Current Status of Metabolomic Biomarker Discovery: Impact of Study Design and Demographic Characteristics
Abstract
:1. Introduction
2. Results
2.1. Current Challenges
2.2. Assessment of Sample Size Requirements for Clinical and Translational Research
2.3. Demographic Impacts
2.4. Metabolic Markers in Clinical Studies
3. Conclusions/Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [Google Scholar]
- Pinu, F.R.; Beale, D.J.; Paten, A.M.; Kouremenos, K.; Swarup, S.; Schirra, H.J.; Wishart, D. Systems Biology and Multi-Omics Integration: Viewpoints from the Metabolomics Research Community. Metabolites 2019, 9, 76. [Google Scholar] [CrossRef] [Green Version]
- Kohler, I.; Hankemeier, T.; van der Graaf, P.H.; Knibbe, C.A.J.; van Hasselt, J.G.C. Integrating clinical metabolomics-based biomarker discovery and clinical pharmacology to enable precision medicine. Eur. J. Pharm. Sci. 2017, 109S, S15–S21. [Google Scholar] [CrossRef]
- Trivedi, D.K.; Hollywood, K.A.; Goodacre, R. Metabolomics for the masses: The future of metabolomics in a personalized world. New Horiz. Transl. Med. 2017, 3, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Lucarelli, G.; Loizzo, D.; Franzin, R.; Battaglia, S.; Ferro, M.; Cantiello, F.; Castellano, G.; Bettocchi, C.; Ditonno, P.; Battaglia, M. Metabolomic insights into pathophysiological mechanisms and biomarker discovery in clear cell renal cell carcinoma. Expert Rev. Mol. Diagn. 2019, 19, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.-Z.; Chen, G.; Hong, Q.; Huang, S.; Smith, H.M.; Shah, R.D.; Scholz, M.; Ferguson, J. Multi-Omic Analysis of the Microbiome and Metabolome in Healthy Subjects Reveals Microbiome-Dependent Relationships Between Diet and Metabolites. Front. Genet. 2019, 10, 454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zierer, J.; Jackson, M.; Kastenmüller, G.; Mangino, M.; Long, T.; Telenti, A.; Mohney, R.P.; Small, K.S.; Bell, J.T.; Steves, C.; et al. The fecal metabolome as a functional readout of the gut microbiome. Nat. Genet. 2018, 50, 790–795. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-Y.; Chen, D.-Q.; Chen, L.; Liu, J.-R.; Vaziri, N.; Guo, Y.; Zhao, Y.-Y. Microbiome-metabolome reveals the contribution of gut-kidney axis on kidney disease. J. Transl. Med. 2019, 17, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilmanski, T.; Rappaport, N.; Earls, J.C.; Magis, A.T.; Manor, O.; Lovejoy, J.; Omenn, G.S.; Hood, L.; Gibbons, S.M.; Price, N.D. Blood metabolome predicts gut microbiome α-diversity in humans. Nat. Biotech. 2019, 37, 1217–1228. [Google Scholar] [CrossRef]
- Dao, M.-C.; Sokolovska, N.; Brazeilles, R.; Affeldt, S.; Pelloux, V.; Prifti, E.; Chilloux, J.; Verger, E.; Kayser, B.D.; Aron-Wisnewsky, J.; et al. A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity. Front. Physiol. 2019, 9, 1958. [Google Scholar] [CrossRef]
