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Abstract: This paper presents the results of obtaining new cobalt and zinc complexes based on
dicyanophenoxy-substituted carboxypthalocyanine. The original method of synthesis and isolation
of the compound is shown; its spectroscopic and photophysical characteristics are studied. Studies
show the absence of aggregation processes in organic media for solutions of complexes in working
concentration ranges. This shows the possibility of the practical application of structures as catalysts.
The high catalytic activity of cobalt complexes with dicyanophenoxy-substituted carboxyphthalocya-
nine ligand in the conversion reaction of sodium diethyldithiocarbamate to disulfiram, which is an
active component of drugs for the treatment of alcohol dependence, is determined.
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1. Introduction

Currently, high intensification of the production of medicines for various purposes
is taking place. In this regard, processes that make it possible to obtain precursors for
medicine with a high degree of selectivity, under mild conditions and with good yields
are of particular importance. One of the most popular drugs for the treatment of alcohol
dependence is Antabuse® (the active component is disulfiram) [1]. It is characterized by
high efficiency of inhibition of the enzyme acetaldehyde dehydrogenase, thus stopping the
process of decomposition of ethyl alcohol at the stage of acetaldehyde that is toxic to the
human body. Also, there is a positive effect of disulfiram on the human body associated
with the coronavirus infection COVID-19 reported in the literature [2]. Nevertheless,
approaches to the production of disulfiram using highly specific catalysts have not been
studied in depth enough.

Earlier, we showed that the use of phthalocyanine complexes with d-metals with
complex substituents on the periphery shows a good prospect for the catalytic production
of disulfiram under mild conditions [3–5]. Phthalocyanines, as owners of an extended
π-electron system, are well-studied and serve as components of many applications [6–13].
Due to their unique molecular structure, this class of compounds has outstanding chemical
and thermal stability compared to other organometallic compounds [14–16]. Develop-
ment of the structure of the phthalocyanine macrocycle by introducing substituents into
peripheral and non-peripheral positions makes it possible to fine-tune their physical and
chemical properties [17–19]. Thus, properties of complexes can be changed by introducing
substituents of a different nature into the macrocycle [20–23]. By means of the solubility of
the obtained metallophthalocyanines, their physical, chemical and coordination properties
can be regulated [24–30].

Disulfiram is known as one of the most important compounds obtained catalytically
in the presence of phthalocyanine complexes (Figure 1) [5,6]. The molecule has found
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great usability as a component of drugs for the treatment of alcohol addiction. Never-
theless, standard pathways for obtaining disulfiram require special conditions that limit
the possibility of its industrial usage. Although disulfiram remained the most common
pharmaceutical treatment of alcohol abuse until the end of the 20th century, today, it is
often replaced or accompanied with newer drugs, primarily a combination of naltrexone
and acamprosate, which directly attempt to address physiological processes in the brain
associated with alcohol abuse. However, the development of cheap synthetic pathways
together with mild reaction conditions may make a great improvement in the possibility of
disulfiram industrial usage.

Previously, we have shown that the introduction of cyanophenoxyl fragments into
the phthalocyanine structure makes it possible to achieve a high rate of catalytic con-
version of N,N-diethyldithiacarbamate to disulfiram (Figure 1), while maintaining mild
reaction conditions [31–33]. The presence of terminal cyano groups in the structure of the
molecule opens up the possibility of fine-tuning the properties of the resulting material.
Nevertheless, the main problem in this case was the strong hydrophobicity of the resulting
compounds [34–36], which greatly complicated the process of a homogeneous catalytic
reaction. Thus, this study presents the results of qualitative modification of structures by intro-
ducing groups into their composition that enable the solubility of molecules in aqueous media.
The introduction of carboxyl groups into the macrocycle leads to solubility of the resulting
compounds in aqueous media [37–39]. Such a chemical modification makes it possible to use
phthalocyanines as catalysts for the oxidation of sulfur-containing compounds.
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Thus, in this work, phthalocyanine complexes with zinc and cobalt containing carboxylic
and dicyanophenoxy groups on the periphery were synthesized. The compounds were
characterized and their spectroscopic, photophysical and catalytic properties were studied.

