous medium of high dielectric constant (ε0 = 80) while the solute
is treated as a cavity with low dielectric (εi = 4). Boundaries are linked to the solute’s
molecular surface, which enclose the solute’s atomic charges. The molecular electrostatic
potential and reaction field around the solute are solved by a finite difference method on a
(235× 235× 235) cubic lattice grid for the complexes and free enzyme and (65× 65× 65)
grid for the free inhibitors, implementing the full Coulombic boundary conditions. In
both cases, two (02) subsequent focusing steps led to a similar final resolution of about
0.3 Å per grid unit at 70% filling of the grid by the solute. Physiological ionic strength of
0.145 mol·dm−3, atomic partial charges and radii defined in the CHARMm parameter set
(Biovia DS) and a probe sphere radius of 1.4 A were used. In this implementation, the
electrostatic component of the solvation Gibbs free energy was calculated as the reaction
field energy [53–55].

2.6. Calculation of the Entropic Term

During the simulation, the vibrational entropy change which occurs as the inhibitor
binds to the enzyme was computed by normal mode analysis of the inhibitor vibrations,
by using a simplified method previously described by Fischer and co-workers [56,57]. This
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approach involves the vibrational analyses of the inhibitor bound at the active site of a
“frozen” enzyme, while the low-energy conformers of the free inhibitor were computed for
fully minimised structures. This was carried out using the Discover module of Materials
Studio 4.4 [50] and the formula:

T∆Svib = TSvib{I}bonded − TSvib{I}free (1)

The method has previously provided a good approximation of the vibrational entropy
change in the fully flexible system for small and relatively stiff ligands, i.e., including the
degrees of freedom of the protein receptor [55,56]. In this calculation, the TSvib{I}free term
can explain vibrational motions of the free inhibitor and the conformational flexibility of
the molecule, i.e., low frequency vibrations, which correspond to collective motions of
atoms with larger amplitudes (conformational changes contribute mostly to this term). The
relative values of ∆∆TSvib, with respect to the reference inhibitor, were used to compensate
partially for the restricted flexibility of the E. In this respect, the entropy term is also recog-
nised as an important factor for drug optimisation, even though an enthalpy contribution
to binding affinity is known to be more essential [58].

2.7. Binding Affinity Calculations

It has been previously proven that the concentration of a competitive tight binding
inhibitor that causes a 50% reduction in the rate of catalytic substrate conversion (ICexp

50 ) of
a reversible inhibitor depends on the enzyme-inhibition constant Ki as follows:

ICexp
50 = Ki + [S].

(
Ki

KM

)
+

[E]
2

(2)

where [S] and [E] are the substrate and enzyme concentrations, respectively, while KM
represents the Michaelis constant [59]. The ICex

50 value can thus be predicted from the
standard Gibbs free energy (GFE) change during the enzyme:inhibitor complex formation:

∆Gcom = −RT× ln(Ki) (3)

assuming that there is equilibrium in solution between the solvated protein (or enzyme)
{E}aq, the solvated inhibitor {I}aq and the solvated protein-ligand complex {E : I}aq:

{E}aq + {I}aq ↔ {E : I}aq (4)

the standard Gibbs free energy change in the above equilibrium (4) can be written as:

∆Gcom = G{E : I} −G{E} −G{I} (5)

in our calculations, the exact values of standard Gibbs free energies for larger systems such
as enzyme: inhibitor complexes were approximated by the derived expressions from the
works of Frecer and Miertus [36,60,61]:

G{E : I} ∼= EMM{E : I}+ RT− TStrv{E : I}+ Gsol{E : I} (6)

where EMM{E : I} stands for the molecular mechanics total energy of the complex (in-
cluding bonding and non-bonding contributions), Gsol{E : I} is the solvation GFE and
TStrv{E : I} is the entropic term:

TStrv{E : I} = TStrans{E : I}+ TSrot{E : I}+ TSvib{E : I} (7)
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composed of a sum of contributions arising from translational, rotational and vibrational
motions of the complex E:I. Assuming that the translational and rotational terms for the
complex E:I and free enzyme E are approximately equal, we obtain:

∆Gcom = [EMM{E : I} − EMM{E} − EMM{I}] + [Gsol{E : I} −Gsol{E} −Gsol{I}]
+TStran{I}+ TSrot{I} − [TSvib{E : I} − TSvib{E} − TSvib{I}]

