Synthesis and Evaluation of (1,4-Disubstituted)-1,2,3-triazoles as Estrogen Receptor Beta Agonists
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemistry
2.1.1. General Experimental Outline
2.1.2. General Procedure for the Preparation of Azidophenols
2.1.3. General Procedure for Triazole Synthesis
2.2. ERβ Assays
2.2.1. TR-FRET Assay
2.2.2. Cell-Based Functional Assay
2.3. Computational
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dahlman-Wright, K.; Cavailles, V.; Fuqua, S.A.; Jordan, V.C.; Katzenellenbogen, J.A.; Korach, K.S.; Maggi, A.; Muramatsu, M.; Parker, M.G.; Gustafsson, J.A. International Union of Pharmacology, LXIV. Estrogen receptors. Pharmacol. Rev. 2006, 58, 773–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lane, P.H. Estrogen receptors in the kidney: Lessons from genetically altered mice. Gend. Med. 2008, 5, S11–S18. [Google Scholar] [CrossRef]
- Weiser, M.J.; Foradori, C.D.; Handa, R.J. Estrogen receptor beta in the brain: From form to function. Brain Res. Rev. 2008, 5, 309–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sengupta, S.; Jordan, V.C. Novel selective estrogen receptor modulators. In Estrogen Action, Selective Estrogen Receptor Modulators and Women’s Health; Imperial College Press: London, UK, 2013; pp. 325–359. [Google Scholar]
- Farzaheh, S.; Zarghi, A. Estrogen Receptor Ligands: A Review (2013–2015). Sci. Pharm. 2016, 84, 409–427. [Google Scholar] [CrossRef] [Green Version]
- Stauffer, S.R.; Coletta, C.J.; Tedesco, R.; Nishiguchi, G.; Carlson, K.; Sun, J.; Katzenellenbogen, B.S.; Katzenellenbogen, J.A. Pyrazole Ligands: Structure-Affinity/Activity Relationships and Estrogen Receptor-α-Selective Agonists. J. Med. Chem. 2000, 43, 4934–4947. [Google Scholar] [CrossRef] [PubMed]
- Meyers, M.J.; Sun, J.; Carlson, K.E.; Marriner, G.A.; Katzenellenbogen, B.S.; Katzenellenbogen, J.A. Estrogen Receptor-β Potency-Selective Ligands: Structure-Activity Relationship Studies of Diarylpropionitriles and Their Acetylene and Polar Analogues. J. Med. Chem. 2001, 44, 4230–4251. [Google Scholar] [CrossRef] [PubMed]
- Minutolo, F.; Macchia, M.; Katzenellenbogen, B.S.; Katzenellenbogen, J.A. Estrogen receptor β ligands: Recent advances and biomedical applications. Med. Res. Rev. 2011, 31, 364–442. [Google Scholar] [CrossRef] [PubMed]
- Tornoe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase; [1,2,3]-Triazole by regiospecific copper (I)-catalyzed 1,3-dipolar cycloaddition of terminal alkynes to azide. J. Org. Chem. 2002, 67, 3057–3064. [Google Scholar] [CrossRef]
- Rostovtsev, V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise Huisgen cycloaddition process: Copper (I) catalyzed regioselective “ligation” off azide and terminal alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596–2599. [Google Scholar] [CrossRef]
- Agalave, S.G.; Maujan, S.R.; Pore, V.S. Click Chemistry: 1,2,3-Triazoles as Pharmacophores. Chem. Asian J. 2011, 6, 2696–2718. [Google Scholar] [CrossRef]