2. Materials and Methods

The compounds 4-nitrophthalonitrile, gallic acid (3,4,5-trihydroxybenzoic acid), zinc(II)
acetate (Zn(CH3COO)2), cobalt(II) acetate (Co(CH3COO)2), copper sulfate (CuSO4), urea,
potassium carbonate (K2CO3), dimethylformamide (DMF), dimethyl sulfoxide (DMSO),
tetrahydrofuran (THF), chloroform (CHCl3), pyridine (Py), hydrochloric acid (HCl) and
sodium N, N-diethyldithiocarbamate (DTC) used in the present work were purchased from
Merck© (Merck Life Science LLC, Moscow, Russia).

IR spectra were recorded using an IRAffinity-1S spectrometer (Shimadzu, Kyoto,
Japan) in the frequency range 400–4000 cm−1 directly from compound powders without
any additional sample preparation. The resolution and scan numbers utilized for IR
investigations were equal to 0.5 cm−1 and 70, respectively.

1H NMR spectra were recorded using a Bruker AVANCE 500 spectrometer (Bruker,
Bremen, Germany. Tetramethylsilane was used as the internal standard) with a frequency
of 500 MHz. DMSO-d6 was used as a solvent.

Mass spectra were recorded using a time-of-flight mass spectrometer “Shimadzu Ax-
ima Confidence” (MALDI-TOF MS) (Shimadzu, London, UK). Samples with a concentration
of approximately 10−3 M were prepared in tetrahydrofuran, and CHCA (alpha-cyano-4-
hydroxycinnamic acid) was used as a matrix.
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Electronic absorption spectra were captured on a UNICO2800 spectrophotometer
(UNICO, Chicago, IL, USA) using quartz cuvettes with an optical path length of 1 cm. A
number of organic solvents were used in the experiment, such as chloroform, tetrahydrofu-
ran, dimethylformamide, dimethyl sulfoxide and pyridine.

2.1. Catalytic Properties

The experiment was conducted using the example of a standard reaction of aerobic
catalytic oxidation of N,N-diethyldithiocarbamate (DTC) [5]. The mechanism of catalytic
conversion of sulfur-containing substrates to disulfides in the presence of cobalt phthalo-
cyanine complexes was clearly described and proved in the literature [40] and carefully
checked in a number of our previous works [4,6,37]. The amounts of catalyst used in the
present work were equal to 2 × 10−4 g.

The reaction was carried out in a 650 mL cell equipped with a magnetic stirrer and an
air compressor at a temperature of 298.15 K with an error limit of 0.05 K.

An aqueous solution of DTC with a molar concentration of 10−3 M was placed in a
cell; after achieving a constant temperature in the cell, a zero sample of 2 mL was taken,
after which a catalyst was added, and air supply through the compressor was turned on
at a speed of 2 L/min, which was taken as the moment of the reaction. Samples with a
volume of 2 mL were taken every 3 min, for up to ten samples inclusive, to determine the
current concentration of DTC in the reaction mixture.

A volume of 4 mL of 0.5 M aqueous solution of copper sulfate was added to the samples
collected in test tubes, after which the formation of a dark-brown precipitate of Cu complex
(DTC) was observed. Next, 0.05 mL of 50% acetic acid and 5 mL of chloroform were poured
into each tube, and the mixtures were mixed for about 1.5–2 min until complete extraction
of the unreacted DTC. The resulting organic fractions were diluted with chloroform to
the label and, further, their optical density was determined at a wavelength of 436 nm,
corresponding to the maximum absorption of the complex. Finally, based on the known
value of the molar extinction coefficient Cu(DTC)2, their concentrations were calculated at
the designated time intervals of the reaction.

The formation of disulfide was controlled using IR and NMR spectroscopic methods.
Spectral data are given in the literature [5] and coincide with those obtained.