= ∆HMM + TStran{I}+ TSrot{I} − ∆TSvib + ∆Gsol

(8)

with TStrans{I} and TSrot{I} describing the translational and rotational entropy terms of
the free inhibitor, respectively, and ∆TSvib representing the vibrational entropy change
during the formation of the enzyme-inhibitor complex ∆TSvib = TSvib{I}E − TSvib{I}. By
comparing between different inhibitors via relative changes in their respective complexa-
tion Gibbs free energies, with respect to a reference inhibitor, Iref(in this case PEP23), and
by assuming the ideal gas behaviour for the rotational and translational motions of the
inhibitors, it can be shown that:

∆∆Gcom = ∆∆Gcom(I)− ∆Gcom(Iref) = ∆∆HMM − ∆∆TSvib + ∆∆Gsol (9)

The advantage of such an approach is that the evaluation of relative changes is
preferable, since it results in the partial cancellation of errors caused by the approximate
nature of the MM method. Additionally, solvent and entropic effects are included in
the description.

2.8. Interaction Energy Calculations

Interaction energy values were computed using Discovery Studio 2.5 [33]. The MM
interaction energy (Eint) protocol available in this program computes the (non-bonded)
van der Waals and electrostatic interactions between enzyme residues and each inhibitor.
The CHARMm force field [49] was used during the calculations, with a dielectric constant
set at 4. The breakdown of Eint into the contributions by active site residues reveals
the significance of individual interactions and permits us to carry out a comparative
analysis. The approach leads to the identification of affinity values which would enhance
the prediction of favourable and unfavourable PEP substitutions.

2.9. Pharmacophore (PH4) Modeling

By definition, a pharmacophore is often regarded as a set of features arranged in 3D
space which are essential for a molecule to exert a certain biological activity. The perception
of a pharmacophore is essential for understanding the interaction between a ligand and its
receptor. The PH4 concept is based on the assumption that a set of structural features in a
molecule is recognised at the receptor site and is responsible for the molecule’s biological ac-
tivity. Bound conformations of inhibitors taken from E:I complexes were used to construct
3D-QSAR pharmacophore models using the Catalyst HypoGen algorithm implemented in
Discovery Studio 2.5 [33]. This consisted of building a top scoring pharmacophore hypothe-
sis from the most active inhibitor. Three stages (construction, subtraction and optimisation)
are involved, meanwhile the inactive ones were used to define the excluded volumes. A
maximum number of five excluded volumes and five features were selected according to
the PEP scaffold and substituents, i.e., hydrophobic aliphatic (HYd), hydrophobic aromatic
(HYdAr), hydrogen-bond acceptor (HBA) hydrogen-bond donor (HBD) and ring aromatic
(Ar). As per the adjustable parameters in the HypoGen protocol, all were kept by default
except for the uncertainty on the activity and the minimum inter-feature distance, which
were set to 1.1 Å and 2.5 Å (instead of 3), respectively. These parameters were carefully
chosen in order to bring the uncertainty interval of experimental activity from a wide span[
ICexp

50 /3, 3× ICexp
50

]
to a relatively narrow one

[
ICexp

50 /1.1, 1.1× ICexp
50

]
. This is important

because the accuracy and homogeneity of the measured inhibitory activities based on the
fact that the experimental biological activities were derived from the same laboratory must
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be taken into account [24]. During the generation of 10 pharmacophores, 0 was set as the
number of missing features and the best pharmacophore models were selected.

2.10. Generation of the Virtual Library

Molecular models of new analogues were generated using the Molecular Operating
Environment (MOE) program [62]. This was carried out by attaching the R-groups (frag-
ments, building blocks) onto the PEP scaffolds using the Quasar CombiDesign module
of the MOE program. Chemical reagents considered in this study were taken from the
directories of chemicals available from the commercial suppliers of chemicals [63]. Each
analogue was built as a neutral molecule in the MOE program and its molecular geometry
has been refined by the MM optimisation, implemented in the Discovery Studio 2.5 smart
minimiser. Convergence criteria (energy difference of 10−4 kcal·mol−1, root-mean-square
displacement (RMSD) of 10−5 Å and a dielectric constant of 4 using the CHARMm force
field were set, as described in Section 2.3.

2.11. In Silico Screening

The conformers with the best mapping on PH4 pharmacophores in each cluster was
selected for virtual screening using the complexation QSAR model. For each E:I complex,
the relative complexation Gibbs free energies ∆∆Gcom was calculated. This was then
used to compute the predicted activities (pICpre

50 ) of each of the newly designed analogues

against FP3. The ICpre
50 values were then calculated using the formula ICpre

50 = 10(9−pICpre
50 ).

