Exploratory Analysis of Commercial Olive-Based Dietary Supplements Using Untargeted and Targeted Metabolomics
Abstract
:1. Introduction
2. Results
2.1. Untargeted Metabolomics: Identified Compounds
C | Compound | Formula | RT | Ions | LI [Ref] |
---|---|---|---|---|---|
C001 | Gluconic acid | C6H12O7 | 54 | 195.051 [M-H]− | II (mzCloud) |
C002 | Quinic acid | C7H12O6 | 54 | 191.0562 [M-H]−; 192.0595 13C[M-H]−; 279.0487 [add-1]−; 289.0331 [add-2]−; 371.12 [add-3]−; 373.1354 [add-4]−; 374.1389 13C[add-4]−; 383.1196 [add-5]−; 384.123 13C[add-5]−; 533.1725 [add-6]− | I (std) |
C003 | Malic acid | C4H6O5 | 56 | 133.0145 [M-H]−; 115.004 [M-H-H2O]− | I (std) |
C004 | Isocitric acid | C6H8O7 | 57 | 191.0199 [M-H]−; 192.023 13C[M-H]−; 173.0095 [M-H-H2O]−; 129.0197 [M-H-H2O-CO2]−; 111.0091 [M-H-CH4O4]−; 87.0091 [M-H-C3H4O4]−; 85.0298 [M-H-C2H2O5]−; 210.0609 [M+NH4]+; 230.9903 [M+K]+ | I (std) |
C005 | Citric acid | C6H8O7 | 71 | 191.0197 [M-H]−; 192.0229 13C[M-H]−; 111.0091 [M-H-CH4O4]−; 87.0091 [M-H-C3H4O4]−; 210.0609 [M+NH4]+ | I (std) |
C006 | Succinic acid | C4H6O4 | 77 | 117.0196 [M-H]− | I (std) |
C007 | Sugar alcohol | C6H14O6 | 54 | 181.0718 [M-H]−; 217.0486 [M+Cl]−; 219.0457 (2)13C[M+Cl]−; 227.0773 [M-H+HCOOH]−; 183.0864 [M+H]+; 184.0898 13C[M+H]+; 200.1129 [M+NH4]+; 205.0683 [M+Na]+; 221.0423 [M+K]+; 222.0457 13C[M+K]+; 281.0635 [M+H+CH3COOK]+; 165.0758 [M+H-H2O]+; 147.0652 [M+H-2(H2O)]+; 222.0609 [+]; 223.0404 [+]; 249.0373 [+]; 383.0954 [+] | I (std) |
C008 | Pentose acid | C5H10O6 | 53 | 165.0407 [M-H]−; 135.0302 [M-H-CH2O]− | III |
C009 | Hexose | C6H12O6 | 53 | 179.0563 [M-H]−; 180.0596 13C[M-H]−; 215.033 [M+Cl]−; 225.0617 [M-H+HCOOH]−; 226.0651 13C[M-H+HCOOH]−; 161.0458 [M-H-H2O]−; 143.0353 [M-H-2(H2O)]−; 113.0248 [M-H-2(H2O)-CH2O]−; 101.0247 [M-H-2(H2O)-COCH2]−; 198.0973 [M+NH4]+; 203.0527 [M+Na]+; 219.0267 [M+K]+; 145.0495 [M+H-2(H2O)]+; 127.0389 [M+H-3(H2O)]+; 85.0282 [M+H-2(H2O)-C2H4O2]+; 180.0867 [+] | I (std) |
C010 | Di-hexose | C12H22O11 | 54 | 341.109 [M-H]−; 377.0857 [M+Cl]−; 387.1145 [M-H+HCOOH]−; 360.1503 [M+NH4]+; 365.1057 [M+Na]+; 381.0796 [M+K]+; 325.1131 [M+H-H2O]+; 326.1166 13C[M+H-H2O]+ | I (std) |
C011 | Tri-hexose | C18H32O16 | 53 | 549.1673 [M-H+HCOOH]−; 522.2027 [M+NH4]+; 527.1577 [M+Na]+; 543.1321 [M+K]+ | I (std) |
C012 | Tetra-hexose | C24H42O21 | 51 | 711.2202 [M-H+HCOOH]− | I (std) |
C013 | Glycerol | C3H8O3 | 62 | 93.0544 [M+H]+; 93.0545 [M+H]+ | II (Metlin) |
C014 | Trihydroxy-octadecadienoic acid | C18H32O5 | 469 | 327.2176 [M-H]−; 346.259 [M+NH4]+ | II (mzCloud) |
C015 | Trihydroxyoctadecenoic acid (I) | C18H34O5 | 465 | 329.2334 [M-H]−; 331.2481 [M+H]+ | II (mzCloud) |
C016 | Trihydroxyoctadecenoic acid (II) | C18H34O5 | 492 | 329.2334 [M-H]− | II (mzCloud) |
C017 | Apigenin glucoside (I) | C21H20O10 | 329 | 431.0984 [M-H]−; 433.1128 [M+H]+ | III |
C018 | Apigenin glucoside (II) | C21H20O10 | 363 | 431.0986 [M-H]−; 433.1128 [M+H]+; 434.1162 13C[M+H]+ | III |
C019 | Apigenin rutinoside (I) | C27H30O14 | 319 | 577.156 [M-H]−; 578.1594 13C[M-H]−; 623.1616 [M-H+HCOOH]−; 579.1706 [M+H]+; 580.1741 13C[M+H]+; 581.1764 (2)13C[M+H]+ | III |
C020 | Apigenin rutinoside (II) | C27H30O14 | 350 | 623.1618 [M-H+HCOOH]−; 579.1706 [M+H]+; 580.1738 13C[M+H]+ | III |
C021 | Apigenin rhamnosyl acetyl-glucoside (I) | C29H32O15 | 336 | 621.1811 [M+H]+ | III |
C022 | Apigenin rhamnosyl acetyl-glucoside (II) | C29H32O15 | 340 | 621.1811 [M+H]+ | III |
C023 | Apigenin rhamnosyl acetyl-glucoside (III) | C29H32O15 | 367 | 619.1664 [M-H]−; 620.1698 13C[M-H]−; 665.1722 [M-H+HCOOH]−; 666.1753 13C[M-H+HCOOH]−; 621.1812 [M+H]+; 622.1844 13C[M+H]+; 623.187 (2)13C[M+H]+ | III |
C024 | Apiin | C26H28O14 | 299 | 563.1403 [M-H]− | III |
C025 | Methoxy-apigenin glucoside | C22H22O11 | 370 | 463.1234 [M+H]+ | III |
C026 | Luteolin | C15H10O6 | 429 | 285.0402 [M-H]− | II (mzCloud) |
C027 | Luteolin glucoside (I) | C21H20O11 | 336 | 447.0933 [M-H]−; 448.0967 13C[M-H]−; 493.0988 [M-H+HCOOH]−; 449.1078 [M+H]+; 450.111 13C[M+H]+; 287.055 [M+H-hexose]+ | II (mzCloud) |
C028 | Luteolin glucoside (II) | C21H20O11 | 362 | 447.0933 [M-H]−; 449.1077 [M+H]+; 450.111 13C[M+H]+ | III |
C029 | Luteolin rutinoside | C27H30O15 | 327 | 593.1505 [M-H]−; 595.1655 [M+H]+ | III |
C030 | Quercetin glucoside | C21H20O12 | 333 | 463.088 [M-H]−; 465.1026 [M+H]+ | II (mzCloud) |
C031 | Quercetin rutinoside | C27H30O16 | 324 | 609.1461 [M-H]−; 610.1493 13C[M-H]−; 611.1606 [M+H]+ | III |
C032 | Caffeic acid hexoside | C15H18O9 | 251 | 341.0878 [M-H]− | II (MassBank) |
C033 | Caffeic acid rutinoside | C21H28O13 | 236 | 487.1457 [M-H]−; 533.151 [M-H+HCOOH]−; 506.1867 [M+NH4]+ | III |
C034 | Caffeic acid ethyl ester | C11H12O4 | 445 | 207.0662 [M-H]− | III |
C035 | Caffeoyl-threonic acid (I) | C13H14O8 | 238 | 297.0613 [M-H]− | II [16,17,18] |
C036 | Caffeoyl-threonic acid (II) | C13H14O8 | 276 | 297.0615 [M-H]−; 179.035 [caffeic-H]−; 135.0453 [caffeic-H-CO2]− | II [16,17,18] |
C037 | Calceolarioside B | C23H26O11 | 336 | 477.1402 [M-H]−; 161.0245 [caffeic-H-H2O]− | II [19] |
C038 | Rosmarinic acid | C18H16O8 | 371 | 359.0773 [M-H]− | II (MassBank) |
C039 | Coumaroylquinic acid | C16H18O8 | 292 | 337.0929 [M-H]−; 339.1077 [M+H]+ | II (MassBank) |
C040 | Cinnamic acid hexoside | C15H18O7 | 350 | 309.0977 [M-H]− | III |
C041 | Neochlorogenic acid | C16H18O9 | 208 | 353.0876 [M-H]−; 355.1026 [M+H]+ | II (mzCloud) |