- Benítez-Páez, A.; Kjølbæk, L.; Del Pulgar, E.M.G.; Brahe, L.K.; Astrup, A.; Matysik, S.; Schött, H.-F.; Krautbauer, S.; Liebisch, G.; Boberska, J.; et al. A Multi-omics Approach to Unraveling the Microbiome-Mediated Effects of Arabinoxylan Oligosaccharides in Overweight Humans. mSystems 2019, 4, e00209–e00219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiebish, M.A.; Narain, N.R. Enabling biomarker discovery in Parkinson’s disease using multiomics: Challenges, promise and the future. Per. Med. 2019, 16, 5–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiebish, M.A.; Cullen, J.; Mishra, P.; Ali, A.; Milliman, E.; Rodrigues, L.O.; Chen, E.Y.; Tolstikov, V.; Zhang, L.; Panagopoulos, K.; et al. Multi-omic serum biomarkers for prognosis of disease progression in prostate cancer. J. Transl. Med. 2020, 18, 10. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.R.; Manialawy, Y.; Wheeler, M.B.; Cox, B.J. Unbiased data analytic strategies to improve biomarker discovery in precision medicine. Drug Discov. Today 2019, 24, 1735–1748. [Google Scholar] [CrossRef] [PubMed]
- Beger, R.D.; Schmidt, M.A.; Kaddurah-Daouk, R. Current Concepts in Pharmacometabolomics, Biomarker Discovery, and Precision Medicine. Metabolites 2020, 10, 129. [Google Scholar] [CrossRef] [Green Version]
- Pinu, F.R.; Goldansaz, S.A.; Jaine, J. Translational Metabolomics: Current Challenges and Future Opportunities. Metabolites 2019, 9, 108. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Zhu, Z.; Shi, J.; An, Y.; Zhang, K.; Wang, Y.; Li, S.; Jin, L.; Ye, W.; Cui, M.; et al. Metabolomics in the Development and Progression of Dementia: A Systematic Review. Front. Neurosci. 2019, 13, 343. [Google Scholar] [CrossRef] [Green Version]
- Adebiyi, M.G.; Manalo, J.M.; Xia, Y. Metabolomic and molecular insights into sickle cell disease and innovative therapies. Blood Adv. 2019, 3, 1347–1355. [Google Scholar] [CrossRef] [Green Version]
- Arroyo-Crespo, J.J.; Armiñán, A.; Charbonnier, D.; Deladriere, C.; Palomino-Schätzlein, M.; Lamas-Domingo, R.; Forteza, J.; Pineda-Lucena, A.; Vicent, M.J. Characterization of triple-negative breast cancer preclinical models provides functional evidence of metastatic progression. Int. J. Cancer 2019, 145, 2267–2281. [Google Scholar] [CrossRef] [Green Version]
- Rinschen, M.M.; Ivanisevic, J.; Giera, M.; Siuzdak, G. Identification of bioactive metabolites using activity metabolomics. Nat. Rev. Mol. Cell Biol. 2019, 20, 353–367. [Google Scholar] [CrossRef]
- Guijas, C.; Montenegro-Burke, J.R.; Warth, B.; Spilker, M.E.; Siuzdak, G. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat. Biotechnol. 2018, 36, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Barupal, D.K.; Zhang, Y.; Shen, T.; Fan, S.; Roberts, B.S.; Fitzgerald, P.; Wancewicz, B.; Valdiviez, L.; Wohlgemuth, G.; Byram, G.; et al. A Comprehensive Plasma Metabolomics Dataset for a Cohort of Mouse Knockouts within the International Mouse Phenotyping Consortium. Metabolites 2019, 9, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunn, W.B.; Lin, W.; Broadhurst, D.; Begley, P.; Brown, M.; Zelená, E.; Vaughan, A.A.; Halsall, A.; Harding, N.; Knowles, J.; et al. Molecular phenotyping of a UK population: Defining the human serum metabolome. Metabolomics 2015, 11, 9–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blaise, B.J.; Correia, G.D.S.; Tin, A.; Young, J.H.; Vergnaud, A.