3. Results and Discussion
3.1. Selection of Training and Validation (or Test) Data Sets

A data set of ten (10) FP3 inhibitors with a broad range of in vitro activities (ICexp
50 ), ob-

tained from the same laboratory, with a sufficiently broad range of activities (60–47,230nM) [24]
were used to generate a 3D-QSAR model. This was divided into a training set of nine (9)
inhibitors used to build the QSAR model and a validation set of three (3) inhibitors for
evaluating the model (Table 1 and Figure 1).

Table 1. Training and validation sets of PEP inhibitors obtained from the literature [24].

Training Set [a] MW
[b] (g·mol−1) I Cexp

50
[c] (nM)

PEP23 (Ref) 482.61 36,360
PEP27 452.56 910
PEP29 438.53 23,900
PEP32 466.54 47,230
PEP34 470.60 8220
PEP38 462.55 25,440
PEP39 440.50 60
PEP40 574.75 520
PEP41 498.61 3560

Validation Set [a] MW
[b](g·mol−1) ICexp

50
[c](nM)

PEP26 452.56 540
PEP28 450.54 20,180
PEP36 488.59 11,910

[a] See Figure 1 for chemical structures of training and validation. [b] Molecular weight. [c] This is ICexp
50 expressed

in nanomolar concentration [24].

3.2. Obtained QSAR Model

The relative Gibbs free energy of the non-covalent enzyme-inhibitor (E:I) complex
formation from free enzyme (E) and free inhibitor (I), shown in the Experimental Section,
were computed for each FP3-PEPx prepared complex. This was carried out by modifying
in situ of the inhibitor K11017 within the binding site of FP3 of the refined crystal structure,
with PDB ID: 3BWK [30,31]. Table 2 provides the computed values of complexes formation
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GFE (∆∆Gcom) and its components (see Experimental Section). Since the ∆∆Gcom values
were computed in an approximate way, the relevance of the binding model is evaluated by
correlating it with the experimental activity data (ICexp

50 ) using linear regression; see Table 3.

Figure 1. Chemical structures of training and validation sets of FP3 inhibitors obtained from literature [24].

Table 2. Energy contributions towards ∆∆Gcom for a dataset of PEP analogues against FP3 complexa-
tion Gibbs free energy and its components for the training and validation set of FP3 inhibitors. and
experimental activity.

Training Set [a] ∆∆HMM
[b](

kcal·mol−1
) ∆∆Gsol

[c](
kcal·mol−1

) ∆∆TSvib
[d](

kcal·mol−1
) ∆∆Gcom

[e](
kcal·mol−1

) pICexp
50

[f]

PEP23 (Ref) 0.00 0.00 0.00 0.00 4.44
PEP27 −3.81 −0.04 -0.16 −3.69 6.04
PEP29 −0.39 0.13 1.45 −1.71 4.62
PEP32 6.21 −7.77 -0.60 −0.95 4.33
PEP34 5.97 −9.92 -0.51 −3.44 5.09
PEP38 0.21 0.77 2.13 −1.15 4.59
PEP39 −2.07 0.12 3.98 −5.92 7.22
PEP40 −6.33 1.64 0.26 −4.95 6.28
PEP41 −3.24 1.16 0.42 −2.50 5.45
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Table 2. Cont.

Training Set [a] ∆∆HMM
[b](

kcal·mol−1
) ∆∆Gsol

[c](
kcal·mol−1

) ∆∆TSvib
[d](

kcal·mol−1
) ∆∆Gcom

[e](
kcal·mol−1

) pICexp
50

[f]

PEP26 −7.67 1.39 −0.78 −5.50 1.07
PEP28 −4.13 0.61 −0.41 −3.12 1.18
PEP36 6.51 −10.30 −0.15 −3.64 1.18

[a] For the chemical structures of the training/validation set of inhibitors see Figure 1. [b] ∆∆HMM repre-
sents the relative enthalpic contribution to the Gibbs free energy change related to the intermolecular inter-
actions in the enzyme–inhibitor complex derived by molecular mechanics (PEP23 (Ref) is the reference in-
hibitor Iref):∆∆HMM = [EMM{E : Ix} − EMM{Ix}] − [EMM{E : Iref} − EMM{Iref}](10). [c] ∆∆Gsol represents the
relative solvation GFE contribution to the GFE of EI complex formation: ∆∆Gsol = [Gsol{E : Ix} −Gsol{Ix}]−
[Gsol{E : Iref} −Gsol{Iref}](11). [d] ∆∆TSvib represents the relative entropic contribution of the inhibitor to the GFE
related to the E:I complex:∆∆TSvib = [∆∆TSvib{Ix}E − ∆∆TSvib{Ix}]− [∆∆TSvib{Iref}E − ∆∆TSvib{Iref}] (12).
[e] ∆∆Gcom represents the relative GFE change related to the enzyme-inhibitor complex formation: (see
Equation (9)). [f] ICexp