C042 | Chlorogenic acid | C16H18O9 | 259 | 353.0878 [M-H]−; 354.091 13C[M-H]−; 707.1827 [2M-H]−; 708.186 13C[2M-H]−; 191.0561 [quinic-H]−; 355.1025 [M+H]+; 356.106 13C[M+H]+; 372.1292 [M+NH4]+; 163.039 [caffeic+H-H2O]+ | II (mzCloud) |
C043 | Verbascoside | C29H36O15 | 331 | 623.1978 [M-H]−; 624.2012 13C[M-H]−; 625.2035 (2)13C[M-H]−; 659.1745 [M+Cl]−; 642.2388 [M+NH4]+; 643.2425 13C[M+NH4]+; 479.1546 [M+H-rhamnose]+; 480.158 13C[M+H-rhamnose]+; 471.1497 [M+H-hydroxytyrosol-H2O]+; 163.039 [caffeic+H-H2O]+; 325.0919 [caffeic acid glucoside+H-H2O]+; 326.0954 13C[caffeic acid glucoside+H-H2O]+ | I (std) |
C044 | Isoverbascoside | C29H36O15 | 345 | 623.1979 [M-H]−; 624.2013 13C[M-H]−; 479.1548 [M+H-rhamnose]+; 325.092 [caffeic acid glucoside +H-H2O]+ | II [10] |
C045 | Hydroxy-verbascoside | C29H36O16 | 297 | 639.1929 [M-H]−; 640.1961 13C[M-H]−; 641.1985 (2)13C[M-H]−; 658.2339 [M+NH4]+; 325.092 [caffeic acid glucoside+H-H2O]+ | II [12] |
C046 | Methyl-hydroxy-verbascoside (I) | C30H38O16 | 325 | 653.2084 [M-H]− | II [10] |
C047 | Methyl-hydroxy-verbascoside (II) | C30H38O16 | 354 | 653.2088 [M-H]−; 607.2031 [M-H-H2O-CO]− | III [10] |
C048 | Dimethyl-hydroxy-verbascoside | C31H40O16 | 346 | 667.2243 [M-H]−; 668.2276 13C[M-H]−; 686.2658 [M+NH4]+ | III [10] |
C049 | 3,4-Dihydroxyphenylglycol | C8H10O4 | 74 | 169.0507 [M-H]−; 151.0402 [M-H-H2O]− | I (std) |
C050 | Hydroxytyrosol | C8H10O3 | 170 | 153.0558 [M-H]−; 154.0592 13C[M-H]−; 307.1187 [2M-H]−; 308.1221 13C[2M-H]−; 189.0325 [M+Cl]−; 199.0613 [M-H+HCOOH]−; 123.0455 [M-H-CH2O]−; 124.0489 13C[M-H-CH2O]− | I (std) |
C051 | Hydroxytyrosol glucoside (I) | C14H20O8 | 80 | 361.114 [M-H+HCOOH]−; 317.1234 [M+H]+; 155.0703 [M+H-hexose]+; 137.0597 [M+H-hexose-H2O]+ | II [20,21] |
C052 | Hydroxytyrosol glucoside (II) | C14H20O8 | 160 | 315.1084 [M-H]−; 316.1116 13C[M-H]−; 316.1118 13C[M-H]−; 631.2245 [2M-H]−; 631.2241 [2M-H]−; 351.0853 [M+Cl]−; 361.114 [M-H+HCOOH]−; 334.1498 [M+NH4]+; 335.1533 13C[M+NH4]+ | II [20,21] |
C053 | Hydroxytyrosol rutinoside | C20H30O12 | 216 | 461.1662 [M-H]−; 462.1697 13C[M-H]−; 497.1432 [M+Cl]−; 507.1717 [M-H+HCOOH]−; 480.2075 [M+NH4]+ | III |
C054 | Dimer of hydroxytyrosol (I) | C16H18O6 | 154 | 305.103 [M-H]−; 351.1084 [M-H+HCOOH]−; 324.1445 [M+NH4]+ | III |
C055 | Dimer of hydroxytyrosol (II) | C16H18O6 | 187 | 305.1028 [M-H]− | III |
C056 | Dimer of hydroxytyrosol (III) | C16H18O6 | 248 | 305.103 [M-H]−; 324.1443 [M+NH4]+ | III |
C057 | Dimer of hydroxytyrosol (IV) | C16H18O6 | 310 | 305.103 [M-H]−; 324.1443 [M+NH4]+ | III |
C058 | Hydroxytyrosol-oxidised | C8H8O3 | 169 | 153.0546 [M+H]+; 123.044 [M+H-CH2O]+ | III |
C059 | Lactone (ester with hydroxytyrosol) (I) | C17H22O6 | 383 | 321.1343 [M-H]−; 367.1397 [M-H+HCOOH]−; 340.1757 [M+NH4]+ | II [13] |
C060 | Lactone (ester with hydroxytyrosol) (II) | C17H22O6 | 392 | 321.1342 [M-H]−; 323.149 [M+H]+; 340.1756 [M+NH4]+ | II [13] |
C061 | Lactone (ester with hydroxytyrosol) (III) | C17H22O6 | 411 | 345.1335 [M+Na]+; 346.137 13C[M+Na]+; 121.0647 [TYR+H-H2O]+; 165.0546 [coumaric+H]+ | II [13] |
C062 | Lactone (ester with hydroxytyrosol) (IV) | C17H22O6 | 448 | 321.1344 [M-H]−; 185.082 [M-H-hydroxytyrosol]−; 323.149 [M+H]+; 324.1524 13C[M+H]+; 340.1756 [M+NH4]+ | II [13] |
C063 | Lactone glucoside (ester with hydroxytyrosol) (I) | C23H32O11 | 250 | 485.2016 [M+H]+ | III |
C064 | Lactone glucoside (ester with hydroxytyrosol) (II) | C23H32O11 | 354 | 483.1871 [M-H]−; 502.2281 [M+NH4]+ | III |
C065 | Tyrosol glucoside | C14H20O7 | 225 | 299.1138 [M-H]−; 335.0905 [M+Cl]−; 345.119 [M-H+HCOOH]−; 346.1224 13C[M-H+HCOOH]−; 301.1285 [M+H]+; 618.2756 [2M+NH4]+; 318.1549 [M+NH4]+; 319.1584 13C[M+NH4]+ | I (std) |
C066 | Homogentisic acid | C8H8O4 | 139 | 167.0351 [M-H]− | II (mzCloud) |
C067 | Homovanillyl alcohol | C9H12O3 | 280 | 169.0859 [M+H]+; 170.0893 13C[M+H]+; 186.1125 [M+NH4]+; 214.1438 [M+C2H8N]+ | III |
C068 | Oleuropein isomer (I) | C25H32O13 | 372 | 539.177 [M-H]−; 540.1803 13C[M-H]−; 558.2181 [M+NH4]+; 361.1285 [M+H-hexose-H2O]+; 137.0596 [OHTYR+H-H2O]+ | III |
C069 | Oleuropein | C25H32O13 | 381 | 539.1769 [M-H]−; 540.18 13C[M-H]−; 575.1533 [M+Cl]−; 721.2502 [4M+3H]3+; 722.2537 13C[4M+3H]3+; 558.2182 [M+NH4]+; 559.2215 13C[M+NH4]+; 586.25 [M+C2H8N]+; 379.139 [M+H-hexose]+; 380.1424 13C[M+H-hexose]+; 361.1283 [M+H-hexose-H2O]+; 362.1319 13C[M+H-hexose-H2O]+; 363.1343 (2)13C[M+H-hexose-H2O]+; 347.1131 [M+H-hexose-CH3OH]+; 329.1025 [M+H-hexose-H2O-CH3OH]+; 523.1811 [M+H-H2O]+; 137.0596 [OHTYR+H-H2O]+; 138.063 13C[OHTYR+H-H2O]+; 165.0546 [coumaric+H]+ | I (std) |
C070 | Oleuropein isomer (II) | C25H32O13 | 387 | 539.1771 [M-H]− | II [10,13] |
C071 | Oleuropein isomer (III) | C25H32O13 | 392 | 539.177 [M-H]−; 540.18 13C[M-H]−; 575.1534 [M+Cl]−; 541.1915 [M+H]+; 542.1948 13C[M+H]+; 543.1976 (2)13C[M+H]+; 558.2181 [M+NH4]+; 559.2212 13C[M+NH4]+; 379.1388 [M+H-hexose]+; 380.1424 13C[M+H-hexose]+; 361.1283 [M+H-hexose-H2O]+; 362.1318 13C[M+H-hexose-H2O]+; 137.0596 [OHTYR+H-H2O]+; 165.0546 [coumaric+H]+ | II [10,13] |
C072 | Oleuropein isomer (IV) | C25H32O13 | 404 | 539.1771 [M-H]−; 558.2181 [M+NH4]+; 379.1389 [M+H-hexose]+ | II [10,13] |
C073 | Oleuropein glucoside (I) | C31H42O18 | 324 | 701.2294 [M-H]− | III |
C074 | Oleuropein glucoside (II) | C31H42O18 | 349 | 701.2295 [M-H]−; 702.2329 13C[M-H]−; 747.2352 [M-H+HCOOH]−; 720.2706 [M+NH4]+; 721.2743 13C[M+NH4]+; 541.1914 [M+H-hexose]+; 379.1389 [M+H-2(hexose)]+; 361.1258 [M+H-2(hexose)-H2O]+ | II [10,13] |
