Untargeted and Targeted Metabolomic Profiling of Australian Indigenous Fruits
Abstract
:1. Introduction
2. Results
2.1. Untargeted Metabolic Profiling Using GC×GC-TOFMS and UHPLC-QqQ-TOF-MS/MS
2.2. Antioxidant Activity Using DPPH, ABTS, FRAP and Phosphomolybdenum Assays
2.3. Total Phenolic Content (TPC), Total Flavonoid Content (TFC) and Total Flavonol Content (TFlC)
2.4. Correlation Between Antioxidant Activity And Compounds in The GCMS Dataset
2.5. Correlation Between Antioxidant Activity And Compounds in The LCMS Dataset
2.6. Targeted Free And Protein Amino Acid Profilling Using UHPLC-MS
2.7. Targeted Minerals and Heavy Metals Profilling using ICP-OES
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Materials
4.3. GC×GC-TOFMS Analysis
4.4. UHPLC-QqQ-TOF-MS/MS Analysis
4.5. Targeted Analysis of Free Amino Acids
4.5.1. Extraction of Free Amino Acids from Fruit Samples
4.5.2. Free Amino Acid Derivatisation
4.5.3. Standards
4.5.4. UHPLC-MS Conditions
4.6. Targeted Analysis of Protein Amino Acids
4.6.1. Sample Digestion
4.6.2. Protein Amino Acid Derivatisation
4.6.3. UHPLC-MS Analysis
4.7. Targeted Analysis of Minerals and Heavy Metals
4.7.1. Sample Preparation
4.7.2. ICP-OES Analysis
4.8. Determination of in Vitro Antioxidant Activity
4.9. Total Phenolic, Flavonoid and Flavonol Contents
4.10. Data Processing and Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Australian Bush Foods Are All around Us, But the Industry Is Just Waking up. Available online: https://www.abc.net.au/news/2019-04-06/australian-bush-foods-under-threat-just-as-industry-develops/10950522 (accessed on 25 September 2019).
- Richmond, R.; Bowyer, M.; Vuong, Q. Australian native fruits: Potential uses as functional food ingredients. J. Funct. Foods 2019, 62, 103547. [Google Scholar] [CrossRef]
- Clarke, M. Australian Native Food Industry Stocktake; Rural Industries Research and Development Corporation: Wagga, Australia, 2012; Publication No. 12/066. [Google Scholar]
- John, O.D.; Mouatt, P.; Prasadam, I.; Xiao, Y.; Panchal, S.K.; Brown, L. The edible native Australian fruit, Davidson’s plum (Davidsonia pruriens), reduces symptoms in rats with diet-induced metabolic syndrome. J. Funct. Foods 2019, 56, 204–215. [Google Scholar] [CrossRef]
- New South Wales. Department of Environment and Conservation 2004, Approved NSW Recovery Plan: Davidson’s Plum (Davidsonia jerseyana); Dept. of Environment and Conservation (NSW): Hurstville, Sydney, Australia, 2004. [Google Scholar]
- Australian Native Food and Botanicals. Available online: https://anfab.org.au/main.asp?_=DavidsonPlum (accessed on 10 October 2019).