N,N-sodium diethyldithiocarbamate
IR (KBr): υ, cm−1: 2979 (-CH3 υas), 2847 (-CH2- υas), 1476 (-CH2- δ), 1378 (C-N st),

1269 (-C=Sst), 1075, (-C-S). 1H NMR (500 MHz, D2O): δ, ppm.: 4.34 (m, J = 15 Hz, CH2, 4H);
1.39 (t, J = 5 Hz, CH3, 6H). 13C NMR (100 MHz): δ, ppm.: 11.65, 27.50, 49.08, 205.02.

Tetramethylthiuram disulfide
IR (KBr): υ, cm−1: 2974 (-CH3 υas), 2861 (-CH2- υas), 1505 (-CH2-δ), 1380 (-C-Nst), 1273

(-C=Sst), 1143, 995 (-S-S-). 1H NMR (500 MHz, CDCl3): δ, ppm.: 3.71–3.77 (m, CH2, 8H);
1.29–1.23 (m, CH3, 12H). 13C NMR (100 MHz): δ, ppm.: 10.49, 25.72, 52.04, 51.26, 190.05.

2.2. Synthesis

3,4,5-tris(3,4-dicyanophenoxy)benzoic acid (1)
A mass of 1.00 g (5.8 mmol) 3,4,5-trihydroxybenzoic acid was dissolved in 30 mL

of DMSO, and 2.44 g (17.6 mmol) dry potassium carbonate was added, after which the
mixture was left at 80 ◦C with stirring for 1 h. Then, 3.51 g (20.0 mmol) 4-nitrophthalonitrile
was added to the reaction mass and mixing of the mixture was continued for another 7 h at
the same temperature. After that, the mixture was cooled and poured into 90 mL of ice-cold
distilled water. The resulting precipitate was filtered and washed with 0.1 M hydrochloric
acid solution and then distilled water to obtain a neutral pH value of the medium. The
resulting yellow–brown powder was recrystallized from ethanol.

Yield: 2.43 g (20%). IR, ν, cm−1: 3550−3500 (-OH), 3102−3040 (Car-N), 2232 (C≡N),
1653 (C=O), 1588−1486 (Car=Car), 1249 (Ar-O-Ar). 1H NMR (CDCl3), δ, ppm.: 12.72 s
(1H), 7.83 dd (3H), 7.64 s (3H), 7.28 dd (3H), 7.09 s (2H). Mass spectrum, m/z: 547.46 [M]+,
calculated: 548.47.
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General procedure for the preparation of tetrakis-4-(2,6-bis(3,4-dicyanophenoxy),4-
carboxyphenoxy)zinc phthalocyanine (2) and tetrakis-4-(2,6-bis(3,4-dicyanophenoxy),4-
carboxyphenoxy)cobalt phthalocyanine (3)

The compounds 3,4,5-tris(3,4-dicyanophenoxy)benzoic acid (1) (0.05 g, 0.91 mmol)
and anhydrous zinc/cobalt acetate (0.95 mmol) were placed in a ceramic crucible and
then heated at 190 ◦C for 30 min in the absence of a solvent. After solidification of the
melt, the mixture was cooled to room temperature, filtered with a Schott filter and washed
with chloroform. The solvent was distilled, and the filtrate was purified using column
chromatography (silica gel M60, chloroform–THF gradient (from 0 to 5 vol.%)) and size
exclusion chromatography (3% THF in chloroform). The complexes were obtained in the
form of a dark-green powder, soluble in THF, DMF, DMSO and pyridine.

Zinc tetrakis-4-(2,6-bis(3,4-dicyanophenoxy),4-carboxyphenoxy) phthalocyanine (2)
Yield: 0.0029 g (31%). IR, ν, cm−1: 2954−2851 (Car-N), 2157 (C≡N), 1717 (-OH), 1653

(C=O), 1539−1457 (Car-Car), 1261 (Ar-O-Ar). 1H NMR (500 MHz, DMSO-d6), ppm.: δ 8.58
(s, 1H), 7.79 (s, 1H), 7.42–7.40 (dd, 1H), 7.39 (d, J = 7.7 Hz, 1H), 7.22 (d, J = 10.3 Hz, 2H), 7.14
(s, 2H), 7.09 (d, J = 8.9 Hz, 2H), 6.88 (s, J = 8.0 Hz, 2H).

