Feasibility of Mass-Spectrometry to Lower Cost and Blood Volume Requirements for Assessment of B Vitamins in Patients Undergoing Bariatric Surgery
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Standard Preparation
4.2. Sample Extraction
4.3. HPLC–MS/MS
4.4. Linearity
4.5. Recovery
4.6. Precision
4.7. Limit of Detection
4.8. Normal Reference Ranges
4.9. Cost Analysis
4.10. Data Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ross, A.C.; Caballero, B.H.; Cousins, R.J.; Tucker, K.L.; Ziegler, T.R. Modern Nutrition in Health and Disease, 11th ed.; Wolters Kluwer: Riverwoods, IL, USA, 2012. [Google Scholar]
- Chen, P.; Atkinson, R.; Wolf, W.R. Single-laboratory validation of a high-performance liquid chromatographic-diode array detector-fluorescence detector/mass spectrometric method for simultaneous determination of water-soluble vitamins in multivitamin dietary tablets. J. Assoc. Off. Agric. Chem. Int. 2009, 92, 680–687. [Google Scholar]
- Chatzimichalakis, P.F.; Samanidou, V.F.; Verpoorte, R.; Papadoyannis, I.N. Development of a validated hplc method for the determination of b-complex vitamins in pharmaceuticals and biological fluids after solid phase extraction. J. Sep. Sci. 2004, 27, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, M.G.; Howland, K.; Martin, C.; Bonner, A.B. A novel hplc method for the concurrent analysis and quantitation of seven water-soluble vitamins in biological fluids (plasma and urine): A validation study and application. Sci. World J. 2012, 2012, 359721. [Google Scholar]
- Kopec, R.E.; Schweiggert, R.M.; Riedl, K.M.; Carle, R.; Schwartz, S.J. Comparison of high-performance liquid chromatography/tandem mass spectrometry and high-performance liquid chromatography/photo-diode array detection for the quantitation of carotenoids, retinyl esters, alpha-tocopherol and phylloquinone in chylomicron-rich fractions of human plasma. Rapid Commun. Mass Spectrom. RCM 2013, 27, 1393–1402. [Google Scholar] [PubMed] [Green Version]
- Roelofsen-de Beer, R.; van Zelst, B.D.; Wardle, R.; Kooij, P.G.; de Rijke, Y.B. Simultaneous measurement of whole blood vitamin b1 and vitamin b6 using lc-esi-ms/ms. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1063, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Puts, J.; de Groot, M.; Haex, M.; Jakobs, B. Simultaneous determination of underivatized vitamin b1 and b6 in whole blood by reversed phase ultra high performance liquid chromatography tandem mass spectrometry. PLoS ONE 2015, 10, e0132018. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Ma, D.; Fei, G.; Ma, Z.; Xiao, F.; Yu, Q.; Pan, X.; Zhou, F.; Zhao, L.; Zhong, C. A single-step method for simultaneous quantification of thiamine and its phosphate esters in whole blood sample by ultra-performance liquid chromatography-mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1095, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Meisser Redeuil, K.; Longet, K.; Benet, S.; Munari, C.; Campos-Gimenez, E. Simultaneous quantification of 21 water soluble vitamin circulating forms in human plasma by liquid chromatography-mass spectrometry. J. Chromatogr. A 2015, 1422, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Asante, I.; Pei, H.; Zhou, E.; Liu, S.; Chui, D.; Yoo, E.; Louie, S.G. Simultaneous quantitation of folates, flavins and b6 metabolites in human plasma by lc-ms/ms assay: Applications in colorectal cancer. J. Pharmaceut. Biomed. Anal. 2018, 158, 66–73. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.Y.; Liang, Q.L.; Yang, H.H.; Wang, Y.M.; Liu, Q.F.; Hu, P.; Zheng, X.Y.; Song, X.M.; Chen, G.; et al. Simultaneous quantification of 11 pivotal metabolites in neural tube defects by hplc-electrospray tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci 2008, 863, 94–100. [Google Scholar] [CrossRef]