- Chuen, T.L.K.; Vuong, Q.V.; Hirun, S.; Bowyer, M.C.; Predebon, M.J.; Goldsmith, C.D.; Sakoff, J.A.; Scarlett, C.J. Antioxidant and anti-proliferative properties of Davidson’s plum (Davidsonia pruriens F. Muell) phenolic-enriched extracts as affected by different extraction solvents. J. Herb. Med. 2016, 6, 187–192. [Google Scholar] [CrossRef]
- Department of Industry and Investment (Industry & Investment NSW). Growing Australian native finger limes. PrimeFacts 2010, 979, 1–11. [Google Scholar]
- Delort, E.; Yuan, Y.-M. Finger lime/The Australian Caviar—Citrus australasica. In Exotic Fruits; Rodrigues, S., de Oliveira Silva, E., de Brito, E.S., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 203–210. [Google Scholar]
- Delort, E.; Jaquier, A.; Decorzant, E.; Chapuis, C.; Casilli, A.; Frérot, E. Comparative analysis of three Australian finger lime (Citrus australasica) cultivars: Identification of unique citrus chemotypes and new volatile molecules. Phytochemistry 2015, 109, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ji, S.; Zang, W.; Wang, N.; Cao, J.; Li, X.; Sun, C. Identification of phenolic compounds from a unique citrus species, finger lime (Citrus australasica) and their inhibition of LPS-induced NO-releasing in BV-2 cell line. Food Chem. Toxicol. 2019, 129, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Sultanbawa, Y. Tasmanian Pepper Leaf (Tasmannia Lanceolata) Oils; Elsevier Inc.: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Read, C.; Menary, R. Analysis of the contents of oil cells in Tasmannia lanceolata (Poir.) A. C. Smith (Winteraceae). Ann. Bot. 2000, 86, 1193–1197. [Google Scholar] [CrossRef] [Green Version]
- Konczak, I.; Zabaras, D.; Dunstan, M.; Aguas, P. Antioxidant capacity and phenolic compounds in commercially grown native Australian herbs and spices. Food Chem. 2010, 122, 260–266. [Google Scholar] [CrossRef]
- Beckett, J.M.; Ahuja, K.D.K.; Booth, C.; Ovenden, S.; Ball, M.J. In vitro anti-platelet and antioxidant effect of Tasmannia lanceolata (native pepperberry). J. Nutr. Intermed. Metab. 2014, 1, 47. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.D.; Menary, R.C.; Close, D.C. Effects of tree guards and mulching on plantation establishment of Tasmanian Native Pepper (Tasmannia lanceolata (Poir.) A.C. Smith). J. Appl. Res. Med. Aromat. Plants 2015, 2, 154–159. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, A.; Yan, G.; Han, Y.; Sun, H. UHPLC-MS for the analytical characterization of traditional Chinese medicines. TrAC Trends Anal. Chem. 2014, 63, 180–187. [Google Scholar] [CrossRef]
- Aszyk, J.; Byliński, H.; Namieśnik, J.; Kot-Wasik, A. Main strategies, analytical trends and challenges in LC-MS and ambient mass spectrometry–based metabolomics. TrAC Trends Anal. Chem. 2018, 108, 278–295. [Google Scholar] [CrossRef]
- Konczak, I.; Roulle, P. Nutritional properties of commercially grown native Australian fruits: Lipophilic antioxidants and minerals. Food Res. Int. 2011, 44, 2339–2344. [Google Scholar] [CrossRef]