Cobalt tetrakis-4-(2,6-bis(3,4-dicyanophenoxy),4-carboxyphenoxy) phthalocyanine (3)
Yield: 0.0031 g (36%). IR, ν, cm−1: 3029−2851 (Car-N), 2354 (C≡N), 1717 (-OH), 1599

(C=O), 1524−1450 (Car-Car), 1273 (Ar-O-Ar). 1H NMR (500 MHz, DMSO-d6), ppm.: δ

8.86–8.43 (mbroad, 2H), 8.02–7.79 (mbroad, 4H), 7.65–6.98 (mbroad, 6H).

3. Results
3.1. Synthesis of 3,4,5-Tris(3,4-dicyanophenoxy)benzoic Acid

The compound 3,4,5-tris(3,4-dicyanophenoxy)benzoic acid was synthesized by nucle-
ophilic substitution of the nitro group in 4-nitrophthalonitrile for gallic acid (Scheme 1, i).
Gallic acid was dissolved in DMSO and potassium carbonate was added; the mixture was
left at 80 ◦C with stirring for 1 h. After that, 4-nitrophthalonitrile was added to the reaction
mass and mixing of the mixture was continued for another 7 h at the same temperature. To
isolate the compound, the mixture was poured into chilled distilled water. The resulting
precipitate was filtered and washed with 0.1 M hydrochloric acid solution and then distilled
water to obtain a neutral pH value of the medium. The resulting yellow–brown powder
was recrystallized from ethanol. The yield was 20%.
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The structure of the compound was confirmed using IR and NMR spectroscopic
analysis methods and MALDI-TOF mass spectrometry. The IR spectrum of the compound
contained all characteristic vibrations at 3550–3500 cm−1 (-OH), 3102–3040 cm−1 (Car-H),
2232 cm−1 (C≡N), 1653 cm−1 (C=O), 1588–1486 cm−1 (Car=Car) and 1249 cm−1 (Ar-O-Ar).
The IR spectra also lacked bands characteristic of symmetric (1340–1350 cm−1) and asymmetric
(1560–1565 cm−1) vibrations of the N=O bond of the nitro group in 4-nitrophthalonitrile. A
band of 1249 cm−1 was observed, corresponding to skeletal vibrations of the Ar-O-Ar bridge
group formed as a result of the reaction. In the MALDI-TOF mass spectrum of 3,4,5-tris(3,4-
dicyanophenoxy)benzoic acid, the peak of the molecular ion [M]+ 547.46 was detected in the
mode of positive ions when using α-hydroxycoric acid as a matrix.

3.2. Synthesis of d-Metals Phthalocyanine Complexes

Synthesis of phthalocyanates was performed by template fusion of 3,4,5-tris(3,4-
dicyanophenoxy)benzoic acid with anhydrous zinc and cobalt acetates at a temperature
of 190–195 ◦C for 30 min until the melt completely solidified (Scheme 1, ii). After cool-
ing, the resulting mass was transferred to a Schott filter and washed with chloroform.
The target compound was washed off the THF filter; the solvent was distilled and the
resulting complex was purified by column chromatography on silica gel with a mixture of
chloroform–THF (9:1) as an eluent.

The structures of compounds 3 and 4 were identified using IR and NMR spectroscopy
methods. All characteristic bands were present in the corresponding IR spectra of metal
phthalocyanines. During the transition from compound 2 to the corresponding complexes,
an increase in the intensity of the band responsible for fluctuations of the C≡N group
(~2232 cm−1) was observed, which was due to an increase in the number of these groupings
in the structure of the substituted phthalocyanine.

The highest yield was observed in a complex with cobalt as the central ion.
Based on 1H NMR data, the Zn phthalocyanine (2) structure was confirmed clearly. The

weakest field signal (8.58 ppm) corresponded to a carboxylic group proton. Phthalocyanine
core protons were localized at 7.79 and 7.40 ppm as a singlet and an unresolved doublet
of doublets, respectively. The rest of the signals at 7.31, 7.14, 7.09 and 6.89 relate to spacer
substituent fragments. However, regarding Co phthalocyanine, due to the paramagnetic
nature of the central metal ion, the spectrum was subject to changes. It was expressed in
both signals shifting and broadening. Thus, we were able to register only signals ranges
and integral intensities. Nevertheless, the structure of complex 3 was confirmed with a
good agreement based on data on the localization of proton shifts and its integral intensities
combined with the results of IR spectroscopy and TLC investigations.