50 [24] represents the inhibitor concentration that causes 50% decrease in the rate of substrate

conversion by FP3 measured in the enzyme assay: pICexp
50 = − log10

ICexp
50

109 . [g] This is the ratio of the predicted
activity on the experimental activity, pICpre

50 /pICexp
50 . This ratio is close to 1, indicating the predictivity of the

QSAR model.

Table 3. Statistical data of correlation between computed ∆∆Gcom ICexp
50 of the training set.pICexp

50 =

− log10

(
ICexp

50 × 10−9
)
= −0.4794× ∆∆Gcom + 4.0455.

Statistical Data of Linear Regression

Number of compounds n 9
Squared correlation coefficient of regression R2 0.89

Leave-one-out cross-validated squared correlation Coefficient R2
xv 0.81

Standard 0.34
Statistical significance of regression, Fisher F-test 58.58

Level of statistical significance α > 95%
Range of activities of ICexp

50 (nM) 60–47,230

For this training set, a plot of the linear correlation is shown in Figure 2 and the
statistical data of the regression are provided in Table 3. For the correlation involving
∆∆Gcom, the relatively high regression coefficient on the values, together with the statistical
significance Fischer F-test, suggest that there is no chance correlation between the binding
mode and the observed inhibitory potencies of the training set.

Figure 2. Correlation plot between pICexp
50 and relative complexation Gibbs free energies ∆∆Gcom of

the training set of nine FP3 inhibitors.

The ratio of the predicted and observed inhibition constants pICpre
50 /pICexp

50 for the
validation set of three PEPs (not included in the training set) were closed to 1. This proves
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the predictive power of the QSAR model, suggesting that the regression equation (A)
(Table 3), and the computed ∆∆Gcom quantities of the newly designed PEP analogues
can be used to predict their inhibitory potencies (ICpre

50 ) against FP3, on condition that the
binding modes of the designed analogues and those of the training set compounds are the
same relative to the receptor site. Such an approach could reduce the required number
of molecules to be synthesised in a rational drug development project quite considerably.
The above procedure has been previously applied by our team in several drug design
projects [34,36,38–47].

3.3. Inhibitor Binding Modes

The predicted binding mode of the best active PEP39 coming from the complexation
model is illustrated in 3D depiction in Figure 3. The main interactions with the active
site residues, namely the H-Bond with the catalytic residue Cys51, are in line with the
docking study and WaterMap calculations [24] which, unfortunately, did not provide any
statistical correlation between binding affinity and activity (results not shown). The bound
conformation of PEP sheds light on the structural features for binding affinity, which are
vital for the design of novel potent non-peptidic FP3 inhibitors by exploiting the S1′ to
S3 pockets (Figure 4) [30]. In order to verify whether other interesting interactions not
displayed have to be taken into account in the description of PEP binding mode at the FP3
active site for the rational design of new analogues, the interaction energy (IE) between
each active site residue and PEPx was computed. The breakdown of the interaction energy
diagram into each S1′-S3 subsite residue contribution of FP3 for PEPs, displayed in Figure 3,
indicates the highest interacting residues of the overall active site of FP3. Moreover, the
predicted binding mode of PEP inhibitors highlights three main favourable non-bond
interactions (Figure 4): conventional hydrogen bonds with residues GLN 45, GLY 92, TYR
93, ASN 182 and HIS 183; carbon hydrogen bonds involving residues GLY 91, GLY 92 and
SER 158; GLY 91 and GLY 92 are still interacting through hydrophobic amide Pi stacking;
van der Waals contacts (hydrophobics) with CYS 48, GLY 49, TRP 52, ASN 87, CYS 89, ILE
94, ALA 184, GLU 243 and TRP 215.

Figure 3. Breakdown of interaction energy (kcal/mol) contribution between PEP32, PEP39, PEP40
and the most interacting residues of the FP3 active site.