C075 | Oleuropein glucoside (III) | C31H42O18 | 374 | 701.2294 [M-H]− | II [10,13] |
C076 | Oleuropein aglycone (I) | C19H22O8 | 436 | 377.1243 [M-H]−; 378.1276 13C[M-H]−; 413.1011 [M+Cl]−; 396.1655 [M+NH4]+; 361.1283 [M+H-H2O]+; 362.1317 13C[M+H-H2O]+ | II [10,13] |
C077 | Oleuropein aglycone (II) | C19H22O8 | 451 | 377.1243 [M-H]− | II [10,13] |
C078 | Oleuropein aglycone (III) | C19H22O8 | 493 | 377.1243 [M-H]−; 378.1276 13C[M-H]−; 755.256 [2M-H]−; 756.2594 13C[2M-H]−; 413.1009 [M+Cl]−; 423.1299 [M-H+HCOOH]−; 307.0824 [M-H-C4H6O]−; 275.0926 [frag]−; 379.1388 [M+H]+; 380.1424 13C[M+H]+; 396.1654 [M+NH4]+; 397.1689 13C[M+NH4]+; 401.1207 [M+Na]+ | II [10,13] |
C079 | Oleuropein aglycone (IV) | C19H22O8 | 504 | 377.1243 [M-H]−; 379.1388 [M+H]+ | II [10,13] |
C080 | Hydroxy-oleuropein | C25H32O14 | 326 | 555.1718 [M-H]−; 556.175 13C[M-H]−; 591.1483 [M+Cl]−; 574.213 [M+NH4]+; 377.1233 [M+H-hexose-H2O]+ | III |
C081 | Methyl-oleuropein aglycone (I) | C20H24O8 | 329 | 151.0766 [frag]− | III |
C082 | Methyl-oleuropein aglycone (II) | C20H24O8 | 522 | 391.14 [M-H]− | III |
C083 | Methyl-oleuropein aglycone (III) | C20H24O8 | 546 | 391.14 [M-H]− | III |
C084 | Hydroxy-methyl-oleuropein | C26H34O14 | 376 | 569.1875 [M-H]−; 570.191 13C[M-H]−; 571.193 (2)13C[M-H]−; 605.1642 [M+Cl]−; 588.2286 [M+NH4]+; 589.2322 13C[M+NH4]+; 377.1233 [M+H-hexose-CH3OH]+ | III |
C085 | Demethyloleuropein | C24H30O13 | 320 | 525.1613 [M-H]− | III |
C086 | Decarboxy-methyl oleuropein aglycone (DOA) (I) | C17H20O6 | 357 | 321.1334 [M+H]+ | III |
C087 | DOA (II) | C17H20O6 | 362 | 321.1335 [M+H]+ | III |
C088 | DOA (III) | C17H20O6 | 368 | 321.1335 [M+H]+ | III |
C089 | DOA (IV) | C17H20O6 | 407 | 319.1187 [M-H]−; 320.122 13C[M-H]−; 321.1336 [M+H]+; 338.1601 [M+NH4]+; 303.1229 [M+H-H2O]+ | III |
C090 | DOA (V) | C17H20O6 | 422 | 319.1187 [M-H]−; 321.1334 [M+H]+; 322.1367 13C[M+H]+; 338.1599 [M+NH4]+; 366.1911 [M+C2H8N]+ | III |
C091 | DOA (VI) | C17H20O6 | 442 | 319.1186 [M-H]−; 320.1219 13C[M-H]−; 639.2447 [2M-H]−; 640.2479 13C[2M-H]−; 355.0954 [M+Cl]−; 365.1242 [M-H+HCOOH]−; 183.0663 [DEDA-H]−; 321.1334 [M+H]+; 322.1369 13C[M+H]+; 663.2416 [2M+Na]+; 338.16 [M+NH4]+; 339.1634 13C[M+NH4]+; 343.1153 [M+Na]+; 138.063 13C[OHTYR+H-H2O]+ | III |
C092 | DOA linked to hydroxytyrosol (I) | C25H28O8 | 453 | 457.1855 [M+H]+ | III |
C093 | DOA linked to hydroxytyrosol (II) | C25H28O8 | 460 | 455.1713 [M-H]−; 457.1856 [M+H]+ | III |
C094 | DOA linked to hydroxytyrosol (III) | C25H28O8 | 470 | 455.1712 [M-H]−; 303.123 [DOA+H-H2O]+ | III |
C095 | Hydroxy-DOA | C17H20O7 | 387 | 335.1137 [M-H]−; 336.1169 13C[M-H]−; 671.2348 [2M-H]−; 672.2381 13C[2M-H]−; 673.2426 (2)13C[2M-H]−; 199.0613 [M-H-OHTYR]−; 337.1284 [M+H]+; 338.132 13C[M+H]+; 354.1549 [M+NH4]+; 355.1584 13C[M+NH4]+; 359.1104 [M+Na]+; 319.1181 [M+H-H2O]+ | III |
C096 | Hydrated-DOA (I) | C17H22O7 | 347 | 337.1292 [M-H]−; 338.1324 13C[M-H]−; 675.2658 [2M-H]−; 373.1059 [M+Cl]−; 201.0768 [M-H-OHTYR]−; 339.1439 [M+H]+; 340.1473 13C[M+H]+; 356.1703 [M+NH4]+; 357.1738 13C[M+NH4]+; 384.2016 [M+C2H8N]+ | III |
C097 | Hydrated-DOA (II) | C17H22O7 | 362 | 337.1292 [M-H]−; 338.1325 13C[M-H]−; 675.266 [2M-H]−; 201.0769 [M-H-OHTYR]−; 339.144 [M+H]+; 356.1706 [M+NH4]+ | III |
C098 | Hydrated-DOA (III) | C17H22O7 | 386 | 337.129 [M-H]−; 319.1187 [M-H-H2O]−; 356.1705 [M+NH4]+ | III |
C099 | Hydrated-DOA linked to hydroxytyrosol (I) | C25H30O9 | 423 | 473.1816 [M-H]− | III |
C100 | Hydrated-DOA linked to hydroxytyrosol (II) | C25H30O9 | 453 | 473.1816 [M-H]−; 474.1848 13C[M-H]−; 492.2226 [M+NH4]+ | III |
C101 | Hydrated-DOA linked to hydroxytyrosol (III) | C25H30O9 | 484 | 473.1817 [M-H]−; 519.1873 [M-H+HCOOH]−; 475.1962 [M+H]+; 492.2226 [M+NH4]+; 493.2259 13C[M+NH4]+ | III |
C102 | Hydrated-DOA linked to hydroxytyrosol glucoside | C31H40O14 | 386 | 635.2347 [M-H]−; 654.276 [M+NH4]+ | III |
C103 | Methyl-DOA | C18H22O6 | 471 | 333.1345 [M-H]−; 335.1491 [M+H]+; 336.1526 13C[M+H]+; 352.1756 [M+NH4]+ | III |
C104 | Acetal of DOA (I) | C19H26O7 | 462 | 365.1607 [M-H]− | III |
C105 | Acetal of DOA (II) | C19H26O7 | 470 | 365.1607 [M-H]−; 366.1641 13C[M-H]−; 731.3288 [2M-H]−; 401.1375 [M+Cl]−; 411.1663 [M-H+HCOOH]−; 229.1083 [M-H-OHTYR]−; 384.2019 [M+NH4]+; 389.1573 [M+Na]+ | III |
C106 | Acetal of DOA (III) | C19H26O7 | 487 | 365.1609 [M-H]− | III |
C107 | Acetal of DOA (IV) | C19H26O7 | 506 | 365.1607 [M-H]− | III |
C108 | Acetal of DOA linked to hydroxytyrosol | C27H34O9 | 516 | 501.2129 [M-H]−; 502.2162 13C[M-H]−; 520.2539 [M+NH4]+ | III |
C109 | Ligstroside (I) | C25H32O12 | 411 | 523.182 [M-H]−; 524.1854 13C[M-H]−; 525.1878 (2)13C[M-H]−; 559.1591 [M+Cl]−; 569.1875 [M-H+HCOOH]−; 361.1294 [M-H-hexose]−; 542.2232 [M+NH4]+; 543.2266 13C[M+NH4]+; 363.1442 [M+H-hexose]+ | II [13,14] |
C110 | Ligstroside (II) | C25H32O12 | 422 | 569.1873 [M-H+HCOOH]−; 542.2231 [M+NH4]+; 543.2265 13C[M+NH4]+ | II [13,14] |
C111 | Ligstroside glucoside | C31H42O17 | 344 | 685.2344 [M-H]−; 731.2403 [M-H+HCOOH]−; 732.2436 13C[M-H+HCOOH]−; 704.2757 [M+NH4]+; 507.1861 [M+H-hexose-H2O]+ | III |
C112 | Ligstroside aglycone | C19H22O7 | 535 | 363.144 [M+H]+; 380.1706 [M+NH4]+; 385.1259 [M+Na]+ | II [14] |
C113 | Decarboxymethyl ligstroside aglycone | C17H20O5 | 382 | 349.1293 [M-H+HCOOH]−; 305.1386 [M+H]+; 306.142 13C[M+H]+ | III |
C114 | Hydroxy-decarboxymethyl-ligstroside aglycone | C17H20O6 | 431 | 319.1187 [M-H]−; 320.122 13C[M-H]−; 321.1336 [M+H]+; 338.1601 [M+NH4]+ | III |