- Gletsu-Miller, N.; Wright, B.N. Mineral malnutrition following bariatric surgery. Adv. Nutr. 2013, 4, 506–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Porat, T.; Elazary, R.; Goldenshluger, A.; Sherf Dagan, S.; Mintz, Y.; Weiss, R. Nutritional deficiencies four years after laparoscopic sleeve gastrectomy-are supplements required for a lifetime? Surg. Obes. Relat. Dis. 2017, 13, 1138–1144. [Google Scholar] [CrossRef] [PubMed]
- Caron, M.; Hould, F.S.; Lescelleur, O.; Marceau, S.; Lebel, S.; Julien, F.; Simard, S.; Biertho, L. Long-term nutritional impact of sleeve gastrectomy. Surg. Obes. Relat. Dis. 2017, 13, 1664–1673. [Google Scholar] [CrossRef] [PubMed]
- Weng, T.C.; Chang, C.H.; Dong, Y.H.; Chang, Y.C.; Chuang, L.M. Anaemia and related nutrient deficiencies after roux-en-y gastric bypass surgery: A systematic review and meta-analysis. BMJ Open 2015, 5, e006964. [Google Scholar] [CrossRef] [PubMed]
- Mechanick, J.I.; Youdim, A.; Jones, D.B.; Garvey, W.T.; Hurley, D.L.; McMahon, M.M.; Heinberg, L.J.; Kushner, R.; Adams, T.D.; Shikora, S.; et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient-2013 update: Cosponsored by american association of clinical endocrinologists, the obesity society, and american society for metabolic & bariatric surgery. Obesity 2013, 21 (Suppl. 1), S1–S27. [Google Scholar] [PubMed]
- Goodman, J.C. Neurological complications of bariatric surgery. Curr. Neurol. Neurosci. Rep. 2015, 15, 79. [Google Scholar] [CrossRef]
- Bazuin, I.; Pouwels, S.; Houterman, S.; Nienhuijs, S.W.; Smulders, J.F.; Boer, A.K. Improved and more effective algorithms to screen for nutrient deficiencies after bariatric surgery. Eur. J. Clin. Nutr. 2017, 71, 198–202. [Google Scholar] [CrossRef]
- Lipkie, T.E.; Janasch, A.H.; Cooper, B.R.; Hohman, E.E.; Weaver, C.M.; Ferruzzi, M.G. Quantification of vitamin d and 25-hydroxyvitamin d in soft tissues by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2013, 932, 6–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamers, Y. Indicators and methods for folate, vitamin b-12, and vitamin b-6 status assessment in humans. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Mischler, R.A.; Armah, S.M.; Wright, B.N.; Mattar, S.G.; Rosen, A.D.; Gletsu-Miller, N. Influence of diet and supplements on iron status after gastric bypass surgery. Surg. Obes. Relat. Dis. 2016, 12, 651–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gletsu-Miller, N.; Broderius, M.; Frediani, J.K.; Zhao, V.M.; Griffith, D.P.; Davis, S.S., Jr.; Sweeney, J.F.; Lin, E.; Prohaska, J.R.; Ziegler, T.R. Incidence and prevalence of copper deficiency following roux-en-y gastric bypass surgery. Int. J. Obes. 2012, 36, 328–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Liu, H.; Huang, X.; Shao, L.; Xie, X.; Wang, F.; Yang, J.; Pei, P.; Zhang, Z.; Zhai, Y.; et al. A novel lc-ms/ms assay for vitamin b1, b2 and b6 determination in dried blood spots and its application in children. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1112, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Hampel, D.; York, E.R.; Allen, L.H. Ultra-performance liquid chromatography tandem mass-spectrometry (uplc-ms/ms) for the rapid, simultaneous analysis of thiamin, riboflavin, flavin adenine dinucleotide, nicotinamide and pyridoxal in human milk. J. Chromatogr. B Anal. Technol. Biomed. Life Sci 2012, 903, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Saar, E.; Gerostamoulos, D.; Drummer, O.H.; Beyer, J. Comparison of extraction efficiencies and lc-ms-ms matrix effects using lle and spe methods for 19 antipsychotics in human blood. Anal Bioanal. Chem. 2009, 393, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Sengul, U. Comparing determination methods of detection and quantification limits for aflatoxin analysis in hazelnut. J. Food Drug Anal. 2016, 24, 56–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic (N = 4) | Mean (SD) |