- Salek, R.M.; Steinbeck, C.; Viant, M.R.; Goodacre, R.; Dunn, W.B. The role of reporting standards for metabolite annotation and identification in metabolomic studies. Gigascience 2013, 2, 1. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, M.; Zaiter, A.; Modarressi, A.; Baudelaire, E.; Dicko, A. The positive impact of a new parting process on antioxidant activity, malic acid and phenolic content of Prunus avium L., Prunus persica L. and Prunus domestica subsp. Insititia L. powders. Microchem. J. 2019, 149, 103962. [Google Scholar] [CrossRef]
- Miletić, N.; Mitrović, O.; Popović, B.; Nedović, V.; Zlatković, B.; Kandić, M. Polyphenolic Content and Antioxidant Capacity in Fruits of Plum (Prunus domestica L.) Cultivars Valjevka and Mildora as Influenced by Air Drying. J. Food Qual. 2013, 36, 229–237. [Google Scholar] [CrossRef]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Rayan, P.; Matthews, B.; Mc Donnell, P.; Cock, I.E. Phytochemical analysis of Tasmannia lanceolata extracts and inhibition of giardia duodenalis proliferation. Pharmacogn. J. 2016, 8, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Science, F. Potential Health Properties of Selected Commercially Grown Native Australian Herbs and Fruits; The University of New South Wales: Sydney, Australia, 2012. [Google Scholar]
- Kang, Y.; Li, P.; Zeng, X.; Chen, X.; Xie, Y.; Zeng, Y.; Zhang, Y.; Xie, T. Biosynthesis, structure and antioxidant activities of xanthan gum from Xanthomonas campestris with additional furfural. Carbohydr. Polym. 2019, 216, 369–375. [Google Scholar] [CrossRef]
- Shahriari, M.; Zibaee, A.; Sahebzadeh, N.; Shamakhi, L. Effects of α-pinene, trans-anethole, and thymol as the essential oil constituents on antioxidant system and acetylcholine esterase of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Pestic. Biochem. Physiol. 2018, 150, 40–47. [Google Scholar] [CrossRef]
- Souza, C.F.; Baldissera, M.D.; Silva, L.; de Silva, L.L.; Geihs, M.A.; Baldisserotto, B. Is monoterpene terpinen-4-ol the compound responsible for the anesthetic and antioxidant activity of Melaleuca alternifolia essential oil (tea tree oil) in silver catfish? Aquaculture 2018, 486, 217–223. [Google Scholar] [CrossRef]
- Milde, J.; Elstner, E.F.; Graßmann, J. Synergistic inhibition of low-density lipoprotein oxidation by rutin, γ-terpinene, and ascorbic acid. Phytomedicine 2004, 11, 105–113. [Google Scholar] [CrossRef]
- de Christo Scherer, M.M.; Marques, F.M.; Figueira, M.M.; Peisino, M.C.O.; Schmitt, E.F.P.; Kondratyuk, T.P.; Endringer, D.C.; Scherer, R.; Fronza, M. Wound healing activity of terpinolene and α-phellandrene by attenuating inflammation and oxidative stress in vitro. J. Tissue Viability 2019, 28, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Shukla, R.; Prakash, B.; Kumar, A.; Singh, S.; Mishra, P.K.; Dubey, N.K. Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene. Food Chem. Toxicol. 2010, 48, 1734–1740. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Beg, Z.H. Hypolipidemic and antioxidant activities of thymoquinone and limonene in atherogenic suspension fed rats. Food Chem. 2013, 138, 1116–1124. [Google Scholar] [CrossRef]