It was observed that the IE diagrams analysis could not significantly guide the choice
of the R-groups in S1’ and S2 subsites [30], when compared with the case for the design
of thymine-like inhibitors of thymidine monophosphate kinase [41]. It would rather be
suggested that a large and diverse combinatorial virtual library (VL) of PEPs be built and
screened with our FP3 inhibition 3D-QSAR PH4, based on the complexation one descriptor
QSAR model. A successful case study was the design of pyrrolidine carboxamide inhibitors
of Mycobacterium tuberculosisInhA [42].
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Figure 4. Proposed binding mode of peptidomimetics inhibitors at the active site of FP3. Main favourable non-bond
interactions depicted in 3D (left picture) and 2D (right picture) for the most active PEP39 (purple carbons atoms).

3.4. Ligand-Based 3D-QSAR PH4 Model of FP3 Inhibition

The 3D-QSAR PH4 pharmacophore generation process follows three main steps,
namely the constructive, the subtractive and the optimisation steps [33]. The constructive
phase of Hypo-Gen has automatically selected the most active compounds for which
ICexp

50 ≤ 1.1× 60 nM as leads. Thus, only the most active compound PEP39 (ICexp
50 = 60 nM)

was used to generate the starting PH4 features. Only those features that matched this lead
were retained. In the subtractive phase, which is normally used to remove pharmacophoric
features present in poorly active molecules, none of the training set compounds were found
to be inactive (ICexp

50 > 60× 103.5 = 189, 736 nM). During the optimisation phase, the score
of the pharmacophoric hypothesis is improved. Hypotheses are scored according to errors
in activity estimates from regression and complexity via a simulated annealing approach.
At the end, the top scoring 10 unique pharmacophoric hypotheses (Table 4) were kept, all
displaying four features. The generated pharmacophore models were then assessed for
their reliability based on the calculated cost parameters. The overall costs ranged from
24.13 (Hypo1) to 456.44 (Hypo10). The relatively small gap between the highest and lowest
cost parameter corresponds well with the homogeneity of the generated hypotheses and
the consistency of the training set. For this PH4 model, the fixed cost (21.24) is lower than
the null cost (2317.26) by a difference ∆ = 2296. This difference Is a major quality indicator
of the PH4 predictability (∆ > 70 corresponds to an excellent chance or a probability higher
than 90% that the model represents a true correlation [33]). To be statistically significant,
the hypotheses have to be as close as possible to the fixed cost and as far as possible from
the null cost. The cost distance ∆ ≥ 1860 for the set of 10 hypotheses confirms the high
quality of the pharmacophore model.

The standard indicators such as the RMSDs between the hypotheses ranged from 0.79
to 9.83 and the squared correlation coefficient (R2) falls to an interval from 0.90 to 0.99. The
first PH4 hypothesis with the best RMSD and R2 was retained for further analysis. The
statistical data for the set of hypotheses (costs, RMSD, R2) are listed in Table 4. The geometry
of the Hypo1 pharmacophore of FP3 inhibition is displayed in Figure 5. Table 5 lists the
regression equation (Table 3) for pICexp

50 vs. pICpre
50 estimated from Hypo1 with related

indicators such as R2, R2
xv, Fisher F-test, σ and α, while Figure 6 displays a plot of regression

equation for pICexp
50 vs. pICpre

50 . To check the consistency of the generated pharmacophore
model, we have computed the ratio of predicted and observed activities (pICpre

50 /(pICexp
50 )
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for the validation set. The computed ratios are as follows: PEP26 (1.01), PEP28 (1.01), PEP36
(1.01) all of them relatively close to one, which documents the substantial predictive power
of the regression for the best PH4 model.

Table 4. Output parameters of 10 generated PH4 pharmacophoric hypotheses for FP3 inhibitors after
Cat-Scramble validation procedure (49 scrambled runs for each hypothesis at the selected level of
confidence of 98%).

Hypothesis RMSD [a] R2 [b] Total
Costs [c]

Costs
Difference [d]

Closest
Random [e]

Hypo 1 0.795 0.999 24.13 2293.1 31.20
Hypo 2 2.958 0.991 60.64 2256.6 31.90
Hypo 3 3.623 0.987 80.35 2236.9 39.75
Hypo 4 4.907 0.976 130.37 2186.9 42.21
Hypo 5 5.128 0.974 139.89 2177.4 44.21
Hypo 6 5.203 0.973 143.71 2173.5 45.02
Hypo 7 5.880 0.966 177.49 2139.8 45.02
Hypo 8 7.910 0.937 304.23 2013.0 45.03
Hypo 9 9.767 0.902 451.68 1865.6 46.00

Hypo 10 9.830 0.901 456.44 1860.8 47.18
[a] root mean square deviation; [b] squared correlation coefficient; [c] overall cost parameter of the PH4 pharma-
cophore; [d] cost difference between null cost and hypothesis total cost; [e] lowest cost from 49 scrambled runs
at a selected level of confidence of 98%. The fixed cost = 21.24, with RMSD = 0, the null cost = 2317.26, with
RMSD = 22.65 and the configuration cost = 11.85.