3.3. Spectroscopic Properties

Aggregation is an important phenomenon in the chemistry of phthalocyanines. Ph-
thalocyanines in an aggregated state differ in properties from compounds in a non-
aggregated form. Aggregation behavior depends on the nature of the solvent and sub-
stituents, the metal ion in the coordination center, the concentration of the solution and
temperature. The most common method for determining the presence of an aggregation
processes is electron absorption spectroscopy. Depending on the nature of the change
in the electronic absorption spectra of solutions, H- and J-aggregates are distinguished.
H-aggregates are characterized by hypsochromic displacement, i.e., in the short-wavelength
region, the absorption bands are relative to the maximum of the monomer. There is also
a significant decrease in absorption intensity and a strong broadening of the bands in
the long-wavelength part of the spectrum. J-aggregates are distinguished by the appear-
ance of a narrow intense absorption band, which is shifted bathochromically relative to
the monomer band. At the first stage of studying the spectral properties of the obtained
compounds, their characteristics in various organic solvents were studied (Table 1).
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Table 1. Spectroscopic properties of phthalocyanines 2–3 in various solvents.

Compound
Absorption Maximum, nm (lgε)

THF DMF DMSO Pyridine

2 680–693 (4.83) 686–702 (4.29) 685 (4.61) 688–702 (4.86)
3 673 (4.31) 675 (4.09) 671 (4.18) 680 (4.38)

Upon changing the solvent for phthalocyanine 3 solutions, the appearance of the spec-
trum did not change; only a bathochromic or hypsochromic shift occurred. Phthalocyanine
2 was characterized by splitting of the absorption maximum, which may be due to the
presence of difficult-to-separate regioisomers in the solution (Figure 2).
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Figure 2. Electronic absorption spectra of phthalocyanines 2 (a) and 3 (b) in various solvents.

The aggregation behavior of the synthesized compounds was studied using elec-
tron spectroscopy in various solvents, such as tetrahydrofuran, dimethylformamide and
dimethyl sulfoxide. Upon the dilution of compound 2 and 3 solutions, deviations from the
linear dependence of concentration on optical density were observed, which may indicate
the presence of aggregation for these compounds in specific concentration ranges (starting
from 9.0 × 10−6 mol/L for 2 and 4.3 × 10−6 mol/L for 3) (Figure 3).
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However, UV–vis spectra for complexes with cobalt have a broadened appearance
and retain it even when diluted in a large concentration range (Figure 4).
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Figure 4. Change in the electronic spectra of solutions of compound 3 in DMSO upon dilution in
a concentration range from 5.46 × 10−5 mol/L to 1.17 × 10−5 mol/L. Red curve—initial spectrum,
blue curve—finite spectrum. The insert is an electronic absorption spectrum at a concentration of
1.17 × 10−5 mol/L.

3.4. Catalytic Properties

Catalytic properties were studied in the oxidation reaction of sodium diethyldithiocar-
bamate with atmospheric oxygen (Scheme 2). The study of catalytic activity was carried
out at 20 ◦C at pH 7 and 11.

Sci. Pharm. 2024, 92, x FOR PEER REVIEW 7 of 11 
 

 

300 400 500 600 700 800 900
0.00

0.25

0.50

0.75

6.5x10-67.0x10-67.5x10-68.0x10-68.5x10-69.0x10-69.5x10-61.0x10-51.1x10-5

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

По
гл

ощ
ен

ие

Концентрация, МA
bs

or
ba

nc
e

Wavelength, nm

(2)

Concentration, mol/L

 
300 400 500 600 700 800 900

0.00

0.05

0.10

0.15

0.20

1.5x10-62.0x10-62.5x10-63.0x10-63.5x10-64.0x10-64.5x10-65.0x10-65.5x10-6

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

По
гл

ощ
ен

ие

Концентрация, М

A
bs

or
ba

nc
e

Wavelength, nm

(3)

Concentration, mol/L

 
Figure 3. Changes in the electronic spectra of solutions of compounds 2 and 3 in THF during dilution 
in a concentration range from 5.46 × 10−5 mol/L to 1.17 × 10−5 mol/L. Red curve—initial spectrum, 
blue curve—finite spectrum. Insertion—Lambert–Bueger–Behr dependencies in THF. 