C115 | Oleoside | C16H22O11 | 172 | 389.1088 [M-H]−; 390.1122 13C[M-H]−; 779.2248 [2M-H]−; 435.1144 [M-H+HCOOH]−; 391.1237 [M+H]+; 392.1273 13C[M+H]+; 408.1502 [M+NH4]+ | II [10] |
C116 | Secologanoside | C16H22O11 | 253 | 389.1089 [M-H]−; 390.1121 13C[M-H]−; 779.2249 [2M-H]−; 780.2281 13C[2M-H]−; 391.1237 [M+H]+; 798.266 [2M+NH4]+; 408.1501 [M+NH4]+; 229.0707 [M+H-hexose]+; 211.0602 [M+H-hexose-H2O]+ | II [10] |
C117 | Oleoside aglycone | C10H12O6 | 192 | 227.0562 [M-H]−; 229.0708 [M+H]+ | III |
C118 | Caffeoyl-oleoside | C25H28O14 | 354 | 551.1405 [M-H]−; 552.1436 13C[M-H]−; 553.1551 [M+H]+; 554.1585 13C[M+H]+ | III |
C119 | Caffeoyl-oleoside glucoside | C31H38O19 | 328 | 713.1932 [M-H]− | III |
C120 | Coumaroyl-oleoside | C25H28O13 | 379 | 535.1459 [M-H]−; 536.149 13C[M-H]−; 537.1602 [M+H]+; 538.1635 13C[M+H]+ | III |
C121 | Dimethyl-hydroxy-octenoyloxy-secologanoside (I) | C26H38O13 | 400 | 559.2379 [M+H]+ | II [13] |
C122 | Dimethyl-hydroxy-octenoyloxy-secologanoside (II) | C26H38O13 | 421 | 557.2239 [M-H]−; 558.2272 13C[M-H]−; 559.2383 [M+H]+; 560.2418 13C[M+H]+ | II [13] |
C123 | Elenolic acid (I) | C11H14O6 | 264 | 243.0865 [M+H]+ | III |
C124 | Elenolic acid (II) | C11H14O6 | 270 | 241.0718 [M-H]−; 243.0864 [M+H]+; 225.0759 [M+H-H2O]+ | II [13] |
C125 | Elenolic acid (III) | C11H14O6 | 297 | 241.0718 [M-H]−; 243.0864 [M+H]+; 288.1444 [M+C2H8N]+ | II [13] |
C126 | Elenolic acid (IV) | C11H14O6 | 318 | 241.0718 [M-H]− | II [13] |
C127 | Elenolic acid (V) | C11H14O6 | 371 | 241.0718 [M-H]−; 242.0751 13C[M-H]−; 483.151 [2M-H]−; 484.1541 13C[2M-H]−; 195.0663 [M-H-H2O-CO]−; 243.0864 [M+H]+; 244.0898 13C[M+H]+; 260.1131 [M+NH4]+; 225.0758 [M+H-H2O]+; 211.0602 [M+H-CH3OH]+ | II [13] |
C128 | Elenolic acid glucoside (I) | C17H24O11 | 280 | 403.1247 [M-H]−; 404.128 13C[M-H]−; 449.1301 [M-H+HCOOH]−; 422.1658 [M+NH4]+; 423.1693 13C[M+NH4]+; 243.0865 [M+H-hexose]+; 225.0758 [M+H-hexose-H2O]+; 151.039 [M+H-hexose-H2O-C2H4O2-CH2]+; 165.0546 [M+H-hexose-H2O-C2H4O2]+ | II [10] |
C129 | Elenolic acid glucoside (II) | C17H24O11 | 300 | 403.1246 [M-H]−; 404.1278 13C[M-H]−; 449.1299 [M-H+HCOOH]−; 405.1393 [M+H]+; 422.1658 [M+NH4]+; 225.0759 [M+H-hexose-H2O]+ | II [10] |
C130 | Elenolic acid diglucoside | C23H34O16 | 257 | 611.1827 [M-H+HCOOH]−; 584.2185 [M+NH4]+ | III |
C131 | Desoxy-elenolic acid | C11H14O5 | 307 | 225.077 [M-H]−; 451.1612 [2M-H]−; 271.0824 [M-H+HCOOH]− | III |
C132 | Hydroxy-elenolic acid (I) | C11H14O7 | 347 | 257.0666 [M-H]−; 259.0814 [M+H]+ | III |
C133 | Hydroxy-elenolic acid (II) | C11H14O7 | 361 | 257.0666 [M-H]− | III |
C134 | Decarboxy-hydroxy-elenolic acid (I) | C10H14O5 | 145 | 213.0768 [M-H]− | II [15] |
C135 | Decarboxy-hydroxy-elenolic acid (II) | C10H14O5 | 197 | 213.0768 [M-H]− | II [15] |
C136 | Decarboxy-hydroxy-elenolic acid (III) | C10H14O5 | 228 | 213.0768 [M-H]− | II [15] |
C137 | Decarboxy-hydroxy-elenolic acid (IV) | C10H14O5 | 234 | 213.0768 [M-H]− | II [15] |
C138 | Decarboxy-hydroxy-elenolic acid (V) | C10H14O5 | 239 | 213.0769 [M-H]−; 427.1611 [2M-H]−; 151.0766 [M-H-H2O-CO2]−; 215.0915 [M+H]+; 232.1181 [M+NH4]+; 155.0703 [M+H-C2H4O2]+ | II [15] |
C139 | Decarboxy-hydroxy-elenolic acid (VI) | C10H14O5 | 253 | 213.0769 [M-H]−; 215.0916 [M+H]+ | II [15] |
C140 | Decarboxy-hydroxy-elenolic acid linked to hydroxytyrosol (I) | C18H22O7 | 230 | 349.1292 [M-H]−; 368.1706 [M+NH4]+ | III |
C141 | Decarboxy-hydroxy-elenolic acid linked to hydroxytyrosol (II) | C18H22O7 | 330 | 368.1705 [M+NH4]+ | III |
C142 | Decarboxy-hydroxy-elenolic acid linked to hydroxytyrosol (III) | C18H22O7 | 370 | 349.1293 [M-H]−; 395.1347 [M-H+HCOOH]−; 213.0769 [decarboxy-hydroxy-elenolic-H]−; 351.1439 [M+H]+; 368.1704 [M+NH4]+ | III |
C143 | Decarboxy-hydroxy-elenolic acid linked to hydroxytyrosol (IV) | C18H22O7 | 390 | 349.1293 [M-H]−; 350.1325 13C[M-H]−; 699.2659 [2M-H]−; 385.106 [M+Cl]−; 213.0769 [decarboxy-hydroxy-elenolic-H]−; 151.0766 [frag]−; 351.1439 [M+H]+; 352.1474 13C[M+H]+; 373.1258 [M+Na]+; 333.1336 [M+H-H2O]+ | III |
C144 | Decarboxy-hydroxy-elenolic acid linked to hydroxytyrosol (V) | C18H22O7 | 398 | 349.1293 [M-H]−; 351.1439 [M+H]+ | III |
C145 | Methyl-elenolic acid (I) | C12H16O6 | 428 | 257.1021 [M+H]+ | III |
C146 | Methyl-elenolic acid (II) | C12H16O6 | 459 | 257.1021 [M+H]+; 225.0758 [M+H-CH3OH]+ | III |
C147 | Aldehydic form of decarboxymethyl elenolic acid (I) | C10H16O5 | 243 | 217.1071 [M+H]+; 234.1337 [M+NH4]+; 262.1651 [M+C2H8N]+; 199.0966 [M+H-H2O]+ | III |
C148 | Aldehydic form of decarboxymethyl elenolic acid (II) | C10H16O5 | 255 | 217.1071 [M+H]+; 218.1105 13C[M+H]+; 234.1337 [M+NH4]+; 262.1651 [M+C2H8N]+; 187.0965 [M+H-CH2O]+ | III |
C149 | Aldehydic form of decarboxymethyl elenolic acid (III) | C10H16O5 | 289 | 215.0925 [M-H]− | III |
C150 | Aldehydic form of decarboxymethyl elenolic acid glucoside | C16H26O10 | 286 | 377.1453 [M-H]−; 396.1865 [M+NH4]+; 199.0965 [M+H-hexose-H2O]+ | III |
C151 | Elenolic acid dialdehyde epimer linked to hydroxytyrosol glucoside | C25H34O13 | 371 | 541.1926 [M-H]−; 560.2338 [M+NH4]+; 363.1441 [M+H-hexose-H2O]+ | III |
C152 | Elenolic acid dialdehyde epimer linked to hydroxytyrosol (I) | C19H24O8 | 415 | 379.1399 [M-H]− | III |
C153 | Elenolic acid dialdehyde epimer linked to hydroxytyrosol (II) | C19H24O8 | 448 | 379.1399 [M-H]−; 381.1544 [M+H]+ | III |
C154 | Hydrated product of methyl-decarboxy-hydroxy-elenolic acid (I) | C11H18O6 | 240 | 245.1032 [M-H]− | III |