Figure 5. (a) Features of the Hypo1 pharmacophore of FP3 inhibition; (b) pharmacophore mapping by the most active of the
training set PEP39; (c) inter-features distances in Å; (d) angles between features. Colours legend of features: hydrophobic
(blue), hydrogen bond acceptor (green), hydrogen bond donor (purple), excluded volumes (grey).
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Table 5. Statistical data on regression analysis of correlation for the training set between PH4 predicted

activity (pICpre
50 ) and experimental one (pICexp

50 ) against FP3. pICexp
50 = − log10

(
ICexp

50 × 10−9
)

=

1.0002× pICpre
50 − 0.0012 .

Statistical Data of Linear Regression

Number of compounds n 9
Squared correlation coefficient of regression R2 0.99

Leave-one-out cross-validated squared correlation Coefficient R2
xv 0.99

Standard 0.04
Statistical significance of regression, Fisher F-test 5675.56

Level of statistical significance α > 98%
Range of activities of ICexp

50 (nM) 60–47,230

Figure 6. Plot of estimated and experimental activity for PH4 Hypo 1.

The configuration cost (11.85 for all hypotheses) far below 17 confirms this pharma-
cophore as a reasonable one.

The link between the 98% significance and the number 49 scrambled runs of each
hypothesis is based on the formula S = [1 − (1 + X)/Y] × 100, with X as the total number
of hypotheses having a total cost lower than the original hypothesis (Hypo 1) and Y the
total number of HypoGen runs (initial + random runs): X = 0 and Y = (1 + 49), hence
98% = {1 − [(1 + 0)/(49 + 1)]} × 100.

The evaluation of Hypo 1 was performed first through Fisher’s randomisation cross-
validation test. The Cat-Scramble program was used to randomise the experimental
activities of the training set. At 98% confidence level, each of the 49 scramble runs created
10 valid hypotheses, using the same features and parameters as in the generation of the
original 10 pharmacophore hypotheses.

Among them, the cost value of Hypo1 is the lowest compared with those of the
49 randomly generated hypotheses, as we can see in Table 4, where the lowest cost of the
49 random runs is listed for each original hypothesis, and none of them was as predictive as
the original hypotheses generated shown in Table 4. Thus, there is a 98% probability that the
best selected hypothesis Hypo1 represents a pharmacophore model for inhibitory activity
of peptidomimetics with a similar level of predictive power as the complexation QSAR
model, which relies on the PEPx active conformations from 3D structures of the FP3-PEPx
complexes and computed GFE of enzyme–inhibitor binding ∆∆Gcom. Another evaluation
of Hypo 1 is the mapping of the best active training set PEP39 (Figure 5) displaying
the geometry of the Hypo1 pharmacophore of FP3 inhibition. The regression equation
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for pICexp
50 vs. pICpre

50 estimated from Hypo1:pICexp
50 = 1.0002 × pICpre

50 − 0.0012 (n = 9,
R2 = 0.99, R2

xv = 0.99, F-test = 5675.56, σ = 0.04, α > 98 %) is also plotted on Figure 5.

3.5. Library Design and ADME Focusing

In order to identify more potent Pf FP3 peptidomimetics inhibitors, we have built a
virtual library of new analogues inhibitors of Pf FP3 based on substitutions at four positions
(P1′, P1, P2 and P3) of a scaffold of a dipeptidic compound in order to better FP3 active site
four pockets S1′, S1, S2 and S3 [30]. This virtual library was built from the side chains of
20 essential amino acids except the proline side chain. The 19 R-groups listed in Table 6 have
been attached in positions R1 to R4 of the appropriate scaffold to provide a combinatorial
library of the size: R1 × R2 × R3 × R4 = 194 = 130, 321 PEPAs.

Table 6. R-groups (amino acid side chains) used in the design of the initial diversity library of PEP analogues. Dashed
bonds indicate the attachment points of the fragments.
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from these peptidomimetic computational studies can guide the design of novel antimalar-
ial inhibitors of FP3 deliverable by injection. Therefore, no ADME-based focusing step in
order to remove compounds with expected poor oral bioavailability and low drug likeness
was performed for the enumerated combinatorial library [64].