- Kharb, R.; Sharma, P.C.; Yar, M.S. Pharmacological significance of triazole scaffold. J. Enzyme Inhib. Med. Chem. 2011, 26, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Massarotti, A.; Aprile, S.; Mercalli, V.; Del Grosso, E.; Grosa, G.; Sorba, G.; Tron, G.C. Are 1,4- and 1,5-Disubstituted 1,2,3-Triazoles Good Pharmacophoric Groups? ChemMedChem 2014, 9, 2497–2508. [Google Scholar] [CrossRef] [PubMed]
- Dheer, D.; Singh, V.; Shankar, R. Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg. Chem. 2017, 71, 30–54. [Google Scholar] [CrossRef] [PubMed]
- Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem. 2019, 27, 3511–3531. [Google Scholar] [CrossRef] [PubMed]
- Rani, A.; Singh, G.; Singh, A.; Maqbool, U.; Kaur, G.; Singh, J. CuAAC-ensembled 1,2,3-triazole-linked isosteres as pharmacophores in drug discovery: Review. RSC Adv. 2020, 10, 5610–5635. [Google Scholar] [CrossRef]
- Dalvie, D.K.; Kalgutkar, A.S.; Khojasteh-Bakht, S.C.; Obach, R.S.; O’Donnell, J.P. Biotransformation Reactions of Five-Membered Aromatic Heterocyclic Rings. Chem. Res. Toxicol. 2002, 15, 269–299. [Google Scholar] [CrossRef]
- Pirali, T.; Gatti, S.; Di Brisco, R.; Tacchi, S.; Zaninetti, R.; Brunelli, E.; Massarotti, A.; Sorba, G.; Canonico, P.L.; Moro, L.; et al. Estrogenic Analogs Synthesized by Click Chemistry. ChemMedChem 2007, 2, 437–440. [Google Scholar] [CrossRef]
- Demkowicz, S.; Filipiak, K.; Maslyk, M.; Ciepielski, J.; de Pascual-Teresa, S.; Martin-Santamaria, S.; de Pascual-Teresa, B.; Ramos, A. New clicked full agonists of the estrogen receptor β. RSC Adv. 2013, 3, 3697–3706. [Google Scholar] [CrossRef] [Green Version]
- McCullough, C.M.; Neumann, T.S.; Gone, J.R.; He, Z.; Herrild, C.; Wondergem, J.; Pandey, R.K.; Donaldson, W.A.; Sem, D.S. Probing the human estrogen receptor-a binding requirements for phenolic mono- and di-hydroxyl compounds: A combined synthesis, binding and docking study. Bioorg. Med. Chem. 2014, 22, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Hanson, A.M.; Perera, K.L.I.S.; Kim, J.; Pandey, R.K.; Sweeney, N.; Lu, X.; Imhoff, A.; Mackinnon, A.C.; Wargolet, A.J.; Van Hart, R.M.; et al. A–C Estrogens as Potent and Selective Estrogen Receptor-Beta Agonists (SERBAs) to Enhance Memory Consolidation under Low-Estrogen Conditions. J. Med. Chem. 2018, 61, 4720–4738. [Google Scholar] [CrossRef]
- Perera, K.L.I.S.; Hanson, A.M.; Lindeman, S.; Imhoff, A.; Lu, X.; Sem, D.S.; Donaldson, W.A. Synthesis and evaluation of 4-cycloheptylphenols as selective Estrogen receptor-b agonists (SERBAs). Eur. J. Med. Chem. 2018, 157, 791–804. [Google Scholar] [CrossRef] [PubMed]
- Wetzel, E.A.; Hanson, A.M.; Troutfetter, C.L.; Burkett, D.J.; Sem, D.S.; Donaldson, W.A. Synthesis and evaluation of 17a-triazolyl and 9a-cyano derivatives of estradiol. Bioorg. Med. Chem. 2020, 28, 115670. [Google Scholar]
- Fleischer, A.W.; Schalk, J.C.; Wetzel, E.A.; Hanson, A.M.; Sem, D.S.; Donaldson, W.A.; Frick, K.M. Long-term oral administration of a novel estrogen receptor beta agonists enhances memory and alleviates drug-induced vasodilation in young ovariectomized mice. Horm. Behav. 2021, 130, 104948. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.; Padala, A.K.; Dar, B.A.; Sing, B.; Sreedhar, B.; Vishwakarma, R.A.; Bharate, S.B. Recyclable clay supported Cu (II) catalyzed tandem one-pot synthesis of 1-aryl-1,2,3-traizoles. Tetrahedron 2012, 68, 8156–8162. [Google Scholar] [CrossRef]