-C.; Lewis, M.R.; Pearce, J.T.M.; Elliott, P.; Nicholson, J.; Holmes, E.; et al. Power Analysis and Sample Size Determination in Metabolic Phenotyping. Anal. Chem. 2016, 88, 5179–5188. [Google Scholar] [CrossRef]
- Lai, C.-Q.; E Smith, C.; Parnell, L.D.; Lee, Y.-C.; Corella, D.; Hopkins, P.; A Hidalgo, B.; Aslibekyan, S.; Province, M.A.; Absher, D.; et al. Epigenomics and metabolomics reveal the mechanism of the APOA2-saturated fat intake interaction affecting obesity. Am. J. Clin. Nutr. 2018, 108, 188–200. [Google Scholar] [CrossRef] [Green Version]
- Herranz, D.; Ambesi-Impiombato, A.; Sudderth, J.; Sanchez-Martin, M.; Belver, L.; Tosello, V.; Xu, L.; Wendorff, A.A.; Castillo, M.; Haydu, J.E.; et al. Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia. Nat. Med. 2015, 21, 1182–1189. [Google Scholar] [CrossRef]
- Donti, T.R.; Cappuccio, G.; Hubert, L.; Neira, J.; Atwal, P.S.; Miller, M.J.; Cardon, A.L.; Sutton, V.R.; Porter, B.E.; Baumer, F.M.; et al. Diagnosis of adenylosuccinate lyase deficiency by metabolomic profiling in plasma reveals a phenotypic spectrum. Mol. Genet. Metab. Rep. 2016, 8, 61–66. [Google Scholar] [CrossRef]
- Pera, B.; Krumsiek, J.; Assouline, S.E.; Marullo, R.; Patel, J.; Phillip, J.M.; Roman, L.; Mann, K.K.; Cerchietti, L. Metabolomic Profiling Reveals Cellular Reprogramming of B-Cell Lymphoma by a Lysine Deacetylase Inhibitor through the Choline Pathway. EBioMedicine 2018, 28, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Wishart, D.S.; Mandal, R.; Stanislaus, A.; Ramirez-Gaona, M. Cancer Metabolomics and the Human Metabolome Database. Metabolites 2016, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Hashim, N.A.A.; Ab-Rahim, S.; Suddin, L.S.; Saman, M.S.A.; Mazlan, M. Global serum metabolomics profiling of colorectal cancer. Mol. Clin. Oncol. 2019, 11, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, D.; Aung, P.P.; Jour, G. The "-OMICS" facet of melanoma: Heterogeneity of genomic, proteomic and metabolomic biomarkers. Semin. Cancer Biol. 2019, 59, 165–174. [Google Scholar] [CrossRef]
- Drucker, E.; Krapfenbauer, K. Pitfalls and limitations in translation from biomarker discovery to clinical utility in predictive and personalized medicine. EPMA J. 2013, 4, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchand, C.R.; Farshidfar, F.; Rattner, J.; Bathe, O.F. A Framework for Development of Useful Metabolomic Biomarkers and Their Effective Knowledge Translation. Metabolites 2018, 8, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Majdoub, M.; Herzog, K.; Daka, B.; Magnusson, M.; Råstam, L.; Lindblad, U.; Spégel, P. Population-Level Analysis to Determine Parameters That Drive Variation in the Plasma Metabolite Profiles. Metabolites 2018, 8, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellul, S.; Wake, M.; A Clifford, S.; Lange, K.; Würtz, P.; Juonala, M.; Dwyer, T.; Carlin, J.B.; Burgner, D.P.; Saffery, R. Metabolomics: Population epidemiology and concordance in Australian children aged 11–12 years and their parents. BMJ Open 2019, 9, 106–117. [Google Scholar] [CrossRef]
