Amino Acid and Acylcarnitine Levels in Chronic Patients with Schizophrenia: A Preliminary Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Participants
4.2. Blood Sampling
4.3. Amino Acid and Acylcarnitine Measurement
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Saha, S.; Chant, D.; Welham, J.; McGrath, J. A systematic review of the prevalence of schizophrenia. PLoS Med. 2005, 2, 141. [Google Scholar] [CrossRef]
- Serafini, G.; Pompili, M.; Haghighat, R.; Pucci, D.; Pastina, M.; Lester, D.; Girardi, P. Stigmatization of schizophrenia as perceived by nurses, medical doctors, medical students and patients. J. Psychiatr. Ment. Health Nurs. 2011, 18, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Copoglu, U.S.; Virit, O.; Kokacya, M.H.; Orkmez, M.; Bulbul, F.; Erbagci, A.B.; Savas, H.A. Increased oxidative stress and oxidative DNA damage in non-remission schizophrenia patients. Psychiatry Res. 2015, 229, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Joshi, Y.B.; Praticò, D. Lipid peroxidation in psychiatric illness: Overview of clinical evidence. Oxid. Med. Cell. Longev. 2014, 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, S.A.; Smirnova, L.P.; Shchigoreva, Y.G.; Boiko, A.S.; Semke, A.V.; Uzbekov, M.G.; Bokhan, N.A. Glucose-6-phosphate dehydrogenase and catalase activities in erythrocytes of schizophrenic patients under pharmacotherapy with traditional antipsychotics. Neurochem. J. 2014, 8, 66–70. [Google Scholar] [CrossRef]
- Rajasekaran, A.; Venkatasubramanian, G.; Berk, M.; Debnath, M. Mitochondrial dysfunction in schizophrenia: Pathways, mechanisms and implications. Neurosci. Biobehav. Rev. 2015, 48, 10–21. [Google Scholar] [CrossRef]
- Mednova, I.A.; Serebrov, V.Y.; Baikov, A.N.; Bohan, N.A.; Ivanova, S.A. Amino acids and acylcarnitines as potential metabolomic markers of schizophrenia: New approaches to diagnostics and therapy. Bull. Sib. Med. 2019, 18, 197–208. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Jones, L.L.; McDonald, D.A.; Borum, P.R. Acylcarnitines: Role in brain. Prog. Lipid Res. 2010, 49, 61–75. [Google Scholar] [CrossRef]
- Hisamatsu, T.; Okamoto, S.; Hashimoto, M.; Muramatsu, T.; Andou, A.; Uo, M.; Kanai, T. Novel, objective, multivariate biomarkers composed of plasma amino acid profiles for the diagnosis and assessment of inflammatory bowel disease. PLoS ONE 2012, 7, 31131. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Kornhuber, H.H.; Schmid-Burgk, W.; Holzmüller, B. Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci. Lett. 1980, 20, 379–382. [Google Scholar] [CrossRef]
- Li, C.; Wang, A.; Wang, C.; Ramamurthy, J.; Zhang, E.; Guadagno, E.; Trakadis, Y. Metabolomics in patients with psychosis: A systematic review. Am. J. Med Genet. Part B Neuropsychiatr. Genet. 2018, 177, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Saleem, S.; Shaukat, F.; Gul, A.; Arooj, M.; Malik, A. Potential role of amino acids in pathogenesis of schizophrenia. Int. J. Health Sci. 2017, 11, 63–68. [Google Scholar]
- Liu, M.L.; Zhang, X.T.; Du, X.Y.; Fang, Z.; Liu, Z.; Xu, Y.; Zheng, P.; Xu, X.J.; Cheng, P.F.; Huang, T.; et al. Severe disturbance of glucose metabolism in peripheral blood mononuclear cells of schizophrenia patients: A targeted metabolomic study. J. Transl. Med. 2015, 13, 226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, B.; Wang, D.; Pan, Z.; Brietzke, E.; McIntyre, R.S.; Musial, N.; Mansur, R.B.; Subramanieapillai, M.; Zeng, J.; Huang, N.; et al. Characterizing acyl-carnitine biosignatures for schizophrenia: A longitudinal pre- and post-treatment study. Transl. Psychiatry 2019, 9, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Yu, Z.; Giegling, I.; Xie, L.; Hartmann, A.M.; Prehn, C.; Wang-Sattler, R. Schizophrenia shows a unique metabolomics signature in plasma. Transl. Psychiatry 2012, 2, 149. [Google Scholar] [CrossRef] [Green Version]