C155 | Hydrated product of methyl-decarboxy-hydroxy-elenolic acid (II) | C11H18O6 | 316 | 245.103 [M-H]− | III |
C156 | Hydrated product of methyl-decarboxy-hydroxy-elenolic acid (III) | C11H18O6 | 340 | 245.1031 [M-H]− | III |
C157 | Cannizzaro-like product of elenolic acid dialdehyde (I) | C11H16O7 | 54 | 278.1238 [M+NH4]+ | III |
C158 | Cannizzaro-like product of elenolic acid dialdehyde (II) | C11H16O7 | 199 | 259.0822 [M-H]−; 215.0561 [M-H-C2H4O]− | III |
C159 | DEDA (I) | C9H12O4 | 154 | 202.1074 [M+NH4]+ | II [15,22] |
C160 | DEDA (II) | C9H12O4 | 221 | 202.1074 [M+NH4]+ | II [15,22] |
C161 | DEDA (III) | C9H12O4 | 260 | 183.0663 [M-H]−; 367.1399 [2M-H]−; 185.0808 [M+H]+; 186.0842 13C[M+H]+; 202.1075 [M+NH4]+; 230.1388 [M+C2H8N]+ | II [15,22] |
C162 | DEDA (IV) | C9H12O4 | 292 | 183.0663 [M-H]−; 184.0695 13C[M-H]−; 367.1399 [2M-H]−; 368.1431 13C[2M-H]−; 229.0718 [M-H+HCOOH]−; 185.0808 [M+H]+; 186.0842 13C[M+H]+; 369.1548 [2M+H]+; 202.1075 [M+NH4]+; 207.0629 [M+Na]+; 388.1283 [4M+H+K]2+; 139.0767 [M-H-CO2]−; 167.0703 [M+H-H2O]+; 121.0647 [M+H-H2O-HCOOH]+; 122.0681 13C[M+H-H2O-HCOOH]+ | II [15,22] |
C163 | Hydroxy-DEDA | C9H12O5 | 222 | 199.0611 [M-H]−; 200.0644 13C[M-H]−; 201.0758 [M+H]+; 218.1024 [M+NH4]+; 183.0652 [M+H-H2O]+ | II [13] |
C164 | DEDA hydrated (I) | C9H14O5 | 115 | 201.0768 [M-H]−; 203.0915 [M+H]+; 220.1181 [M+NH4]+ | II [15] |
C165 | DEDA hydrated (II) | C9H14O5 | 124 | 201.0768 [M-H]− | III |
C166 | DEDA hydrated (III) | C9H14O5 | 135 | 201.0768 [M-H]−; 403.161 [2M-H]−; 203.0914 [M+H]+; 220.1181 [M+NH4]+ | II [15] |
C167 | DEDA hydrated (IV) | C9H14O5 | 167 | 201.0769 [M-H]−; 202.0802 13C[M-H]−; 203.0915 [M+H]+ | II [15] |
C168 | DEDA ester (I) | C10H14O4 | 262 | 197.082 [M-H]−; 395.1713 [2M-H]−; 151.0403 [M-H-C2H6O]− | III |
C169 | DEDA ester (II) | C10H14O4 | 327 | 197.0819 [M-H]−; 199.0965 [M+H]+ | III |
C170 | DEDA ester (III) | C10H14O4 | 343 | 199.0965 [M+H]+ | III |
C171 | DEDA alditol (I) | C15H24O9 | 194 | 347.1348 [M-H]−; 366.1761 [M+NH4]+ | III |
C172 | DEDA alditol (II) | C15H24O9 | 205 | 347.1348 [M-H]−; 349.1496 [M+H]+; 366.1762 [M+NH4]+ | III |
C173 | DEDA alditol (III) | C15H24O9 | 222 | 348.1383 13C[M-H]−; 695.277 [2M-H]−; 349.1496 [M+H]+; 366.1761 [M+NH4]+; 367.1797 13C[M+NH4]+ | III |
C174 | DEDA alditol (IV) | C15H24O9 | 228 | 347.1346 [M-H]−; 348.1381 13C[M-H]−; 695.2768 [2M-H]−; 696.2802 13C[2M-H]−; 547.2035 [add]−; 349.1495 [M+H]+; 350.1529 13C[M+H]+; 366.176 [M+NH4]+; 367.1795 13C[M+NH4]+; 331.139 [M+H-H2O]+ | III |
C175 | DEDA alditol (V) | C15H24O9 | 246 | 393.1403 [M-H+HCOOH]−; 366.1761 [M+NH4]+ | III |
C176 | Loganin | C17H26O10 | 282 | 435.1508 [M-H+HCOOH]−; 436.1544 13C[M-H+HCOOH]−; 391.16 [M+H]+; 408.1866 [M+NH4]+; 229.1071 [M+H-hexose]+; 211.0966 [M+H-hexose-H2O]+ | II [23] |
C177 | Loganin aglycone (I) | C11H16O5 | 301 | 229.1071 [M+H]+; 230.1105 13C[M+H]+; 246.1337 [M+NH4]+; 274.1651 [M+C2H8N]+; 211.0966 [M+H-H2O]+; 197.0809 [M+H-CH3OH]+ | II [23] |
C178 | Loganin aglycone (II) | C11H16O5 | 327 | 229.1071 [M+H]+; 274.1651 [M+C2H8N]+; 211.0965 [M+H-H2O]+; 197.0808 [M+H-CH3OH]+; 179.0703 [M+H-H2O-CH3OH]+ | II [23] |
C179 | Loganin aglycone (III) | C11H16O5 | 335 | 229.1071 [M+H]+; 199.0965 [M+H-CH2O]+ | II [23] |
C180 | Loganin aglycone (IV) | C11H16O5 | 380 | 229.1072 [M+H]+; 211.0966 [M+H-H2O]+ | III |
C181 | Hydrated product of loganin | C17H28O11 | 210 | 407.1558 [M-H]−; 408.1592 13C[M-H]−; 357.1193 [frag]−; 426.197 [M+NH4]+; 229.1072 [M+H-hexose-H2O]+ | III |
C182 | Hydroxytyrosol derivative 01 | C8H10O3 | 118 | 155.0702 [M+H]+ | III |
C183 | Hydroxytyrosol derivative 02 | C19H28O12 | 211 | 447.1508 [M-H]−; 466.1918 [M+NH4]+ | III |
C184 | Hydroxytyrosol derivative 03 (I) | C17H24O6 | 361 | 323.15 [M-H]− | III |
C185 | Hydroxytyrosol derivative 03 (II) | C17H24O6 | 375 | 323.15 [M-H]−; 325.1647 [M+H]+ | III |
C186 | Hydroxytyrosol derivative 04 | C22H24O11 | 370 | 463.1246 [M-H]− | III |
C187 | Hydroxytyrosol derivative 05 | C15H20O5 | 373 | 279.1237 [M-H]−; 280.127 13C[M-H]−; 559.2549 [2M-H]−; 315.1007 [M+Cl]−; 325.1292 [M-H+HCOOH]−; 143.0715 [M-H-OHTYR]− | III |
C188 | Hydroxytyrosol derivative 06 | C25H26O8 | 450 | 453.1556 [M-H]− | III |
C189 | Hydroxytyrosol derivative 07 | C21H30O7 | 540 | 393.1919 [M-H]−; 394.1953 13C[M-H]−; 257.1395 [M-H-OHTYR]− | III |
C190 | DEDA derivative 01 | C23H32O11 | 225 | 483.1873 [M-H]−; 484.1907 13C[M-H]− | III |
C191 | DEDA derivative 02 | C16H22O9 | 256 | 357.1192 [M-H]−; 358.1225 13C[M-H]−; 359.134 [M+H]+; 376.1604 [M+NH4]+ | III |
C192 | DEDA derivative 03 (I) | C23H32O12 | 224 | 499.1822 [M-H]− | III |
C193 | DEDA derivative 03 (II) | C23H32O12 | 299 | 518.223 [M+NH4]+ | III |
C194 | DEDA derivative 04 (I) | C18H24O8 | 400 | 367.1397 [M-H]− | III |
C195 | DEDA derivative 04 (II) | C18H24O8 | 414 | 367.1396 [M-H]− | III |
C196 | DEDA derivative 05 | C18H24O7 | 426 | 351.1448 [M-H]− | III |
C197 | DEDA derivative 05 linked to hydroxytyrosol | C26H32O9 | 488 | 487.1974 [M-H]− | III |
C198 | Elenolic acid derivative 01 | C6H10O2 | 75 | 159.0665 [M-H+HCOOH]−; 132.1018 [M+NH4]+ | III |
C199 | Elenolic acid derivative 02 (I) | C11H12O7 | 57 | 274.0925 [M+NH4]+ | III |
C200 | Elenolic acid derivative 02 (II) | C11H12O7 | 144 | 255.0509 [M-H]− | III |
C201 | Elenolic acid derivative 03 | C26H36O13 | 407 | 555.2084 [M-H]− | III |
C202 | Elenolic acid derivative 04 | C23H26O12 | 410 | 493.1352 [M-H]−; 495.1497 [M+H]+ | III |