- Patel, M.K.; Mishra, A.; Jha, B. Non-targeted metabolite profiling and scavenging activity unveil the nutraceutical potential of psyllium (Plantago ovata forsk). Front. Plant Sci. 2016, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Caruso, G.; Conti, S.; Villari, G.; Borrelli, C.; Melchionna, G.; Minutolo, M.; Russo, G.; Amalfitano, C. Effects of transplanting time and plant density on yield, quality and antioxidant content of onion (Allium cepa L.) in southern Italy. Sci. Hortic. (Amst.) 2014, 166, 111–120. [Google Scholar] [CrossRef]
- Caruso, G.; Villari, G.; Borrelli, C.; Russo, G. Effects of crop method and harvest seasons on yield and quality of green asparagus under tunnel in southern italy. Adv. Hortic. Sci. 2012, 26, 51–58. [Google Scholar]
- Craig, W.J.; Mangels, A.R. Position of the American dietetic association: Vegetarian diets. J. Am. Diet. Assoc. 2009, 109, 1266–1282. [Google Scholar]
- Rogerson, D. Vegan diets: Practical advice for athletes and exercisers. J. Int. Soc. Sports Nutr. 2017, 14, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Leterme, P.; Buldgen, A.; Estrada, F.; Londoño, A.M. Mineral content of tropical fruits and unconventional foods of the Andes and the rain forest of Colombia. Food Chem. 2006, 95, 644–652. [Google Scholar] [CrossRef]
- Barea-Álvarez, M.; Delgado-Andrade, C.; Haro, A.; Olalla, M.; Seiquer, I.; Rufián-Henares, J.Á. Subtropical fruits grown in Spain and elsewhere: A comparison of mineral profiles. J. Food Compos. Anal. 2016, 48, 34–40. [Google Scholar] [CrossRef]
- Wang, L.; Fu, H.; Wang, W.; Wang, Y.; Zheng, F.; Ni, H.; Chen, F. Analysis of reducing sugars, organic acids and minerals in 15 cultivars of jujube (Ziziphus jujuba mill.) fruits in China. J. Food Compos. Anal. 2018, 73, 10–16. [Google Scholar] [CrossRef]
- Ghorbani Gorji, S.; Calingacion, M.; Smyth, H.E.; Fitzgerald, M. Effect of natural antioxidants on lipid oxidation in mayonnaise compared with BHA, the industry standard. Metabolomics 2019, 15, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Daygon, V.D.; Prakash, S.; Calingacion, M.; Riedel, A.; Ovenden, B.; Snell, P.; Mitchell, J.; Fitzgerald, M. Understanding the Jasmine phenotype of rice through metabolite profiling and sensory evaluation. Metabolomics 2016, 12, 1–15. [Google Scholar] [CrossRef]
- Daygon, V.D.; Calingacion, M.; Forster, L.C.; de Voss, J.J.; Schwartz, B.D.; Ovenden, B.; Alonso, D.E.; Mccouch, S.R.; Garson, M.J.; Fitzgerald, M.A. Metabolomics and genomics combine to unravel the pathway for the presence of fragrance in rice. Sci. Rep. 2017, 7, 8767. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani Gorji, S.; Calingacion, M.; Smyth, H.E.; Fitzgerald, M. Comprehensive profiling of lipid oxidation volatile compounds during storage of mayonnaise. J. Food Sci. Technol. 2019, 56, 4076–4090. [Google Scholar] [CrossRef]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; Vandergheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 2015, 12, 523–526. [Google Scholar] [CrossRef]
- Tsugawa, H.; Nakabayashi, R.; Mori, T.; Yamada, Y.; Takahashi, M.; Rai, A.; Sugiyama, R.; Yamamoto, H.; Nakaya, T.; Yamazaki, M.; et al. A cheminformatics approach to characterize metabolomes in stable-isotope-labeled organisms. Nat. Methods 2019, 16, 295–298. [Google Scholar] [CrossRef]