3.6. Screening PEPs Virtual Library Using the Obtained in Silico Model

The library of PEP analogues has been further virtually screened for molecular struc-
tures matching to the 3D-QSAR PH4 pharmacophore model Hypo1 of FP3 inhibition.
During this virtual screening, 1000 conformations were generated for each analogue us-
ing the BEST algorithm of Discovery Studio 2.5. Thus 130,321,000 conformations were
screened to fit the 3D-QSAR PH4 pharmacophore model Hypo1 retained in this work.
From the set of 130,321,000 analogues, few thousands of PEPAs mapped to at least two fea-
tures, 242 of which mapped to four features of the pharmacophore.Out of then, only the
21 best-fitting analogues (PH4 hits) have been retained and submitted to screening with
help of the complexation QSAR model. Their Gibbs free energy (GFE) upon complex
formation with Pf FP3 has been computed along with its component and their predicted
half-maximal inhibitory concentration ICpre

50 has been estimated with the correlation the
equation on Table 3. The results obtained are given in Table 7. Of the 21 analogues whose in-
hibitory activities were predicted in Table 7, 13 showed better activities than the most active
compound of the training set among them four showed even more activity: PEP-17-03-14-



Sci. Pharm. 2021, 89, 44 15 of 21

10 (ICpre
50 = 0.29 nM); PEP-08-15-18-19 (ICpre

50 = 0.19 nM); PEP-13-06-04-19 (ICpre
50 = 0.10 nM);

PEP-14-14-14-18 (ICpre
50 = 0.07 nM).

Table 7. Complexation Gibbs free energy and its components for the top 21 scoring virtually designed
analogues. The analogue numbering concatenates the index of each substituent R1 to R4 numbered
in Table 6.

Analogues [a] MW
[b] ∆∆HMM

[c] ∆∆Gsol
[d] ∆∆TSvib

[e] ∆∆Gcom
[f] ICpre

50 (nM) [g]

PEP23 482.61 0.00 0.00 0.00 0.00 36,360
PEP-14-19-04-01 400.53 5.54 −6.82 0.75 −2.03 9580.30
PEP-15-04-17-01 389.50 −1.05 −6.59 0.72 −8.36 8.76
PEP-15-04-18-01 405.50 −4.11 −1.27 1.32 −6.69 55.75
PEP-05-12-19-03 428.54 −5.96 1.25 1.43 −6.14 102.41
PEP-15-04-17-03 431.58 −6.25 −2.27 2.78 −11.30 0.34
PEP-18-05-14-03 419.57 −6.60 −1.08 2.02 −9.70 2.00
PEP-01-19-18-04 435.53 −5.83 -2.45 −1.49 −6.79 49.62
PEP-18-19-15-04 534.66 −5.78 −6.88 −2.56 −10.10 1.29
PEP-17-03-14-10 405.50 −7.71 −1.01 2.73 −11.45 0.29
PEP-04-07-19-14 446.62 −7.68 4.89 1.27 −4.07 1009.94
PEP-17-09-19-15 506.61 −12.07 11.41 2.83 −3.49 1906.57
PEP-04-06-05-17 420.62 −5.31 −2.99 0.55 −8.85 5.13
PEP-05-03-18-18 454.57 −1.58 −0.74 0.57 −2.90 3676.95
PEP-14-14-14-18 463.63 −9.46 −2.40 0.91 −12.76 0.07
PEP-02-15-03-19 428.54 −3.28 −2.99 1.78 −8.05 12.35
PEP-03-08-15-19 444.54 −2.26 −5.00 −0.81 −6.45 72.74
PEP-08-15-17-19 492.58 −9.89 −0.26 0.54 −10.69 0.67
PEP-08-15-18-19 508.58 −12.30 0.84 0.38 −11.83 0.19
PEP-09-18-18-19 529.60 −7.61 −0.28 −0.19 −7.70 18.29
PEP-10-18-18-19 543.58 −10.16 −0.81 0.19 −11.15 0.40
PEP-13-06-04-19 474.63 −10.05 −1.60 0.76 −12.42 0.10

[a] Designed analogues; [b] MW represents molecular mass of the inhibitor; [c] ∆∆HMM represents the relative
enthalpic contribution to the Gibbs free energy change related to the FP3-PEP complex formation ∆∆Gcom;
[d] ∆∆Gsol represents the relative solvation Gibbs free energy contribution to ∆∆Gcom; [e] ∆∆TSvib represents
the relative entropic (vibrational) contribution to ∆∆Gcom; [f] ∆∆Gcom represents the relative Gibbs free energy
change related to the enzyme-inhibitor FP3-PEP complex formation (see Equation (9)); [g] ICpre

50 represents the
predicted inhibition constant towards Pf FP3 calculated from ∆∆Gcom using correlation (Table 3).