2.2. Targeted Metabolomics
2.3. Data Visualization and Analysis
3. Discussion
4. Materials and Methods
4.1. Solvents and Standards
4.2. Study Samples
4.3. Sample Preparation
4.4. Untargeted Metabolomics
4.4.1. Chromatographic and Mass Spectrometry Conditions
4.4.2. Data Processing
4.4.3. Compound Identification
4.5. Targeted Metabolomics
4.5.1. Chromatographic and Mass Spectrometry Conditions
4.5.2. Method Development and Validation
4.6. Data Analysis and Visualization
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Euromonitor International Value of the Dietary Supplements Market in Europe in 2015 and 2020, by Country (in Million Euros). Available online: https://www.statista.com/statistics/589452/value-dietary-supplements-markets-europe-by-country/ (accessed on 2 July 2020).
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage (ID 1333, 1638, 1639, 1696, 2865), maintenance of normal blood HDL cholesterol concentrations (ID 1639), mainte. EFSA J. 2011, 9, 2033. [Google Scholar]
- Turck, D.; Bresson, J.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of hydroxytyrosol as a novel food pursuant to Regulation (EC) No 258/97. EFSA J. 2017, 15, 4728. [Google Scholar] [CrossRef]
- Martín-Peláez, S.; Covas, M.I.; Fitó, M.; Kušar, A.; Pravst, I. Health effects of olive oil polyphenols: Recent advances and possibilities for the use of health claims. Mol. Nutr. Food Res. 2013, 57, 760–771. [Google Scholar] [CrossRef] [PubMed]
- del Castillo, M.D.; DeHond, A.I.; Martirosyan, D.M. Are functional foods essential for sustainable health? Ann. Nutr. Food Sci. 2018, 2, 1–4. [Google Scholar]
- Scientific Topic: Food Supplements|European Food Safety Authority. Available online: https://www.efsa.europa.eu/en/topics/topic/food-supplements (accessed on 30 October 2020).
- Santini, A.; Cammarata, S.M.; Capone, G.; Ianaro, A.; Tenore, G.C.; Pani, L.; Novellino, E. Nutraceuticals: Opening the debate for a regulatory framework. Br. J. Clin. Pharmacol. 2018, 84, 659–672. [Google Scholar] [CrossRef] [Green Version]
- Background Information: Dietary Supplements—Consumer—Consumer. Available online: https://ods.od.nih.gov/factsheets/DietarySupplements-Consumer/ (accessed on 10 December 2020).
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef]
- Jerman Klen, T.; Golc Wondra, A.; Vrhovšek, U.; Mozetič Vodopivec, B. Phenolic Profiling of Olives and Olive Oil Process-Derived Matrices Using UPLC-DAD-ESI-QTOF-HRMS Analysis. J. Agric. Food Chem. 2015, 63, 3859–3872. [Google Scholar] [CrossRef]
- Piątczak, E.; Królicka, A.; Wielanek, M.; Wysokińska, H. Hairy root cultures of Rehmannia glutinosa and production of iridoid and phenylethanoid glycosides. Acta Physiol. Plant. 2012, 34, 2215–2224. [Google Scholar] [CrossRef]
- Cardinali, A.; Pati, S.; Minervini, F.; D’Antuono, I.; Linsalata, V.; Lattanzio, V. Verbascoside, isoverbascoside, and their derivatives recovered from olive mill wastewater as possible food antioxidants. J. Agric. Food Chem. 2012, 60, 1822–1829. [Google Scholar] [CrossRef]
- Kanakis, P.; Termentzi, A.; Michel, T.; Gikas, E.; Halabalaki, M.; Skaltsounis, A.L. From olive drupes to olive OilAn HPLC-orbitrap-based qualitative and quantitative exploration of olive key metabolites. Planta Med. 2013, 79, 1576–1587. [Google Scholar] [CrossRef] [Green Version]
- Fu, S.; Segura-Carreteru, A.; Arráez-Román, D.; Menéndez, J.A.; De La Torre, A.; Fernández-Gutiérrez, A. Tentative characterization of novel phenolic compounds in extra virgin olive oils by rapid-resolution liquid chromatography coupled with mass spectrometry. J. Agric. Food Chem. 2009, 57, 11140–11147. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Sánchez, J.; Giambanelli, E.; Quirantes-Piné, R.; Cerretani, L.; Bendini, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Wastes Generated during the Storage of Extra Virgin Olive Oil as a Natural Source of Phenolic Compounds. J. Agric. Food Chem. 2011, 59, 11491–11500. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.-M.; Fu, Y.; Yu, W.-J.; Chen, C.; Di, X.; Zhang, H.; Zhai, Y.-J.; Chu, Z.-Y.; Kang, T.-G.; Chen, H.-B. Identification of Polar Constituents in the Decoction of Juglans mandshurica and in the Medicated Egg Prepared with the Decoction by HPLC-Q-TOF MS2. Molecules 2017, 22, 1452. [Google Scholar] [CrossRef] [Green Version]
- Krzyzanowska-Kowalczyk, J.; Pecio, Ł.; Mołdoch, J.; Ludwiczuk, A.; Kowalczyk, M. Novel phenolic constituents of pulmonaria officinalis l. Lc-ms/ms comparison of spring and autumn metabolite profiles. Molecules 2018, 23, 2277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu-Reidah, I.M.; Arráez-Román, D.; Al-Nuri, M.; Warad, I.; Segura-Carretero, A. Untargeted metabolite profiling and phytochemical analysis of Micromeria fruticosa L. (Lamiaceae) leaves. Food Chem. 2019, 279, 128–143. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Y.; Liu, R.; Liu, S.; Zhang, X.; Wang, Z.; Zhang, J.; Lu, J. HPLC-LTQ-orbitrap MSn profiling method to comprehensively characterize multiple chemical constituents in xiao-er-qing-jie granules. Anal. Methods 2015, 7, 7511–7526. [Google Scholar] [CrossRef]
- Obied, H.K.; Bedgood, D.R.; Prenzler, P.D.; Robards, K. Bioscreening of Australian olive mill waste extracts: Biophenol content, antioxidant, antimicrobial and molluscicidal activities. Food Chem. Toxicol. 2007, 45, 1238–1248. [Google Scholar] [CrossRef]