- Fiechter, G.; Mayer, H.K. Characterization of amino acid profiles of culture media via pre-column 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate derivatization and ultra performance liquid chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 1353–1360. [Google Scholar] [CrossRef]
- Ali, N.; Paul, S.; Gayen, D.; Sarkar, S.N.; Datta, K.; Datta, S.K. Development of Low Phytate Rice by RNAi Mediated Seed-Specific Silencing of Inositol 1,3,4,5,6-Pentakisphosphate 2-Kinase Gene (IPK1). PLoS ONE 2013, 8, e68161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolan, S.P.; Nortrup, D.A.; Bolger, P.M.; Capar, S.G. Analysis of dietary supplements for arsenic, cadmium, mercury, and lead using inductively coupled plasma mass spectrometry. J. Agric. Food Chem. 2003, 51, 1307–1312. [Google Scholar] [CrossRef] [PubMed]
- Ong, M.G.; Mat Yusuf, S.N.A.; Lim, V. Pharmacognostic and antioxidant properties of Dracaena sanderiana leaves. Antioxidants 2016, 5, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, N.M.; Mat, I.; Lim, V.; Ahmad, R. Antioxidant activity and phenolic content of Streblus asper leaves from various drying methods. Antioxidants 2013, 2, 156–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, S.; Huang, X.; Shah, M.H.; Abbasi, A.M. Evaluation of polyphenolics content and antioxidant activity in edible wild fruits. BioMed Res. Int. 2019, 2019, 1381989. [Google Scholar] [CrossRef] [Green Version]
- Batool, R.; Khan, M.R.; Sajid, M.; Ali, S.; Zahra, Z. Estimation of phytochemical constituents and in vitro antioxidant potencies of Brachychiton populneus (Schott & Endl.) R.Br. BMC Chem. 2019, 13, 1–15. [Google Scholar]
- Chong, H.W.; Rezaei, K.; Chew, B.L.; Lim, V. Chemometric Profiling of Clinacanthus nutans Leaves Possessing Antioxidant Activities using. Chiang Mai J. Sci. 2018, 45, 1377–1388. [Google Scholar]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019, 68, 1–128. [Google Scholar] [CrossRef]
Samples | ABTS (GAEµmol/gDW) | DPPH (GAEµmol/gDW) | FRAP (µmol Fe2+/gDW) | Phosphomolybdenum (GAEµmol/gDW) | TPC (GAEµmol/gDW) | TFC (QTE µmol/gDW) | TFlC (QTE (µmol/gDW) |
---|---|---|---|---|---|---|---|
DP | 21.92 ± 1.60 a | 97.38 ± 3.93 b | 500.38 ± 64.32 c | 52.71 ± 5.40 a | 113.58 ± 14.20 b | 11.31 ± 0.52 a | 5.55 ± 0.08 b |
FL | 62.73 ± 0.55 c | 17.23 ± 2.04 a | 46.16 ± 3.74 a | 114.89 ± 3.25 b | 63.46 ± 1.10 a | 10.59 ± 0.97 a | 0.56 ± 0.18 a |
NP | 22.06 ± 3.43 a | 119.49 ± 2.72 c | 48.48 ± 3.23 a | 291.94 ± 2.23 c | 134.82 ± 11.08 b | 35.86 ± 3.99 b | 9.99 ± 0.21 c |
Peak No. | Compounds | Group (VIP Score) | Retention Time (1tR, 2tR) a | CAS No. | Mf b | Exact Mass | Level c |
---|---|---|---|---|---|---|---|
526 | 1-methyl-4-(prop-1-en-2-yl)cyclohex-1-ene [Limonene] | Terpene (7.01) | 769.55, 0.72 | 138-86-3 | C10H16 | 136.23 | L2 |
329 | 1-R-α-Pinene | Terpene (6.34) | 716.15, 637.29 | 7785-70-8 | C10H16 | 136.23 | L2 |
498 | Furfural | Aldehyde (5.58) | 577.36, 1.28 | 98-01-1 | C5H4O2 | 96.08 | L1 |
508 | Hexanal | Aldehyde (5.12) | 503.75, 0.69 | 66-25-1 | C6H12O | 100.15 | L1 |
437 | 1-methyl-4-(1-methylethylidene)- cyclohexene [Terpinolene] | Terpenoid (4.74) | 972.00, 0.98 | 586-62-9 | C10H16 | 136.23 | L2 |
410 | γ-Terpinene | Terpene (4.70) | 1072.61, 1.18 | 99-85-4 | C10H16 | 136.23 | L2 |