However, UV–vis spectra for complexes with cobalt have a broadened appearance 
and retain it even when diluted in a large concentration range (Figure 4). 

300 400 500 600 700 800 900
0.0

0.5

1.0

1.5

2.0

500 600 700 800
0.000

0.025

0.050

П
ог

ло
щ

ен
ие

Длина волны, нм

A
bs

or
ba

nc
e

Wavelentgh, nm

(3)

 
Figure 4. Change in the electronic spectra of solutions of compound 3 in DMSO upon dilution in a 
concentration range from 5.46 × 10−5 mol/L to 1.17 × 10−5 mol/L. Red curve—initial spectrum, blue 
curve—finite spectrum. The insert is an electronic absorption spectrum at a concentration of 1.17 × 
10−5 mol/L. 

3.4. Catalytic Properties 
Catalytic properties were studied in the oxidation reaction of sodium diethyldithio-

carbamate with atmospheric oxygen (Scheme 2). The study of catalytic activity was carried 
out at 20 °C at pH 7 and 11. 

 
Scheme 2. Equation of the catalytic oxidation reaction of DTC. 

DTC solution with a concentration of 10−3 mol/L of the required pH value was pre-
pared for the reaction. Then, the test substance was added to the solution, weighing 1 × 
10−3 g. The reaction was carried out by blowing oxygen through the air and stirring 

Scheme 2. Equation of the catalytic oxidation reaction of DTC.

DTC solution with a concentration of 10−3 mol/L of the required pH value was
prepared for the reaction. Then, the test substance was added to the solution, weighing
1 × 10−3 g. The reaction was carried out by blowing oxygen through the air and stirring
intensively. A 2 mL sample of the reaction mixture was taken every 10 min. Copper sulfate
was used as an agent binding the unreacted DTC during the reaction. Chloroform was
used to extract the oxidation product.

After separation of the reaction product, the organic fraction was studied using an
electronic absorption spectrum. Kinetic curves were constructed based on the obtained
data (Figure 5).

The obtained rate constants are shown in Table 2. The highest catalytic activity in
the presented series is shown by compound 3 at pH 11. Cobalt complexes showed higher
activity compared to zinc analogs. This is obviously due to the coordination mechanism
of the reaction and the greater coordination unsaturation of the cobalt ion. The resulting
catalytic activity of both cobalt complexes 2 and 3 was found to exceed the constant values
of alkoxy-substituted complexes obtained earlier several times [41].

Table 2. Parameters of the catalytic conversion reaction of N,N-diethyldithiocarbamate.

Compounds
k, 1/min

7 pH 11 pH

2 13 40
3 0.0014 0.0055
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4. Conclusions

New complexes of phthalocyanines of a complex structure containing cyanophenoxyl
groups and carboxy groups at the same time have been obtained. The compounds were
obtained and the structure was confirmed using IR spectroscopy and 1H NMR analysis
approaches. Due to the combination of these groups, high catalytic activity of the obtained
compounds in the reaction of sodium N,N-diethyldithiocarbamate to disulfiram under
mild conditions was ensured. It is shown that an increase in the basicity of the medium
leads to a significant acceleration of the catalytic conversion reaction.

It is shown that when specific concentration values are reached in the liquid phase, the
compounds tend to aggregate, which is explained by the high steric tension of the structures.

The obtained cobalt complexes containing dicyanophenoxyl and carboxyl groups
showed high catalytic activity exceeding the performance of alkoxy-substituted structures
by several orders of magnitude. This makes them promising candidates for introduction
into usage as catalysts for the production of DTC.
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