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1. Derivations in support of inferring pathway activities 
We show the derivation of 𝜙!(𝑎) = 𝑝'𝑚! = 1*𝑎+. We segment all 𝑧"!  random variables 
into groupings as they relate to metabolite 𝑗.  The set of observation of metabolite 𝑗 in 
pathways can be represented as a vector [𝑧#! , 𝑧$! , 𝑧%! , … , 𝑧&!]. The union of elements in this 
vector is denoted 𝑜⋅!. If 𝑜"! occurs, it implies that pathway 𝑖 generates metabolite 𝑗.  Note 
𝑚!  = 0 is equivalent to the fact that 𝑧"! -s for all i-s are zero. Furthermore, 𝑧"! -s are 
independent when pathway activities 𝑎 are known. Then: 

𝑝'𝑚! = 1*𝑎+ = 1 − 6 p'𝑧"! = 0*𝑎+
"(#,…,&

= 1 − (1 − 𝜇)+! 

with 𝑛! = ∑ 𝑎"!:!	./	01	"	  denotes the number of active pathways that contain metabolite 𝑗. 
Denote 𝜙!(𝑎) = 1 − (1 − 𝜇)+! . Note that 𝑚!-s are independent when 𝑎 is given.  
 
To calculate 𝑝(𝑤2|𝑎), we marginalize out metabolites 𝑚3"that have mass 𝑘. 

𝑝(𝑤2|𝑎) = 	Σ4#"
𝑝'𝑤2*𝑚3"+. 𝑝'𝑚3"*𝑎+ 

 
It is easier to do the marginalization for 𝑤2 = 0, which indicates no observation of mass 
𝑘. The derivations for both cases are as follows: 
𝑝(𝑤2 = 0|𝑎) = Σ4#"

	Π!∈3"B(1 − 𝛾). 𝜙!D
4!'1 − 𝜙!+

#64!] = 	Π!∈3"B(1 − 𝛾)𝜙! + '1 − 𝜙!+D 								
= 	Π!∈3"[1 − 𝛾𝜙!] 

 
		𝑝(𝑤2 = 1|𝑎) = 1 − 𝑝(𝑤2 = 0|𝑎) = 	1 − 	Π7∈8$[1 − 𝛾𝜙!] 

 
2. Derivations in support of inferring metabolite annotation 
We have the following probability distribution for mass observation given set of 
metabolites:  

𝑝'𝑤2*𝑚3"+ = F
1 − ∏ (1 − 𝛾)4!!∈3" 																					 																𝑤2 = 1															 			
	∏ (1 − 𝛾)4!!∈3" 																																													𝑤2 = 0																			 



 
We can divide 𝑚3"  into two independent sets, 𝑚3"%  and 𝑚3"& , where the first set 
corresponds to all metabolites of mass k present in the sample, while the latter set 
corresponds to metabolites of mass k that are not present in the sample: 

𝑝'𝑚3"*𝑎+ = 	𝑝'𝑚7∈8$% , 𝑚∈8$&*𝑎+ = 	6 𝜙!
7∈8$%

	 . 6'1 − 𝜙!+ =6'1 − 𝜙!+
#64!'𝜙!+

4!

!∈8$!∈8$&

 

 
We show the derivation of equation computing 𝑝 H𝑚! , 𝑤2!I𝑎J in the main manuscript 
for one case, 𝑤2! = 1,𝑚! = 0:  

Σ9'$\)
	𝑝 H𝑤2! = 1I𝑚! = 0,𝑚3"\!J 𝑝'𝑚! = 0,𝑚3"\!*𝑎+	 

= Σ9'$	\)
K1 − 6 (1 − 𝛾)4!+

!+∈3",!+;!	
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Other cases for 𝑤2! and 𝑚! can be similarly derived. 

3. Speeding up inference for metabolite annotation 

To speed our implementation, we vectorize the matrix computations and deploy NumPy 
broadcasting.  The output of pathway prediction activity is a matrix with 𝑆 rows and 𝐼 
columns. Each row corresponds to the activity of pathways in the drawn sample. This 
matrix will be multiplied by a matrix with 𝐼 rows and 𝐽 columns. This matrix is defined 
to be sparse. By doing this, we will get a matrix with 𝑆 rows and 𝐽 columns which we call 
matrix C. Each element of this matrix corresponds to 𝑛! . By creating these matrices, we 
can compute 𝜙 as: 

𝜙 = 1 − exp(log(1 − 𝜇) . 𝐶) 
We define Φ to be a matrix with  𝑆 row and 𝐽 columns. We denote 𝜓! =	∏ '1 −!+∈3",	!+;!