599 | Terpinen-4-ol | Terpenoid (4.49) | 1038.69, 1.00 | 562-74-3 | C10H18O | 154.24 | L2 |
397 | 2,2-dimethyl-3-methylidenebicyclo[2.2.1]heptane [Camphene] | Terpenoid (4.28) | 953.92, 1.06 | 79-92-5 | C10H16 | 136.23 | L2 |
326 | α-Phellandrene | Terpene (3.78) | 778.35, 0.70 | 99-83-2 | C10H16 | 136.23 | L2 |
342 | 1-methyl-4-(1-methylethenyl)-benzene [p-Cymenene] | Terpene (3.63) | 960.45, 0.88 | 1195-32-0 | C10H12 | 132.20 | L2 |
493 | 2-ethylfuran | Furan (3.55) | 367.27, 0.88 | 3208-16-0 | C6H8O | 96.12 | L2 |
281 | 1-methyl-4-(1-methylethyl)-7-Oxabicyclo [2.2.1]heptane | Alkane (3.38) | 757.76, 0.68 | 470-67-7 | C10H18O | 154.24 | L2 |
1 | (-)-Carvone | Terpenoid (3.11) | 1170.77, 1.10 | 6485-40-1 | C10H14O | 150.21 | L2 |
331 | α-Terpineol | Terpenoid (3.05) | 1072.61, 1.18 | 98-55-5 | C10H18O | 154.24 | L2 |
527 | l-menthone | Terpenoid (2.90) | 1018.87, 0.87 | 10458-14-7 | C10H18O | 154.24 | L2 |
364 | 4-methylene-1-(1-methylethyl)- Bicyclo[3.1.0]hexane, [Sabinene] | Terpene (2.89) | 799.78, 0.70 | 3387-41-5 | C10H16 | 136.23 | L2 |
399 | Caryophyllene | Isoprenoid (2.82) | 1399.12, 0.71 | 87-44-5 | C15H24 | 204.35 | L2 |
569 | Pentanal | Aldehyde (2.81) | 382.87, 0.67 | 110-62-3 | C5H10O | 86.13 | L2 |
272 | 5-isopropenyl-2-methylcyclopent-1-enecarboxaldehyde | Terpenoid (2.78) | 1275.00, 0.95 | 3865-09-6 | C10H14O | 150.21 | L2 |
271 | 4-methylene-5-hexenal | Aldehyde (2.52) | 629.52, 0.90 | 17844-21-2 | C7H10O | 110.15 | L2 |
469 | Dodecane | Alkanes (2.51) | 984.85, 0.61 | 112-40-3 | C12H26 | 170.33 | L1 |
No | Var ID | VIP Compounds | Class | VIP Score | p(corr) | LogFC [DP vs. FL] | LogFC [DP vs. NP] | LogFC [FL vs. NP] |
---|---|---|---|---|---|---|---|---|
1 | 1842 | β-D-Glucuronopyranosyl-(1->3)-a-D-galacturonopyranosyl-(1->2)-L-rhamnose | Oligosaccharides | 1.70 | −9.67 × 10 | −5.83 | - | 16.85 |
2 | 1845 | Dicaffeoylquinic acid | Quinic acids and derivatives | 1.70 | −9.67 × 103 | −5.79 | - | 16.81 |
3 | 1846 | Formononetin 7-(6′′-malonylglucoside) | Isoflavonoid O-glycosides | 1.69 | −9.67 × 103 | −5.73 | - | 16.75 |
4 | 2010 | Octotiamine | Aminopyrimidines and derivatives | 1.66 | −9.67 × 103 | −4.83 | - | 15.85 |
5 | 268 | Quercetagetin | Flavonoid-7-O-glycosides | 1.66 | −9.39 × 103 | −4.94 | −7.61 | 8.36 |
6 | 2447 | 2′′-O-Acetylrutin | Flavonoid-3-O-glycosides | 1.65 | −9.67 × 103 | −4.69 | - | 15.71 |
7 | 2172 | Quercetin 3-[rhamnosyl-(1->2)-alpha-L-arabinopyranoside] | Flavonoid-3-O-glycosides | 1.64 | 9.92 × 103 | 3.69 | 6.88 | -7.83 |
8 | 820 | Suaveolenine | 3-alkylindoles | 1.64 | −9.67 × 103 | −4.43 | - | 15.44 |
9 | 1797 | Kurzichalcolactone B | 2′-Hydroxychalcones | 1.63 | −9.67 × 103 | −4.23 | - | 15.25 |
10 | 1789 | Syringetin-3-O-glucoside | Flavonoid-3-O-glycosides | 1.63 | −9.67 × 103 | −4.16 | - | 15.18 |
11 | 310 | 3-(5-methoxy-2,2-dimethyl-1-benzopyran-8-yl)-3-oxopropanoic acid | 2,2-dimethyl-1-benzopyrans | 1.62 | −9.67 × 103 | −4.07 | - | 15.09 |
12 | 1085 | Bakkenolide D | Terpene lactones | 1.62 | −9.67 × 103 | −3.87 | - | 14.89 |
13 | 712 | 3-Feruloyl-1,5-quinolactone | Coumarins and derivatives | 1.61 | −9.67 × 103 | −3.81 | - | 14.83 |