- Ammar, S.; del Contreras, M.M.; Gargouri, B.; Segura-Carretero, A.; Bouaziz, M. RP-HPLC-DAD-ESI-QTOF-MS based metabolic profiling of the potential Olea europaea by-product “wood” and its comparison with leaf counterpart. Phytochem. Anal. 2017, 28, 217–229. [Google Scholar] [CrossRef]
- Bajoub, A.; Pacchiarotta, T.; Hurtado-Fernández, E.; Olmo-García, L.; García-Villalba, R.; Fernández-Gutiérrez, A.; Mayboroda, O.A.; Carrasco-Pancorbo, A. Comparing two metabolic profiling approaches (liquid chromatography and gas chromatography coupled to mass spectrometry) for extra-virgin olive oil phenolic compounds analysis: A botanical classification perspective. J. Chromatogr. A 2016, 1428, 267–279. [Google Scholar] [CrossRef]
- Kucharska, A.Z.; Fecka, I. Identification of iridoids in edible honeysuckle berries (Lonicera caerulea L. var. kamtschatica Sevast.) by UPLC-ESI-qTOF-MS/MS. Molecules 2016, 21, 1157. [Google Scholar] [CrossRef] [Green Version]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricciutelli, M.; Marconi, S.; Boarelli, M.C.; Caprioli, G.; Sagratini, G.; Ballini, R.; Fiorini, D. Olive oil polyphenols: A quantitative method by high-performance liquid-chromatography-diode-array detection for their determination and the assessment of the related health claim. J. Chromatogr. A 2017, 1481, 53–63. [Google Scholar] [CrossRef] [PubMed]
- de las Hazas, M.C.L.; Rubio, L.; Macia, A.; Motilva, M.J. Hydroxytyrosol: Emerging Trends in Potential Therapeutic Applications. Curr. Pharm. Des. 2018, 24, 2157–2179. [Google Scholar] [CrossRef] [PubMed]
- Soni, M.G.; Burdock, G.A.; Christian, M.S.; Bitler, C.M.; Crea, R. Safety assessment of aqueous olive pulp extract as an antioxidant or antimicrobial agent in foods. Food Chem. Toxicol. 2006, 44, 903–915. [Google Scholar] [CrossRef]
- Rainer, J. Metabolomics data pre-processing using xcms (Version 1.0.0). Zenodo 2020. [Google Scholar] [CrossRef]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef] [Green Version]
- Depke, T.; Franke, R.; Brönstrup, M. CluMSID: An R package for similarity-based clustering of tandem mass spectra to aid feature annotation in metabolomics. Bioinformatics 2019, 35, 3196–3198. [Google Scholar] [CrossRef]
Compound | Detector | LDR (mg/L) | Curve | Intra-Day (% RSD) | Inter-Day (% RSD) | Repeatability (% RSD) | ||
---|---|---|---|---|---|---|---|---|
Intercept | Slope | R2 | ||||||
Quinic acid | MS | 10–100 | 2,284,463 | 146,048 | 0.989 | 6.78 | 10.87 | 5.38 |
Malic acid | MS | 10–100 | 1,649,636 | 32,379 | 0.992 | 7.51 | 14.90 | 6.68 |
Isocitric acid | MS | 0.2–50 | 226,679 | 204,797 | 0.993 | 7.74 | 12.54 | 9.38 |
Citric acid | MS | 5–100 | 1,484,339 | 213,678 | 0.995 | 7.00 | 16.25 | 5.90 |
Succinic acid | MS | 5–100 | 769,682 | 66,403 | 0.991 | 3.55 | 14.35 | 3.09 |
Sorbitol | MS | 2–100 | 968,312 | 88,135 | 0.972 | 4.59 | 13.94 | 2.07 |
3,4-Dihydroxy-phenylglycol | MS | 0.2–50 | 262,381 | 91,393 | 0.986 | 8.99 | 18.55 | 2.92 |
Hydroxytyrosol | MS | 2–100 | 2,082,530 | 253,685 | 0.988 | 10.41 | 5.41 | 8.30 |
Oleuropein | MS | 0.5–50 | 1,004,848 | 695,049 | 0.991 | 4.00 | 5.25 | 4.04 |
Tyrosol | DAD | 2–1505 | −16,214 | 5499 | 1.000 | 1.52 | 3.65 | 8.19 |
Tyrosol glucoside | DAD | 5–100 | −111 | 2334 | 1.000 | 2.26 | 2.85 | 9.81 |
Verbascoside | DAD | 0.5–1536 | −23,591 | 14,737 | 1.000 | 0.77 | 1.81 | 9.48 |
Compound | K | D | F | J | M | L | C | O | E | I | N | H | A | G |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Quinic acid | 0.19–0.21 | 0.57–0.81 | 0.11–0.34 | 0.35–0.57 | 1.11–1.51 | 0.73–0.77 | 11.52–15.3 | <LOQ | 0.64–0.67 | 0.45–0.7 | <LOQ | <LOQ | 0.4–0.65 | 74.84–79.94 |
Malic acid | <LOQ | LOQ–0.14 | <LOQ | 0.18–0.22 | 0.75–0.82 | 0.48–0.54 | 2.86–3.49 | <LOQ | 0.95–1.3 | 0.39–0.41 | <LOQ | <LOQ | 0.21–0.39 | 19.7–22.88 |
Citric acid | <LOQ | ND–<LOQ | <LOQ | 0.85–0.89 | 0.27–0.27 | 0.3–0.34 | 1.08–1.2 | <LOQ | 0.58–0.7 | 0.57–0.59 | <LOQ | LOQ–0.06 | 0.4–0.45 | 19.19–21.08 |
Isocitric acid | ND | ND–<LOQ | ND–<LOQ | 0–0.01 | 0.06–0.06 | 0–0 | 0.12–0.2 | <LOQ | 0.01–0.02 | 0.06–0.07 | <LOQ | <LOQ | 0.02–0.04 | 0.3–0.32 |
Succinic acid | <LOQ | <LOQ | <LOQ | <LOQ | 0.07–0.09 | <LOQ | 0.21–0.28 | <LOQ | <LOQ | 0.55–0.62 | <LOQ | <LOQ | <LOQ | 0.5–0.54 |
Sorbitol | 0.14–0.14 | 0.13–0.24 | 0.1–0.22 | 0.08–0.1 | 0.11–0.13 | 0.49–0.49 | 0.87–0.93 | 0.08–0.09 | 0.06–0.07 | 0.7–0.77 | <LOQ | <LOQ | 0.08–0.1 | 2–2.02 |
Trihydroxyoctadecenoic acid (I) | ND | ND–<LOQ | ND–<LOQ | ND | ND | ND | ND | ND | ND–<LOQ | ND | ND | ND | ND–0.03 | 0.04–0.05 |
Trihydroxyoctadecenoic acid (II) | ND–<LOQ | ND–<LOQ | ND–<LOQ | <LOQ | <LOQ | 0.01–0.01 | ND–<LOQ | ND–<LOQ | <LOQ | 0–0.01 | ND | ND | 0.01–0.02 | 0–0.01 |
Trihydroxyoctadecenoic acid (III) | ND–<LOQ | ND–<LOQ | <LOQ | <LOQ | 0.01–0.02 | 0.03–0.03 | ND–0.02 | 0.01–0.02 | 0.05–0.05 | 0.18–0.22 | ND | ND | 0.01–0.01 | 0.03–0.05 |
Verbascoside | ND | ND–0.03 | ND–0.02 | 0.02–0.04 | 0.14–0.16 | 0.09–0.1 | 2.8–3.05 | ND–0.02 | 0.78–0.81 | 0.75–3.7 | ND–0.02 | ND–0.03 | 47.43–51.19 | 16.96–18.26 |
Hydroxy-verbascoside (I) | ND | ND | ND | ND | ND–0.02 | ND | 0.06–0.07 | ND | 0.15–0.16 | 0.07–0.18 | ND | ND–0.04 | 2.99–3.1 | 0.75–0.88 |
Hydroxy-verbascoside (II) | ND | ND | ND | ND | ND–0.03 | ND | 0.38–0.43 | ND | 0.06–0.06 | 0.05–0.12 | ND | ND | 3.09–3.17 | 0.75–0.83 |
3,4-Dihydroxy-phenylglycol | <LOQ | <LOQ | <LOQ | 0.07–0.08 | 0.01–0.02 | 0.11–0.11 | 0.01–0.02 | <LOQ | ND–<LOQ | 0.11–0.13 | <LOQ | 0.12–0.14 | 0.3–0.38 | 0.1–0.1 |