𝛾𝜙!++.  
To calculate matrix 𝜓 , first we create a matrix called 𝐵 . Each element in 𝐵  is the 
corresponding log	(1 − 𝛾𝜙!). This matrix could be created by tweaking matrix 𝐶 . We 
define matrix 𝜏 to implement the definition for 𝐽2. This matrix has 𝐽 rows and 𝐾 columns 
and maps metabolites to their corresponding mass bin. By doing the following 
computations, we can compute 𝜓 as: 

𝜓 = 𝐵 ∗ τ ∗ 𝜏< − 𝐵 
𝑉 = 𝑊. 𝜏 

The resulting closed form formula of the metabolite annotations are as follows: 
𝑅= = 	𝑉 ∗ (1 − Φ)	∗ 	 (1 − exp(𝜓)) + (1 − V) ∗ (1 − Φ)																										𝑚! = 0 

𝑅# = 𝑉	 ∗ 	Φ	 ∗ 	(1 − (1 − γ) ∗ 	exp(𝜓)) + (1 − 𝑉)	∗ 	Φ	 ∗ 	 (1 − γ)							𝑚! = 1 

Matrix 𝜂  is defined with 𝐼  row and 𝐽  columns. Each entry 𝜂"!  indicates the presence/ 
absence of metabolite 𝑗	 on pathway 𝑖 . By normalizing the posteriori likelihood of 
metabolite annotations, we get the following closed form expression: 

𝑝(𝑚! = 1|𝑤, 𝑎>) = 𝑅 = ?,
?-@?,

  for all 𝑠, 𝑗 

 



4. Experiments on synthetic datasets 

Figures S1, S2 and S3 show recall, precision and accuracy for the various synthetic 
datasets, assuming unknown annotations, known annotations, and random annotations, 
while varying the fraction of pathways presumed active. 

 
 

 
Figure S1. PUMA performance in overcoming uncertainty of multiple assignments. Average recall, precision and accuracy for different 
experiments in synthetic dataset assuming 0.3 of pathways are active. The x-axis corresponds to the fraction of active metabolites, and y-axis 
shows correctly identified pathways with multiple candidates.  (A) original 𝜏 matrix, mapping metabolites to the corresponding mass bin, (B) 𝜏 
matrix is modified based on ground truth, and (C) 𝜏 matrix is modified based on random selection of metabolites. 
 

 
Figure S2. PUMA performance in overcoming uncertainty of multiple assignments. Average recall, precision and accuracy for different 
experiments in synthetic dataset assuming 0.5 of pathways are active. The x-axis corresponds to the fraction of active metabolites, and y-axis 
shows correctly identified pathways with multiple candidates.  (A) original 𝜏 matrix, (B) 𝜏 matrix is modified based on ground truth, and (C) 𝜏 
matrix is modified based on random selection of metabolites. 
 

 
Figure S3. PUMA performance in overcoming uncertainty of multiple assignments. Average recall, precision and accuracy for different 
experiments in synthetic dataset assuming 0.7 of pathways are active. The x-axis corresponds to the fraction of active metabolites, and y-axis 
shows correctly identified pathways with multiple candidates.  (A) original 𝜏 matrix, (B) 𝜏 matrix is modified based on ground truth, and (C) 𝜏 
matrix is modified based on random selection of metabolites. 
 



Figure S4 explores the robustness of the model to parameter µ. For various values of µ, 
recall, precision, and accuracy seem robust to such variations, indicating that the model 
is robust to the µ parameter. 

 

5. Additional information for CHO case study 

As mass observations differ from one set of measurements to another, the predicted 
activity differs among the individual CHO cell datasets collected using different 
instrument settings (dataset HilNeg, HilPos, SynNeg). There are several cases to consider. 
In some cases, e.g. galactose metabolism, purine metabolism, pyrimidine metabolism, 
tyrosine metabolism, tryptophan metabolism, amino sugar and nucleotide sugar 
metabolism, folate biosynthesis and metabolism of xenobiotics by cytochrome P450, 
pathways are predicted active by each individual dataset and the combined dataset. In 
other cases, e.g. selenocompound metabolism and alpha-Linolenic acid metabolism, 
pathways are predicted active in the combined dataset, but not predicted active for all 
other individual datasets. In such cases, individual dataset measurements when 
considered independently of others did not provide inference sufficient evidence to 
conclude that the pathway is active. As an example, for pathway alpha-Linolenic acid 
metabolism, with size twelve, the number of mass measurements in SynNeg and 
combined datasets that can be mapped to the pathway is one. PUMA predicts this 
pathway active in both datasets. However, the same pathway is not predicted active in 
HilNeg and HilPos, where the number of mass measurements that can be mapped to the 
pathway is reduced to zero. 

In other cases, some pathways (e.g. glycine, serine and threonine metabolism, 
beta-alanine metabolism, beta-alanine metabolism and ether lipid metabolism) are 
predicted active by at least one of the individual datasets while predicted not active by 

 

 
Figure S4. PUMA performance for various values for μ for 0.5 pathway activity with 0.25, 0.50 and 0.75 generated metabolites (x-
axis).  (A) μ = 0.25. (B) μ = 0.5. (C) μ = 0.75.  



the combined dataset. Additional evidence in the form of a larger number of mass 
measurements in the combined dataset affects the predicted activity for pathways with 
common metabolites. For example, pathway ether lipid metabolism, with size eight, is 
predicted active by HilNeg but not predicted active by the combined dataset. In both 
datasets, three mass measurements can be mapped to the pathway, while two of these 
mass measurements can also be mapped to glycerophospholipid metabolism. With an 
increase in the number of mass measurements that can be mapped to 
glycerophospholipid metabolism from 2 in HilNeg to 8 using the combined dataset, 
glycerophospholipid metabolism has a higher probability of being active compared to 
ether lipid metabolism.  The combined dataset, with the highest number of mass 
measurements, is the most reliable predictor of pathway activity. 
 
 


