Effect of Aqueous Extracts of Quercus resinosa on the Mechanical Behavior of Bigels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oak Leaves Collection and Infusion Preparation
2.2. Chemical Characterization of the Aqueous Extract of Oak Leaves
2.3. Microbiological Assay
2.4. Bigels
2.5. Quercus Leaves Extract Load into the Bigels
2.6. Microscopy Analysis
2.7. Rheological Analysis
2.8. Statistical Analysis
3. Results
3.1. Characterization of the Polyphenolic Profile of Aqueous Extracts of Quercus Resinosa Leaves
3.2. Microbiological Assay
3.3. Microscopy
3.4. Steady Shear Results
3.5. Analysis of the Viscoelastic Behavior of the Bigels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez-Burgos, J.; Ramírez-Mares, M.; Larrosa, M.; Gallegos-Infante, J.; González-Laredo, R.; Medina-Torres, L.; Rocha-Guzmán, N. Antioxidant, antimicrobial, antitopoisomerase and gastroprotective effect of herbal infusions from four Quercus species. Ind. Crop. Prod. 2013, 42, 57–62. [Google Scholar] [CrossRef]
- Park, S.-Y.; Kim, H.S.; Lee, S.H.; Kim, S. Characterization and Analysis of the Skin Microbiota in Acne: Impact of Systemic Antibiotics. J. Clin. Med. 2020, 9, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuart, B.; Maund, E.; Wilcox, C.; Sridharan, K.; Sivaramakrishnan, G.; Regas, C.; Newell, D.; Soulsby, I.; Tang, K.; Finlay, A.; et al. Topical preparations for the treatment of mild-to-moderate acne vulgaris: Systematic review and network meta-analysis. Br. J. Dermatol. 2021, 185, 512–525. [Google Scholar] [CrossRef]
- Sommatis, S.; Capillo, M.C.; Maccario, C.; Liga, E.; Grimaldi, G.; Rauso, R.; Bencini, P.L.; Guida, S.; Zerbinati, N.; Mocchi, R. Biophysical and Biological Tools to Better Characterize the Stability, Safety and Efficacy of a Cosmeceutical for Acne-Prone Skin. Molecules 2022, 27, 1255. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Lu, Y.; Cui, M.; Miao, S.; Gao, Y. Design of gel structures in water and oil phases for improved delivery of bioactive food ingredients. Crit. Rev. Food Sci. Nutr. 2019, 60, 1651–1666. [Google Scholar] [CrossRef] [PubMed]
- Martín-Illana, A.; Notario-Pérez, F.; Cazorla-Luna, R.; Ruiz-Caro, R.; Bonferoni, M.C.; Tamayo, A.; Veiga, M.D. Bigels as drug delivery systems: From their components to their applications. Drug Discov. Today 2021, 27, 1008–1026. [Google Scholar] [CrossRef]
- Shakeel, A.; Lupi, F.R.; Gabriele, D.; Baldino, N.; De Cindio, B. Bigels: A unique class of materials for drug delivery applications. Soft Mater. 2018, 16, 77–93. [Google Scholar] [CrossRef]
- Soni, K.; Gour, V.; Agrawal, P.; Haider, T.; Kanwar, I.L.; Bakshi, A.; Soni, V. Carbopol-olive oil-based bigel drug delivery system of doxycycline hyclate for the treatment of acne. Drug Dev. Ind. Pharm. 2021, 47, 954–962. [Google Scholar] [CrossRef]
- Behera, B.; Sagiri, S.S.; Pal, K.; Pramanik, K.; Rana, U.A.; Shakir, I.; Anis, A. Sunflower Oil and Protein-based Novel Bigels as Matrices for Drug Delivery Applications—Characterization and in vitro Antimicrobial Efficiency. Polym. Technol. Eng. 2015, 54, 837–850. [Google Scholar] [CrossRef]
- Liu, X.; Le Bourvellec, C.; Renard, C.M.G.C. Interactions between cell wall polysaccharides and polyphenols: Effect of molecular internal structure. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3574–3617. [Google Scholar] [CrossRef]