- Darst, B.F.; Koscik, R.L.; Hogan, K.J.; Johnson, S.C.; Engelman, C.D. Longitudinal plasma metabolomics of aging and sex. Aging 2019, 11, 1262–1282. [Google Scholar] [CrossRef]
- Wong, M.W.; Braidy, N.; Pickford, R.; Vafaee, F.; Crawford, J.; Muenchhoff, J.; Schofield, P.; Attia, J.; Brodaty, H.; Sachdev, P.; et al. Plasma lipidome variation during the second half of the human lifespan is associated with age and sex but minimally with BMI. PLoS ONE 2019, 14, e0214141. [Google Scholar] [CrossRef] [Green Version]
- Pujos-Guillot, E.; Pétéra, M.; Jacquemin, J.; Centeno, D.; Lyan, B.; Montoliu, I.; Madej, D.; Pietruszka, B.; Fabbri, C.; Santoro, A.; et al. Identification of Pre-frailty Sub-Phenotypes in Elderly Using Metabolomics. Front. Physiol. 2019, 9, 1903. [Google Scholar] [CrossRef]
- Gonzalez-Freire, M.; Moaddel, R.; Sun, K.; Fabbri, E.; Zhang, P.; Khadeer, M.; Salem, N.; Ferrucci, L.; Semba, R.D. Targeted Metabolomics Shows Low Plasma Lysophosphatidylcholine 18:2 Predicts Greater Decline of Gait Speed in Older Adults: The Baltimore Longitudinal Study of Aging. J. Gerontol. Biol. Sci. Med. Sci. 2019, 74, 62–67. [Google Scholar] [CrossRef]
- Nho, K.; Kueider-Paisley, A.; Ahmad, S.; Mahmoudiandehkordi, S.; Arnold, M.; Risacher, S.L.; Louie, G.; Blach, C.; Baillie, R.; Han, X.; et al. Association of Altered Liver Enzymes with Alzheimer Disease Diagnosis, Cognition, Neuroimaging Measures, and Cerebrospinal Fluid Biomarkers. JAMA Netw. Open. 2019, 2, e197978. [Google Scholar] [CrossRef]
- Darst, B.F.; Lu, Q.; Johnson, S.C.; Engelman, C.D. Integrated analysis of genomics, longitudinal metabolomics, and Alzheimer’s risk factors among 1,111 cohort participants. Genet. Epidemiol. 2019, 43, 657–674. [Google Scholar] [CrossRef]
- Gómez, C.; Gonzalez-Riano, C.; Barbas, C.; Kolmert, J.; Ryu, M.H.; Carlsten, C.; Dahlén, S.-E.; Wheelock, C.E. Quantitative metabolic profiling of urinary eicosanoids for clinical phenotyping. J. Lipid Res. 2019, 60, 1164–1173. [Google Scholar] [CrossRef]
- Deng, L.; Ismond, K.P.; Liu, Z.; Constable, J.; Wang, H.; Alatise, O.I.; Weiser, M.R.; Kingham, T.P.; Chang, D. Urinary Metabolomics to Identify a Unique Biomarker Panel for Detecting Colorectal Cancer: A Multicentre Study. Cancer Epidemiol. Biomark. Prev. 2019, 28, 12183–12191. [Google Scholar] [CrossRef]
- Ahonen, L.; Jäntti, S.; Suvitaival, T.; Theilade, S.; Kostiainen, R.; Rossing, P.; Orešič, M.; Hyötyläinen, T.; Risz, C. Targeted Clinical Metabolite Profiling Platform for the Stratification of Diabetic Patients. Metabolites 2019, 9, 184. [Google Scholar] [CrossRef] [Green Version]