- Shang, J.-Q.; Fu, H.; Li, Y.; Yang, T.; Gao, C.; Li, Y.-M. Copper-catalyzed decarboxylation/cycloaddition cascade of alkynyl carboxylic acids with azide. Tetrahedron 2019, 75, 253–259. [Google Scholar] [CrossRef]
- Xiao, Z.; Fokkens, M.; Chen, D.; Kok, T.; Proietti, G.; van Merkerk, R.; Poelarends, G.J.; Dekker, F.J. Structure-activity relationships for binding of 4-substituted triazole-phenols to macrophage migration inhibitory factor (MIF). Eur. J. Med. Chem. 2020, 186, 111849. [Google Scholar] [CrossRef] [PubMed]
- Shiau, A.K.; Barstad, D.; Radek, J.T.; Meyers, M.J.; Nettles, K.W.; Katzenellenbogen, B.S.; Katzenellenbogen, J.A.; Agard, D.A.; Greene, G.L. Structural characterization of a subtype-selective ligand reveals a novel mode of estrogen receptor antagonism. Nat. Struct. Biol. 2002, 9, 359–364. [Google Scholar]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
Compound | Yield | ERβ EC50 (μM) | Volume (calc. Å3) 1 | O–O Distance 2 | Docking Score 3 | |
---|---|---|---|---|---|---|
5 | 70% | 5.53 | 212 | – | −7.6 | |
6 | 68% | ND | 212 | – | −7.9 | |
7 | 62% | 9.04 | 229 | – | −7.9 | |
8 | 48% | 25.8 | 229 | – | −8.0 | |
9 | 90% | 44.6 | 165 | 10.1 Å | −6.6 | |
10 | 78% | 4.28 | 165 | 9.1 Å | −7.9 | |
11 | 67% | 9.69 | 170 | 10.2 Å | −7.4 | |
12 | 74% | >50 | 198 | 9.3 Å | −6.6 | |
13 | 69% | 9.15 | 198 | 9.2 Å | −7.3 | |
14 | 80% | 48.1 | 215 | 9.3 Å | −6.6 | |
15 | 81% | ND | 215 | 9.4 Å | −7.0 | |
16 | 55% | 18.2 | 203 | 9.3 Å | −7.2 | |
17 | 76% | >50 | 212 | 9.4 Å | −6.8 | |
18 | 78% | 18.2 | 182 | 10.8 Å | −7.2 | |
19 | 82% | >50 | 179 | 10.6 Å | −7.0 | |
(±)-20 | 62% | 13.6 | 199 | 11.1 Å | −7.7 | |
(±)-21 | 69% | 1.59 | 254 | 9.2–10.9 Å | −9.3 (R) −9.3 (S) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wetzel, E.A.; Corriero, G.C.; Brown-Ford, S.; Sem, D.S.; Donaldson, W.A. Synthesis and Evaluation of (1,4-Disubstituted)-1,2,3-triazoles as Estrogen Receptor Beta Agonists. Sci. Pharm. 2022, 90, 46. https://doi.org/10.3390/scipharm90030046
Wetzel EA, Corriero GC, Brown-Ford S, Sem DS, Donaldson WA. Synthesis and Evaluation of (1,4-Disubstituted)-1,2,3-triazoles as Estrogen Receptor Beta Agonists. Scientia Pharmaceutica. 2022; 90(3):46. https://doi.org/10.3390/scipharm90030046
Chicago/Turabian StyleWetzel, Edward A., Grace C. Corriero, Sandra Brown-Ford, Daniel S. Sem, and William A. Donaldson. 2022. "Synthesis and Evaluation of (1,4-Disubstituted)-1,2,3-triazoles as Estrogen Receptor Beta Agonists" Scientia Pharmaceutica 90, no. 3: 46. https://doi.org/10.3390/scipharm90030046
APA StyleWetzel, E. A., Corriero, G. C., Brown-Ford, S., Sem, D. S., & Donaldson, W. A. (2022). Synthesis and Evaluation of (1,4-Disubstituted)-1,2,3-triazoles as Estrogen Receptor Beta Agonists. Scientia Pharmaceutica, 90(3), 46. https://doi.org/10.3390/scipharm90030046