Hydroxytyrosol | <LOQ | <LOQ | <LOQ | 0.14–0.16 | 0.2–0.27 | 0.05–0.06 | 0.13–0.17 | 0.09–0.13 | LOQ–0.06 | 17.15–21.46 | 5.99–8.82 | 74.83–88.2 | 14.94–20.06 | 9.14–10.14 |
Hydroxytyrosol glucoside (I) | ND–<LOQ | <LOQ | <LOQ | LOQ–0.02 | <LOQ | <LOQ | 0.5–0.64 | <LOQ | 0.12–0.17 | 0.58–0.66 | LOQ–0.47 | 0.17–0.2 | 1.71–3.03 | 0.55–0.75 |
Hydroxytyrosol glucoside (II) | <LOQ | <LOQ | <LOQ | LOQ–0.02 | 0.07–0.1 | 0.2–0.21 | 2.2–2.39 | <LOQ | 0.18–0.26 | 0.78–0.92 | LOQ–0.17 | 0.08–0.12 | 1.38–2.05 | 0.56–0.69 |
Tyrosol | 0.04–0.04 | 0.04–0.05 | 0.04–0.04 | ND | 0.03–0.05 | 0.05–0.06 | ND–0.21 | 0.07–0.08 | ND–0.07 | 2.28–2.66 | ND | 2.17–2.38 | 4.93–5.8 | 3.2–3.25 |
Tyrosol glucoside | ND | ND–<LOQ | ND–<LOQ | ND | 0.33–0.37 | ND | 1.76–2.35 | ND | 0.57–0.77 | 0.4–0.56 | ND | ND | 10.73–11.98 | 4.64–6.4 |
Oleuropein | <LOQ | LOQ–0.01 | <LOQ | 0.13–0.14 | 0.42–0.61 | 0.37–0.39 | 16.49–19.22 | <LOQ | 15.64–17.4 | 71.76–79.09 | <LOQ | LOQ–0.08 | 3.9–4.86 | 0.17–0.22 |
Oleuropein isomer (I) | <LOQ | ND–<LOQ | <LOQ | ND–<LOQ | ND–<LOQ | ND | 0.01–0.05 | ND–<LOQ | ND–0.08 | 0.21–0.28 | <LOQ | ND–<LOQ | 0.01–0.01 | LOQ–0.01 |
Oleuropein isomer (II) | <LOQ | <LOQ | <LOQ | LOQ–0.01 | <LOQ | <LOQ | 0.72–0.79 | ND–<LOQ | 0.21–0.26 | 2.93–3.77 | <LOQ | <LOQ | 0.11–0.13 | 0.06–0.07 |
Elenolic acid | <LOQ | <LOQ | ND | 0.01–0.01 | <LOQ | 0.03–0.04 | <LOQ | <LOQ | <LOQ | 0.1–0.11 | ND–<LOQ | ND | 1.21–1.37 | 0.41–0.45 |
DEDA | <LOQ | <LOQ | LOQ–0.51 | <LOQ | <LOQ | <LOQ | <LOQ | LOQ–0.01 | <LOQ | 0.24–0.26 | LOQ–0.17 | 2.78–3.16 | 0.73–0.83 | 1.84–2.13 |
Hydroxy-DEDA | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 0.19–0.21 | <LOQ | <LOQ | <LOQ | <LOQ | LOQ–0.04 | 0.09–0.09 | 0.14–0.16 | 1.59–1.76 |
DEDA hydrated (I) | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 0.11–0.12 | LOQ–0.12 | 0.94–1.33 | 0.09–0.1 | 0.06–0.09 |
DEDA hydrated (II) | ND–<LOQ | ND–<LOQ | ND–<LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 0.11–0.13 | <LOQ | <LOQ |
Product | Part Used | Pharmaceutical Form | Recommended Daily Intake Dose by the Supplier | Presence of Other Plant Extracts | Boasted Activity | Origin | Physical State | Extraction Product |
---|---|---|---|---|---|---|---|---|
K | buds | Drops | 100 drops (5.28 g) | - | Hypotensive, cholesterol-lowering | Italy | liquid | glyceric macerate |
D | buds | Drops | 80 drops (2.13 g) | - | Protective vascular functionality (vasodilator, hypotensive); promotes correct lipid and carbohydrate metabolism | Italy | liquid | glyceric macerate |
F | buds | Drops | 75 drops (2.70 g) | - | Protective vascular functionality (vasodilator, hypotensive); promotes correct lipid and carbohydrate metabolism | Italy | liquid | glyceric macerate |
J | leaves | Liquid | 70 mL (72.8 g) | Calendula | Antioxidant, promotes correct lipid and carbohydrate metabolism, maintain normal blood pressure | Italy | liquid | liquid extract |
M | leaves | Drops | 75 drops (1.98 g) | Passiflora, hawthorn, pilosella, fumaria | Hypotensive | Italy | liquid | liquid extract |
L | leaves | Drops | 75 drops (1.98 g) | - | Promotes correct lipid and carbohydrate metabolism | Italy | liquid | liquid extract |
C | leaves | Capsules | 4 cps (2 g) | Hawthorn, goji | Maintain normal blood pressure | Italy | powder | dry extract |
O | leaves and fruit | Raw material | 400 mg (0.4 g) | - | Protective vascular functionality, anti-diabetic action | Spain | powder | dry extract |
E | leaves and fruit | Capsules | 2 cps (1.2 g) | Hawthorn, salvia | Maintain normal blood pressure | Italy | powder | dry extract |
I | leaves and fruit | Raw material | 400 mg (0.4 g) | - | Hypotensive, antioxidant, anti-inflammatory, cholesterol-lowering, anti-diabetic action | Spain | powder | dry extract |
N | fruit | Capsules | 2 cps (1.28 g) | - | Antioxidant, anti-aggregant, anti-inflammatory | Italy | powder | dry extract |
H | fruit | Raw material | 25 mg (0.025 g) | - | Antioxidant (cholesterol LDL) | Spain | powder | dry extract |
A | fruit | Raw material | 400 mg (0.4 g) | - | Antioxidant, protective vascular functionality | France | powder | dry extract |
G | fruit | Raw material | 400 mg (0.4 g) | - | Antioxidant, protective ultraviolet (UV) rays | France | powder | dry extract |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Aloy, M.; Groff, N.; Masuero, D.; Nisi, M.; Franco, A.; Battelini, F.; Vrhovsek, U.; Mattivi, F. Exploratory Analysis of Commercial Olive-Based Dietary Supplements Using Untargeted and Targeted Metabolomics. Metabolites 2020, 10, 516. https://doi.org/10.3390/metabo10120516
Garcia-Aloy M, Groff N, Masuero D, Nisi M, Franco A, Battelini F, Vrhovsek U, Mattivi F. Exploratory Analysis of Commercial Olive-Based Dietary Supplements Using Untargeted and Targeted Metabolomics. Metabolites. 2020; 10(12):516. https://doi.org/10.3390/metabo10120516
Chicago/Turabian StyleGarcia-Aloy, Mar, Nelli Groff, Domenico Masuero, Mauro Nisi, Antonio Franco, Furio Battelini, Urska Vrhovsek, and Fulvio Mattivi. 2020. "Exploratory Analysis of Commercial Olive-Based Dietary Supplements Using Untargeted and Targeted Metabolomics" Metabolites 10, no. 12: 516. https://doi.org/10.3390/metabo10120516
APA StyleGarcia-Aloy, M., Groff, N., Masuero, D., Nisi, M., Franco, A., Battelini, F., Vrhovsek, U., & Mattivi, F. (2020). Exploratory Analysis of Commercial Olive-Based Dietary Supplements Using Untargeted and Targeted Metabolomics. Metabolites, 10(12), 516. https://doi.org/10.3390/metabo10120516