- Zhai, Q.; Wang, X.; Chen, C.; Tang, Y.; Wang, Y.; Tian, J.; Zhao, Y.; Liu, X. Prognostic Value of Plasma Trimethylamine N-Oxide Levels in Patients with Acute Ischemic Stroke. Cell Mol. Neurobiol. 2019, 39, 1201–1206. [Google Scholar] [CrossRef]
- Rexidamu, M.; Li, H.; Jin, H.; Huang, J. Serum levels of Trimethylamine-N-oxide in patients with ischemic stroke. Biosci. Rep. 2019, 39, BSR20190515. [Google Scholar] [CrossRef] [Green Version]
- Kamlage, B.; Reszka, R.; Kluttig, M.; Kalthoff, H.; Schniewind, B.; Mayerie, J.; Lerch, M. Means and methods for diagnosing pancreatic cancer in a subject. U.S. Patent 2013/0140452A1, 6 June 2013. [Google Scholar]
- Mayerle, J.; Kalthoff, H.; Reszka, R.; Kamlage, B.; Peter, E.; Schniewind, B.; Maldonado, S.G.; Pilarsky, C.; Heidecke, C.-D.; Schatz, P.; et al. Metabolic biomarker signature to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis. Gut 2018, 67, 128–137. [Google Scholar] [CrossRef]
- Shi, M.; Bazzano, L.A.; He, J.; Gu, X.; Li, C.; Li, S.; Yaffe, K.; Kinchen, J.M.; Stuchlik, P.; Mi, X.; et al. Novel serum metabolites associate with cognition phenotypes among Bogalusa Heart Study participants. Aging 2019, 11, 5124–5139. [Google Scholar] [CrossRef]
- Geijsen, A.J.; Brezina, S.; Keski-Rahkonen, P.; Baierl, A.; Bachleitner-Hofmann, T.; Bergmann, M.M.; Boehm, J.; Brenner, H.; Chang-Claude, J.; Van Duijnhoven, F.J.; et al. Plasma metabolites associated with colorectal cancer: A discovery-replication strategy. Int. J. Cancer 2019, 145, 1221–1231. [Google Scholar] [CrossRef] [Green Version]
- Ottosson, F.; Smith, E.; Gallo, W.; Fernandez, C.; Melander, O. Purine Metabolites and Carnitine Biosynthesis Intermediates Are Biomarkers for Incident Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2019, 104, 4921–4930. [Google Scholar] [CrossRef] [Green Version]
- Stenemo, M.; Ganna, A.; Salihovic, S.; Nowak, C.; Sundström, J.; Giedraitis, V.; Broeckling, C.D.; Prenni, J.E.; Svensson, P.; Magnusson, P.K.; et al. The metabolites urobilin and sphingomyelin (30:1) are associated with incident heart failure in the general population. ESC Heart Fail. 2019, 6, 764–773. [Google Scholar] [CrossRef]
Metabolite Class | Metabolite | Gender/F | Age | BMI | Clinical Relevance (Mayo Clinic) | Reference |
---|---|---|---|---|---|---|
Carboxylic acids | Citrate | ☑ ⇧ | ☑ ⇧ | ☑ ⇩ | Metabolic diseases ⇩ | [23,36] |
Aconitate | ☑ ⇧ | [36] | ||||
Urate | ☑ ⇧ | Acute uric acid nephropathy ⇧ | [23,36] | |||
Hexadecenoic acid | ☑ ⇧ | Nutrients deficiency ⇩ | [23,36] | |||
4-hydroxyphenyllactic acid | ☑ ⇩ | [23] | ||||
Octadecadienoic acid | ☑ ⇧ | Nutrients deficiency ⇩ | [23] | |||
Dodecanoic acid | ☑ ⇩ | [23] | ||||
Acylcarnitines | Butyrylcarnitine | ☑ ⇩ | Fatty acid beta-oxidation disorders ⇧ | [37] | ||
Oleoylcarnoiitine | ☑ ⇩ | ☑ ⇧ | Fatty acid beta-oxidation disorders ⇧ | [36] | ||
Palmitoylcarnitine | ☑ ⇩ | ☑ ⇧ | Fatty acid beta-oxidation disorders ⇧ | [36] | ||