- Ćorković, I.; Pichler, A.; Šimunović, J.; Kopjar, M. Hydrogels: Characteristics and Application as Delivery Systems of Phenolic and Aroma Compounds. Foods 2021, 10, 1252. [Google Scholar] [CrossRef] [PubMed]
- Ivko, T.; Hrytsenko, V.; Kienko, L.; Bobrytska, L.; Kukhtenko, H.; Germanyuk, T. Investigation of the Rheological Properties of Ointment Bases as a Justification of the Ointment Composition for Herpes Treatment. Turk. J. Pharm. Sci. 2021, 18, 628–636. [Google Scholar] [CrossRef]
- Lupi, F.R.; De Santo, M.P.; Ciuchi, F.; Baldino, N.; Gabriele, D. A rheological modelling and microscopic analysis of bigels. Rheol. Acta 2017, 56, 753–763. [Google Scholar] [CrossRef]
- Lupi, F.; Gentile, L.; Gabriele, D.; Mazzulla, S.; Baldino, N.; de Cindio, B. Olive oil and hyperthermal water bigels for cosmetic uses. J. Colloids Interface Sci. 2015, 459, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Sagiri, S.S.; Singh, V.K.; Kulanthaivel, S.; Banerjee, I.; Basak, P.; Battachrya, M.; Pal, K. Stearate organogel–gelatin hydrogel based bigels: Physicochemical, thermal, mechanical characterizations and in vitro drug delivery applications. J. Mech. Behav. Biomed. Mater. 2015, 43, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Palierne, J.F. Linear rheology of viscoelastic emulsions with interfacial tension. Rheol. Acta 1990, 29, 204–214. [Google Scholar] [CrossRef]
- Pal, R. Novel shear modulus equations for concentrated emulsions of two immiscible elastic liquids with interfacial tension. J. Non-Newton. Fluid Mech. 2002, 105, 21–33. [Google Scholar] [CrossRef]
- Martinez, R.M.; Magalhães, W.V.; Sufi, B.D.S.; Padovani, G.; Nazato, L.I.S.; Velasco, M.V.R.; Lannes, S.C.D.S.; Baby, A.R. Vitamin E-loaded bigels and emulsions: Physicochemical characterization and potential biological application. Colloids Surf. B Biointerfaces 2021, 201, 111651. [Google Scholar] [CrossRef] [PubMed]
- Martinez, R.M.; Filho, P.L.O.; Gerbelli, B.B.; Magalhães, W.V.; Velasco, M.V.R.; Lannes, S.C.D.S.; de Oliveira, C.L.P.; Rosado, C.; Baby, A.R. Influence of the Mixtures of Vegetable Oil and Vitamin E over the Microstructure and Rheology of Organogels. Gels 2022, 8, 36. [Google Scholar] [CrossRef]
- Dorigato, A.; Pegoretti, A.; Penati, A. Linear low-density polyethylene/silica micro-and nanocomposites: Dynamic rheological measurements and modelling. Exp. Polym. Lett. 2010, 4, 115–129. [Google Scholar] [CrossRef]
- Chaykar, A.S.; Goharpey, F.; Yeganeh, J.K. Volume phase transition of electron beam cross-linked thermo-responsive PVME nanogels in the presence and absence of nanoparticles: With a view toward rheology and interactions. RSC Adv. 2016, 6, 9693–9708. [Google Scholar] [CrossRef]
- Tayefi, M.; Razavi-Nouri, M.; Sabet, A. Influence of ordering and disordering of organoclay on rheological properties of uncured and cured ethylene-octene copolymer nanocomposites. Appl. Clay Sci. 2017, 135, 206–214. [Google Scholar] [CrossRef]
- Zare, Y.; Park, S.P.; Rhee, K.Y. Analysis of complex viscosity and shear thinning behavior in poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes biosensor based on Carreau–Yasuda model. Results Phys. 2019, 13, 102245. [Google Scholar] [CrossRef]
- Díaz-Rivas, J.O.; González-Laredo, R.F.; Chávez-Simental, J.A.; Montoya-Ayón, J.B.; Moreno-Jiménez, M.R.; Gallegos-Infante, J.A.; Rocha-Guzmán, N.E. Comprehensive Characterization of Extractable Phenolic Compounds by UPLC-PDA-ESI-QqQ of Buddleja scordioides Plants Elicited with Salicylic Acid. J. Chem. 2018, 2018, 4536970. [Google Scholar] [CrossRef] [Green Version]
- Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; González-Laredo, R.F.; Reynoso-Camacho, R.; Ramos-Gómez, M.; Garcia-Gasca, T.; Rodríguez-Muñoz, M.E.; Guzmán-Maldonado, S.H.; Medina-Torres, L.; Lujan-García, B.A. Antioxidant activity and genotoxic effect on HeLa cells of phenolic compounds from infusions of Quercus resinosa leaves. Food Chem. 2009, 115, 1320–1325. [Google Scholar] [CrossRef]
- Shakeel, A.; Mahmood, H.; Farooq, U.; Ullah, Z.; Yasin, S.; Iqbal, T.; Chassagne, C.; Moniruzzaman, M. Rheology of Pure Ionic Liquids and Their Complex Fluids: A Review. ACS Sustain. Chem. Eng. 2019, 7, 13586–13626. [Google Scholar] [CrossRef] [Green Version]
- García-Villalba, R.; Espín, J.C.; Tomás-Barberán, F.A.; Rocha-Guzmán, N.E. Comprehensive characterization by LC-DAD-MS/MS of the phenolic composition of seven Quercus leaf teas. J. Food Compos. Anal. 2017, 63, 38–46. [Google Scholar] [CrossRef]
- Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial activity of flavonoids and their structure–activity relationship: An update review. Phytother. Res. 2018, 33, 13–40. [Google Scholar] [CrossRef] [Green Version]
- Kobus-Cisowska, J.; Szymanowska-Powałowska, D.; Szczepaniak, O.; Kmiecik, D.; Przeor, M.; Gramza-Michałowska, A.; Cielecka-Piontek, J.; Smuga-Kogut, M.; Szulc, P. Composition and In Vitro Effects of Cultivars of Humulus lupulus L. Hops on Cholinesterase Activity and Microbial Growth. Nutrients 2019, 11, 1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steyn, A.; Van Staden, A.B.; Lall, N. Post-inflammatory hyperpigmentation vs. progressive macular hypomelanosis and their solutions from natural products. Stud. Nat. Prod. Chem. 2020, 65, 173–193. [Google Scholar] [CrossRef]
- Schwank, S.; Rajacic, Z.; Zimmerli, W.; Blaser, J. Impact of bacterial biofilm formation on in vitro and in vivo activities of antibiotics. Antimicrob. Agents Chemother. 1998, 42, 895–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, P.; Sager, B.; Fa, A.; Liang, T.; Lozano, C.; Khazzam, M. Bactericidal efficacy of hydrogen peroxide on Cutibacterium acnes. Bone Jt. Res. 2019, 8, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Park, E.J.; Oh, J.-H. Antimicrobial activities of Korean mugwort (Artemisia iwayomogi and Artemisia princeps) extracts against Staphylococcus aureus and Cutibacterium acnes. Korean J. Food Preserv. 2019, 26, 381–390. [Google Scholar] [CrossRef] [Green Version]
- De Sousa, I.C.V.D. New and emerging drugs for the treatment of acne vulgaris in adolescents. Expert Opin. Pharmacother. 2019, 20, 1009–1024. [Google Scholar] [CrossRef] [PubMed]
- Almuhayawi, M.S. Propolis as a novel antibacterial agent. Saudi J. Biol. Sci. 2020, 27, 3079–3086. [Google Scholar] [CrossRef]
- Dridi, W.; Bordenave, N. Influence of polysaccharide concentration on polyphenol-polysaccharide interactions. Carbohydr. Polym. 2021, 274, 118670. [Google Scholar] [CrossRef] [PubMed]
- Zare, Y.; Rhee, K.Y. Development and modification of conventional Ouali model for tensile modulus of polymer/carbon nanotubes nanocomposites assuming the roles of dispersed and networked nanoparticles and surrounding interphases. J. Colloid Interface Sci. 2017, 506, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Zare, Y.; Rhee, K.Y. Prediction of tensile modulus in polymer nanocomposites containing carbon nanotubes (CNT) above percolation threshold by modification of conventional model. Curr. Appl. Phys. 2017, 17, 873–879. [Google Scholar] [CrossRef]