3.7. Analysis of New Inhibitors

In order to identify the substituents that make the analogues predicted to be active,
we have analysed the frequency of occurrence of certain substituents chosen from Table 7,
on the predicted active analogues. From the four best analogues proposed (seen chemical
structure in Figure 7), the following R-groups are present 3, 4, 6, 8, 10, 13, 14, 15, 17, 18 and
19. Additionally, Figure 8 displays the best virtual hit, analogue PEP-14-14-14-18 and the
least active PEP32 mapped to a PH4. Figure 9 displays a 2D schematic interaction diagram
of the most potent inhibitor PEP39 and the most potent analogue design at the active site
of Pf FP3 as well as the Connolly surface of the active site of Pf FP3.

The FP3–PEPs’ interaction energy breakdown to active site residues displayed on
Figure 10 is classified according to the enzyme’s four pockets S1, S2, S3 and S1′ for the
top four analogues (PEP-Top4). The interaction energy between FP3 and the most active
training set compound PEP39 (ICexp

50 = 60 nM) breakdown is presented on Figure 3 where
only residues with noticeable contributions are displayed. The sum of residues’ contribu-
tion to Eint for the S1 pocket is almost the same for PEP39 and PEP-Top4 as is the case for
the S1′ pocket, where a slight difference of 1 kcal mol−1 in favour of PEP-Top4 is noticed.
For pocket S2 PEP-Top4 the sum of energy is lower by about 5 kcal mol−1 compared with
PEP39. The same stabilising effect of 6 kcal mol−1 in favour of PEP-Top4 is detectable for
pocket S3.
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Figure 7. Chemical structures towards Pf FP3 of four most potent PEP analogues.

Figure 8. The best virtual hit, analogue PEP-14-14-14-18 (with purple carbons atoms), mapped a PH4
Hypo 1.

Figure 9. Cont.
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Figure 9. Connolly surfaces (left) and 3D (right) schematic interaction diagrams of the 4 most potent
analogues designed at the active site of Pf FP3: (a) PEP-17-03-14-10 (ICpre

50 = 0.29 nM); (b) PEP-08-15-
18-19 (ICpre

50 = 0.19 nM); (c) PEP-13-06-04-19 (ICpre
50 = 0.10 nM); (d) PEP-14-14-14-18 (ICpre

50 = 0.07 nM).
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Figure 10. FP3–PEPs interaction energy breakdown for the top four ranked novel analogues.

4. Conclusions

Structural information from the crystal structure of the FP3-K11017 complex has been
successfully used to establish a reliable QSAR model of non-covalent Pf FP3 inhibition by
peptidomimetic (PEP) inhibitors. This model correlates the unique descriptor, namely the
computed Gibbs free energies (GFE) upon complex formation, with observed inhibitory
potencies and is able to identify a few predicted low nanomolar range inhibitors of P.
falciparum. As GFE is a combined descriptor involving the enthalpic gas phase, entropic
contributions and solvation free energy, a precise insight into S1’ and S3 pockets filling has
been performed from the model by analysis of interactions between the enzyme active-site
residues and the inhibitor. For this purpose, the breakdown of the interaction energy
clearly indicated the residues involved in the affinity with the most active inhibitors.
This information has helped to design an initial diversity virtual combinatorial library
of new analogues to be screened by the pharmacophore models derived from the GFE
QSAR. The screened library by mapping of the analogues to the Pf FP3 inhibition PH4
pharmacophore permitted a library subset of 21 best virtual hits to be selected, which
was further submitted to the computation of predicted Pf FP3 inhibitory potencies by the
formerly established complexation QSAR model. The best cross checked analogues showed
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predicted activities in the low nanomolar concentration range, with the most promising hits
being PEP-08-15-17-19 (ICpre

50 = 0.67 nM); PEP-10-18-18-19 (ICpre
50 = 0.40 nM); PEP-15-04-17-

03 (ICpre
50 = 0.34 nM); PEP-17-03-14-10 (ICpre

50 = 0.29 nM); PEP-08-15-18-19 (ICpre
50 = 0.19 nM);

PEP-13-06-04-19 (ICpre
50 = 0.10 nM); PEP-14-14-14-18 (ICpre

50 = 0.07 nM) against Pf FP3. These
four candidates are proposed for synthesis and biological screening and may lead to a
discovery of novel potent peptidomimetic antimalarial.
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