---|---|
Age, y | 51.3 ± 4.3 |
Body mass index, kg/m2 | 38.2 ± 10.3 |
Woman (%) | 75 |
Race White Black | 75 25 |
Use of multivitamin/multimineral supplement (Yes,%) | 75 |
Vitamin B1 (ng/mL) | 147.0 ± 53.7 |
Vitamin B6 (ng/mL) | 16.1 ± 12.4 |
Vitamin B9 (ng/mL) | 15.1 ± 7.4 |
Vitamin | Coefficient of Determination (R2) | Intraday CV | Interday CV |
---|---|---|---|
B2 (Riboflavin) | 0.9971 | 6.6 | 61.5 |
B3 (Nicotinamide) | 0.9977 | 3.7 | 6.7 |
B5 (Pantothenic acid) | 0.9968 | 3.0 | 20.7 |
B6 (Pyridoxine) | 0.9997 | 1.0 | 3.6 |
B7 (Biotin) | 0.9963 | 3.0 | 4.9 |
Vitamin | Raw Sample (ng/µL) | Spiked Sample (Pre-Extraction) (ng/µL) | Spiked Sample (Post-Extraction) (ng/µL) | Pure Vitamin Cocktail (ng/µL) | Extraction Efficiency (%) | Matrix Effects (%) | Recovery (%) |
---|---|---|---|---|---|---|---|
B2 (Riboflavin) | 0.0199 | 2.841 | 5.788 | 3.724 | 49.1 | 155.4 | 75.8 |
B3 (Nicotinamide) | 0.0388 | 0.971 | 1.650 | 2.328 | 58.8 | 70.1 | 40.0 |
B5 (Pantothenic acid) | 0.2297 | 3.301 | 5.99 | 3.781 | 55.0 | 158.4 | 81.2 |
B6 (Pyridoxine) | 0.0187 | 2.777 | 5.306 | 4.029 | 52.3 | 131.6 | 68.5 |
B7 (Biotin) | 0.0549 | 2.608 | 5.600 | 4.086 | 46.6 | 137.0 | 62.5 |
Vitamin | Normal Range (ng/mL) * | Limit of Detection (ng/mL) | Limit of Detection Fold Decrease from Lower Cutoff | Sample Concentration (ng/mL) |
---|---|---|---|---|
B2 (Riboflavin) | 1–19 | 0.2 | 5 | 19.9 |
B3 (Nicotinamide) | 5–75 | 0.05 | 104 | 38.8 |
B5 (Pantothenic acid) | 37–147 | 0.2 | 185 | 122.7 |
B6 (Pyridoxine) | 5–50 | 0.05 | 100 | 18.7 |
B7 (Biotin) | 0.2–3.0 | 0.5 | 0.4 | 7.4 |
Vitamin Analyte | High Linearity | High Inter and Intraday Precision | Low Limit of Detection | Matrix Effects | High Recovery |
---|---|---|---|---|---|
B1 (Thiamine) | − | N/A | N/A | N/A | N/A |
B2 (Riboflavin) | + | +/− | + | enhanced | + |
B3 (Nicotinamide) | + | + | + | suppressed | − |
B5 (Pantothenic acid) | + | +/− | + | enhanced | + |
B6 (Pyridoxine) | + | + | + | enhanced | − |
B7 (Biotin) | + | + | − | enhanced | − |
B9 (Folic acid) | − | N/A | N/A | N/A | N/A |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armah, S.; Ferruzzi, M.G.; Gletsu-Miller, N. Feasibility of Mass-Spectrometry to Lower Cost and Blood Volume Requirements for Assessment of B Vitamins in Patients Undergoing Bariatric Surgery. Metabolites 2020, 10, 240. https://doi.org/10.3390/metabo10060240
Armah S, Ferruzzi MG, Gletsu-Miller N. Feasibility of Mass-Spectrometry to Lower Cost and Blood Volume Requirements for Assessment of B Vitamins in Patients Undergoing Bariatric Surgery. Metabolites. 2020; 10(6):240. https://doi.org/10.3390/metabo10060240
Chicago/Turabian StyleArmah, Seth, Mario G. Ferruzzi, and Nana Gletsu-Miller. 2020. "Feasibility of Mass-Spectrometry to Lower Cost and Blood Volume Requirements for Assessment of B Vitamins in Patients Undergoing Bariatric Surgery" Metabolites 10, no. 6: 240. https://doi.org/10.3390/metabo10060240
APA StyleArmah, S., Ferruzzi, M. G., & Gletsu-Miller, N. (2020). Feasibility of Mass-Spectrometry to Lower Cost and Blood Volume Requirements for Assessment of B Vitamins in Patients Undergoing Bariatric Surgery. Metabolites, 10(6), 240. https://doi.org/10.3390/metabo10060240