14 | 1857 | 6-{7-Acetoxy-5-chloro-3-[(1E,3E)-3,5-dimethyl-1,3-heptadien-1-yl]-7-methyl-6,8-dioxo-7,8-dihydro-2(6H)-isoquinolinyl}norleucine | Amino acid derivatives | 1.61 | −9.67 × 103 | −3.64 | - | 14.66 |
15 | 1592 | 5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one | Flavonoid-3-O-glycosides | 1.60 | −9.67 × 103 | −3.49 | - | 14.51 |
16 | 1189 | Unknown | - | 1.60 | −9.67 × 103 | −3.47 | - | 14.49 |
17 | 819 | Unknown | - | 1.60 | −9.67 × 103 | −3.44 | - | 14.46 |
18 | 1188 | farnochrol | Terpene lactones | 1.59 | −9.67 × 103 | −3.40 | - | 14.42 |
19 | 581 | Perilloside B | Terpene glycosides | 1.59 | −9.66 × 103 | −3.37 | - | 14.39 |
20 | 1847 | Racemosic acid | Phenolic glycosides | 1.59 | −8.95 × 103 | −4.28 | −9.18 | 6.12 |
21 | 2341 | Kaempferol 3-[2′′′-acetyl-alpha-L-arabinopyranosyl-(1->6)-galactoside] | Flavonoid-3-O-glycosides | 1.58 | −9.67 × 103 | −3.16 | - | 14.18 |
22 | 1851 | Dracunculifoside G | Coumaric acids and derivatives | 1.58 | −9.66 × 103 | −3.12 | - | 14.14 |
23 | 583 | Betuloside | Fatty acyl glycosides of mono- and disaccharides | 1.57 | −9.66 × 103 | −2.83 | - | 13.85 |
24 | 2404 | Isosakuranetin-7-O-neohesperidoside | Flavanone | 1.56 | −9.66 × 103 | −2.76 | - | 13.78 |
25 | 2000 | 6-(benzoyloxy)-1-(hexopyranosyloxy)-1,4a,5,6,7,7a-hexahydro-5-hydroxy-7-methyl-cyclopenta[c]pyran-4-carboxylic acid | Carboxyl | 1.56 | −9.67 × 103 | −2.68 | - | 13.69 |
26 | 413 | Unknown | - | 1.55 | −9.66 × 103 | −2.52 | - | 13.54 |
27 | 1304 | Unknown | - | 1.55 | −9.67 × 103 | −2.35 | - | 13.37 |
28 | 1802 | Pungiolide A | Xanthanolides | 1.54 | −9.67 × 103 | −2.28 | - | 13.30 |
29 | 817 | Speradine A | Isoindolones | 1.54 | −9.67 × 103 | −2.25 | - | 13.27 |
30 | 1228 | Isovitexin | Flavone | 1.53 | −9.49 × 103 | −1.85 | −3.22 | 9.65 |
31 | 2016 | 6-methoxy-7-[3,4,5-trihydroxy-6-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxymethyl]oxan-2-yl]oxychromen-2-one | Ketone | 1.53 | −9.66 × 103 | −1.94 | - | 12.96 |
32 | 2388 | Unknown | - | 1.53 | −9.66 × 103 | −1.90 | - | 12.92 |
33 | 726 | 4-Methylumbelliferyl glucuronide | Coumarins and derivatives | 1.52 | −9.67 × 103 | −1.77 | - | 12.78 |
34 | 1697 | 3,4,5-trihydroxy-6-{3,4,5-trihydroxy-2-[3-(4-methoxyphenyl)-2-oxopropanoyl]phenoxy}oxane-2-carboxylic acid | Flavonoid O-glycosides | 1.52 | −9.81 × 103 | −1.12 | - | 11.36 |
35 | 1949 | Unknown | - | 1.52 | −9.67 × 103 | −1.70 | - | 12.72 |
36 | 582 | 3-Hydroxy-4-isopropylbenzyl alcohol 3-glucoside | Terpene glycosides | 1.52 | −9.66 × 103 | −1.70 | - | 12.72 |
37 | 2256 | Unknown | - | 1.52 | −9.65 × 103 | −1.80 | - | 12.81 |
38 | 552 | {3-[2-(3-hydroxy-5-methoxyphenyl)ethyl]phenyl}oxidanesulfonic acid | Stilbenes | 1.52 | 7.05 × 103 | 6.53 | 17.55 | |
39 | 1020 | Picraquassioside A | Phenolic glycosides | 1.52 | −9.66 × 103 | −1.65 | - | 12.67 |
40 | 834 | (2S)-2-Butanol O-[b-D-Apiofuranosyl-(1->6)-b-D-glucopyranoside] | O-glycosyl compounds | 1.51 | −9.67 × 103 | −1.62 | - | 12.64 |
41 | 1939 | Longipedunin A | Hydrolyzable tannins | 1.50 | −9.66 × 103 | −1.43 | - | 12.45 |
42 | 441 | 10,11-epoxycurvularin | Aryl alkyl ketones | 1.50 | −9.67 × 103 | −1.36 | - | 12.38 |
43 | 727 | Moschamine | N-acylserotonins | 1.50 | −9.67 × 103 | −1.34 | - | 12.36 |