- Zare, Y.; Garmabi, H.; Rhee, K.Y. Structural and phase separation characterization of poly(lactic acid)/poly(ethylene oxide)/carbon nanotube nanocomposites by rheological examinations. Compos. Part B Eng. 2018, 144, 1–10. [Google Scholar] [CrossRef]
Flavonoids | Concentration (ng/mL) | |
---|---|---|
Procyanidin-B2 | 0.330 ± 0.19 | |
Flavanols | (epi)-catechin gallate | 0.370 ± 0.00 |
(epi)-catechin | 0.450 ± 0.02 | |
Procyanidin-B1 | 0.710 ± 0.09 | |
Catechin | 1.123 ± 0.18 | |
Quercetin | 0.243 ± 0.01 | |
Flavonols | Rutin | 0.516 ± 0.02 |
Kampferol-3-O-glucoside | 0.820 ± 0.09 | |
Flavanolols | Taxifolin | 0.365 ± 0.21 |
Flavanones | Naringenin | 0.335 ± 0.19 |
Eriodictyol | 0.340 ± 0.19 | |
Flavones | Acacetin | 0.380 ± 0.21 |
Neohespiridin | 0.360 ± 0.20 | |
Others | Phlorizin | 0.430 ± 0.25 |
Mangiferin | 0.290 ± 0.00 |
Microorganism | Doubling Time (min) | Generation Number (Generation/4 h) |
---|---|---|
Staphyloccocus epidermidis | 126.31 | 1.9 |
Cutibacterium acnes | 100 | 2.4 |
Sample | Staphyloccocus epidermidis | Cutibacterium acnes |
---|---|---|
% inhibition | % inhibition | |
Penicilline G | 51.54 | 96.95 |
Benzoyl peroxide | 100 | 76.57 |
Q. resinosa (500 μg/mL) | 78.15 | 64.18 |
Q. resinosa (1000 μg/mL) | 72.43 | 71.10 |
Q. resinosa (2000 μg/mL) | 71.19 | 97.15 |
Q. resinosa (3000 μg/mL) | 93.88 | 97.04 |
Q. resinosa (4000 μg/mL) | 99.84 | 100 |
Sample | Concentration μg/mL | n | K (Pa.sn) | R2 |
---|---|---|---|---|
Unloaded | 0 | 0.26 ± 0.01 | 46.95 ± 1.29 | 0.99 |
Loaded | 500 | 0.24 ± 0.01 | 91.50 ± 1.48 | 0.97 |
Loaded | 1000 | 0.22 ± 0.01 | 91.60 ± 1.37 | 0.96 |
Loaded | 2000 | 0.22 ± 0.01 | 84.20 ± 3.96 | 0.95 |
Sample μg/mL | η0* (Pa.s) | λ (s) | a | R2 |
---|---|---|---|---|
Unloaded | 1.915 × 103 | 1.62 | 0.35 | 0.98 |
Loaded 500 | 3.163 × 103 | 1.56 | 0.32 | 0.97 |
Loaded 1000 | 2.420 × 103 | 1.64 | 0.33 | 0.98 |
Loaded 2000 | 2.730 × 103 | 1.18 | 0.29 | 0.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallegos-Infante, J.A.; Galindo-Galindo, M.d.P.; Moreno-Jiménez, M.R.; Rocha-Guzmán, N.E.; González-Laredo, R.F. Effect of Aqueous Extracts of Quercus resinosa on the Mechanical Behavior of Bigels. Sci. Pharm. 2022, 90, 73. https://doi.org/10.3390/scipharm90040073
Gallegos-Infante JA, Galindo-Galindo MdP, Moreno-Jiménez MR, Rocha-Guzmán NE, González-Laredo RF. Effect of Aqueous Extracts of Quercus resinosa on the Mechanical Behavior of Bigels. Scientia Pharmaceutica. 2022; 90(4):73. https://doi.org/10.3390/scipharm90040073
Chicago/Turabian StyleGallegos-Infante, José Alberto, María del Pilar Galindo-Galindo, Martha Rocío Moreno-Jiménez, Nuria Elizabeth Rocha-Guzmán, and Rubén Francisco González-Laredo. 2022. "Effect of Aqueous Extracts of Quercus resinosa on the Mechanical Behavior of Bigels" Scientia Pharmaceutica 90, no. 4: 73. https://doi.org/10.3390/scipharm90040073
APA StyleGallegos-Infante, J. A., Galindo-Galindo, M. d. P., Moreno-Jiménez, M. R., Rocha-Guzmán, N. E., & González-Laredo, R. F. (2022). Effect of Aqueous Extracts of Quercus resinosa on the Mechanical Behavior of Bigels. Scientia Pharmaceutica, 90(4), 73. https://doi.org/10.3390/scipharm90040073