Eicosenoylcarnitine | ☑ ⇩ | ☑ ⇧ | fatty acid beta-oxidation disorders ⇧ | [36] | ||
Amino acids | Tyrosine | ☑ ⇩ | ☑ ⇧ | ☑ ⇧ | Inborn errors of metabolism ⇧ | [23,36] |
Creatinine | ☑ ⇧ | ☑ ⇧ | ☑ ⇧ | Kidney disease/failure ⇧ | [23,33] | |
Methionine sulfoxide | ☑ ⇧ | [23] | ||||
Serine | ☑ ⇧ | ☑ ⇩ | ☑ ⇩ | Inborn errors of metabolism ⇧ | [23,36] | |
Aspartate | ☑ ⇩ | ☑ ⇩ | Inborn errors of metabolism ⇧ | [23] | ||
Tryptophan | ☑ ⇩ | ☑ ⇩ | Inborn errors of metabolism ⇧ | [23,36] | ||
Methionine | ☑ ⇩ | ☑ ⇩ | Inborn errors of metabolism ⇧ | [23] | ||
Threonine | ☑ ⇩ | ☑ ⇩ | Inborn errors of metabolism ⇧ | [23,36] | ||
Cysteine | ☑ ⇧ | ☑ ⇧ | [23] | |||
Cystine | ☑ ⇧ | Inborn errors of metabolism ⇧ | [23] | |||
Glutamine | ☑ ⇧ | ☑ ⇧ | Inborn errors of metabolism ⇧ | [23,36] | ||
Phenylalanine | ☑ ⇩ | ☑ ⇧ | ☑ ⇧ | Inborn errors of metabolism ⇧ | [23] | |
Valine | ☑ ⇩ | ☑ ⇧ | Inborn errors of metabolism ⇧ | [23,36] | ||
Leucine | ☑ ⇩ | ☑ ⇩ | [36] | |||
Histidine | ☑ ⇩ | ☑ ⇩ | Inborn errors of metabolism ⇧ | [23,36] | ||
Phosphoserine | ☑ ⇩ | ☑ ⇩ | [23] | |||
2-aminomalonic acid | ☑ ⇩ | [23] | ||||
Aminooctanoic acid | ☑ ⇧ | [23,38] | ||||
Lipids | DAG | ☑ ⇧ | ☑ ⇩ | [23] | ||
PC | ☑ ⇧ | [23] | ||||
Glycerol | ☑ ⇧ | ☑ ⇧ | ☑ ⇧ | [23] | ||
Glycerol-3-phosphate | ☑ ⇧ | ☑ ⇧ | ☑ ⇧ | [23] | ||
Threitol | ☑ ⇧ | [23] | ||||
Phosphate | ☑ ⇧ | [23] | ||||
LPC | ☑ ⇩ | [23] | ||||
SM | ☑ ⇩ | [23] | ||||
Cholesterol | ☑ ⇧ | ☑ ⇧ | [33] | |||
TAG | ☑ ⇧ | ☑ ⇧ | lipoprotein metabolism ⇧ | [33] | ||
LPE | ☑ ⇩ | [38] | ||||
Sterol lipids | Androgenic | ☑ ⇩ | ☑ ⇩ | [36] | ||
Sugars | Mannose | ☑ ⇩ | [38] | |||
Fructose | ☑ ⇩ | inborn errors of metabolism ⇧ | [38] | |||
Nucleotides | N1-methylinosine | ☑ ⇩ | ☑ ⇧ | [36] | ||
5-methylthioadenosine | ☑ ⇩ | ☑ ⇧ | [36] | |||
Pseudouridine | ☑ ⇩ | ☑ ⇧ | [36] | |||
Vitamins | Vitamin D | ☑ ⇩ | chronic renal failure ⇩ | [23] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tolstikov, V.; Moser, A.J.; Sarangarajan, R.; Narain, N.R.; Kiebish, M.A. Current Status of Metabolomic Biomarker Discovery: Impact of Study Design and Demographic Characteristics. Metabolites 2020, 10, 224. https://doi.org/10.3390/metabo10060224
Tolstikov V, Moser AJ, Sarangarajan R, Narain NR, Kiebish MA. Current Status of Metabolomic Biomarker Discovery: Impact of Study Design and Demographic Characteristics. Metabolites. 2020; 10(6):224. https://doi.org/10.3390/metabo10060224
Chicago/Turabian StyleTolstikov, Vladimir, A. James Moser, Rangaprasad Sarangarajan, Niven R. Narain, and Michael A. Kiebish. 2020. "Current Status of Metabolomic Biomarker Discovery: Impact of Study Design and Demographic Characteristics" Metabolites 10, no. 6: 224. https://doi.org/10.3390/metabo10060224
APA StyleTolstikov, V., Moser, A. J., Sarangarajan, R., Narain, N. R., & Kiebish, M. A. (2020). Current Status of Metabolomic Biomarker Discovery: Impact of Study Design and Demographic Characteristics. Metabolites, 10(6), 224. https://doi.org/10.3390/metabo10060224