44 | 2131 | Unknown | - | 1.50 | −9.66 × 103 | −1.32 | - | 12.34 |
(a) | |||||||||||
Sample | Alanine | Arginine | Aspartic Acid | Cysteic Acid | Cystine | Glutamic Acid | Glycine | Histidine | Isoleucine | Leucine | Lysine |
DP | ND | 0.16 ± 0.05 a | 0.04 ± 0.04 a | ND | 0.63 ± 0.15 a | 0.18 ± 0.16 a | 0.30 ± 0.03 b | 0.57 ± 0.05 a | 7.48 ± 0.71 a | 0.03 ± 0.01 a | 27.43 ± 0.96 a |
FL | ND | 5.60 ± 0.35 b | 0.77 ± 0.09 b | 1.80 ± 0.12 a | 0.59 ± 0.12 a | 0.16 ± 0.14 a | 0.25 ± 0.04 b | 2.91 ± 0.10 b | 7.58 ± 1.13 a | 0.04 ± 0.01 a | 26.52 ± 1.62 a |
NP | ND | 0.06 ± 0.007 a | 0.04 ± 0.003 a | 1.79 ± 0.11 a | 0.53 ± 0.21 a | 0.56 ± 0.28 a | 0.05 ± 0.02 a | ND | 8.20 ± 1.62 a | 0.04 ± 0.005 a | 25.18 ± 1.59 a |
Sample | Methionine | Norleucine | Phenylalanine | Proline | Serine | Taurine | Threonine | Tryptophan | Tyrosine | Valine | |
DP | ND | 0.11 ± 0.01 a | 0.08 ± 0.007 a | ND | ND | ND | ND | ND | ND | ND | |
FL | ND | 0.11 ± 0.02 a | 0.14 ± 0.003 a | 0.50 ± 0.04 b | 0.45 ± 0.09 | 1.07 ± 0.01 | 0.19 ± 0.06 | 0.03 ± 0.02 | 0.36 ± 0.05 | 0.27 ± 0.07 a | |
NP | 0.04 ± 0.01 | 0.10 ± 0.01 a | 0.08 ± 0.007 a | 0.22 ± 0.03 a | ND | ND | ND | ND | ND | 0.20 ± 0.18 a | |
(b) | |||||||||||
Sample | Alanine | Arginine | Aspartic Acid | Cysteic Acid | Cystine | Glutamic Acid | Glycine | Histidine | Isoleucine | Leucine | Lysine |
DP | ND | ND | 0.00 ± 0.006 a | ND | 0.39 ± 0.31 a | 0.46 ± 0.42 a | ND | ND | 17.62 ± 0.43 a | 0.34 ± 0.10 a | 66.22 ± 2.92 a |
FL | 1.71 ± 0.78 a | 5.21 ± 1.75 a | 28.71 ± 2.17 c | 0.64 ± 0.56 a | 0.62 ± 0.04 a | 6.99 ± 2.32 b | 6.42 ± 2.88 a | 2.76 ± 1.03 a | 30.01 ± 2.19 b | 5.05 ± 1.41 b | 114.68 ± 16.62 b |
NP | 9.72 ± 0.91 b | 4.25 ± 1.10 a | 13.38 ± 0.93 b | 0.60 ± 0.52 a | 0.61 ± 0.02 a | 36.58 ± 1.94 c | 11.93 ± 0.90 b | 3.70 ± 0.50 a | 28.45 ± 5.25 b | 14.70 ± 2.56 c | 117.28 ± 14.24 b |
Sample | Methionine | Phenylalanine | Proline | Serine | Threonine | Tryptophan | Tyrosine | Valine | |||
DP | ND | 2.33 ± 0.27 b | ND | ND | ND | 16.18 ± 1.18 a | 15.24 ± 1.16 b | 0.10 ± 0.01 a | |||
FL | 1.07 ± 0.68 a | 1.48 ± 0.54 a | 8.45 ± 1.50 b | 3.66 ± 0.27 a | 6.80 ± 1.52 a | 15.29 ± 0.43 a | 12.90 ± 0.07 a | 0.74 ± 0.10 a | |||
NP | 5.10 ± 0.28 b | 4.11 ± 0.06 c | 1.83 ± 0.67 a | 12.61 ± 1.38 b | 6.52 ± 1.12 a | 15.48 ± 0.05 a | 13.97 ± 0.82 a | 14.13 ± 0.80 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, V.; Gorji, S.G.; Daygon, V.D.; Fitzgerald, M. Untargeted and Targeted Metabolomic Profiling of Australian Indigenous Fruits. Metabolites 2020, 10, 114. https://doi.org/10.3390/metabo10030114
Lim V, Gorji SG, Daygon VD, Fitzgerald M. Untargeted and Targeted Metabolomic Profiling of Australian Indigenous Fruits. Metabolites. 2020; 10(3):114. https://doi.org/10.3390/metabo10030114
Chicago/Turabian StyleLim, Vuanghao, Sara Ghorbani Gorji, Venea Dara Daygon, and Melissa Fitzgerald. 2020. "Untargeted and Targeted Metabolomic Profiling of Australian Indigenous Fruits" Metabolites 10, no. 3: 114. https://doi.org/10.3390/metabo10030114
APA StyleLim, V., Gorji, S. G., Daygon, V. D., & Fitzgerald, M. (2020). Untargeted and Targeted Metabolomic Profiling of Australian Indigenous Fruits. Metabolites, 10(3), 114. https://doi.org/10.3390/metabo10030114