- Heresco-Levy, U.; Ermilov, M.; Lichtenberg, P.; Bar, G.; Javitt, D.C. High-dose glycine added to olanzapine and risperidone for the treatment of schizophrenia. Biol. Psychiatry 2004, 55, 165–171. [Google Scholar] [CrossRef]
- Kantrowitz, J.T.; Epstein, M.L.; Lee, M.; Lehrfeld, N.; Nolan, K.A.; Shope, C.; Petkova, E.; Silipo, G.; Javitt, D.C. Improvement in mismatch negativity generation during d-serine treatment in schizophrenia: Correlation with symptoms. Schizophr. Res. 2018, 191, 70–79. [Google Scholar] [CrossRef]
- Tsai, G.E.; Yang, P.; Chang, Y.C.; Chong, M.Y. D-alanine added to antipsychotics for the treatment of schizophrenia. Biol. Psychiatry 2006, 59, 230–234. [Google Scholar] [CrossRef]
- Chen, A.T.; Chibnall, J.T.; Nasrallah, H.A. A meta-analysis of placebo-controlled trials of omega-3 fatty acid augmentation in schizophrenia: Possible stage-specific effects. Ann. Clin. Psychiatry. 2015, 27, 289–296. [Google Scholar]
- Giesbertz, P.; Ecker, J.; Haag, A.; Spanier, B.; Daniel, H. An LC-MS/MS method to quantify acylcarnitine species including isomeric and odd-numbered forms in plasma and tissues. J. Lipid Res. 2015, 56, 2029–2039. [Google Scholar] [CrossRef] [Green Version]
- Kriisa, K.; Leppik, L.; Balõtšev, R.; Ottas, A.; Soomets, U.; Koido, K.; Zilmer, M. Profiling of acylcarnitines in first episode psychosis before and after antipsychotic treatment. J. Proteome Res. 2017, 16, 3558–3566. [Google Scholar] [CrossRef] [PubMed]
- Fusar-Poli, P.; Smieskova, R.; Serafini, G.; Politi, P.; Borgwardt, S. Neuroanatomical markers of genetic liability to psychosis and first episode psychosis: A voxelwise meta-analytical comparison. World J. Biol. Psychiatry 2014, 15, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Smirnova, L.; Seregin, A.; Boksha, I.; Dmitrieva, E.; Simutkin, G.; Kornetova, E.; Savushkina, O.; Letova, A.; Bokhan, N.; Ivanova, S.; et al. The difference in serum proteomes in schizophrenia and bipolar disorder. BMC Genom. 2019, 20, 535. [Google Scholar] [CrossRef]
- Liu, P.; Jing, Y.; Collie, N.D.; Dean, B.; Bilkey, D.K.; Zhang, H. Altered brain arginine metabolism in schizophrenia. Transl. Psychiatry 2016, 6, 871. [Google Scholar] [CrossRef] [PubMed]
- Xuan, J.; Pan, G.; Qiu, Y.; Yang, L.; Su, M.; Liu, Y.; Xing, Q. Metabolomic profiling to identify potential serum biomarkers for schizophrenia and risperidone action. J. Proteome Res. 2011, 10, 5433–5443. [Google Scholar] [CrossRef] [PubMed]
- Olney, J.W.; Farber, N.B. Glutamate receptor dysfunction and schizophrenia. Arch. Gen. Psychiatry 1995, 52, 998–1007. [Google Scholar] [CrossRef] [PubMed]
- Caspi, R.; Billington, R.; Fulcher, C.A.; Keseler, I.M.; Kothari, A.; Krummenacker, M.; Paley, S. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 2018, 46, 633–639. [Google Scholar] [CrossRef] [Green Version]
- Virmani, A.; Pinto, L.; Bauermann, O.; Zerelli, S.; Diedenhofen, A.; Binienda, Z.K.; van der Leij, F.R. The carnitine palmitoyl transferase (CPT) system and possible relevance for neuropsychiatric and neurological conditions. Mol. Neurobiol. 2015, 52, 826–836. [Google Scholar] [CrossRef]
- Bene, J.; Márton, M.; Mohás, M.; Bagosi, Z.; Bujtor, Z.; Oroszlán, T.; Melegh, B. Similarities in serum acylcarnitine patterns in type 1 and type 2 diabetes mellitus and in metabolic syndrome. Ann. Nutr. Metab. 2013, 62, 80–85. [Google Scholar] [CrossRef]
- Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Rochon, J. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009, 9, 311–326. [Google Scholar] [CrossRef] [Green Version]
- Annamalai, A.; Tek, C. An overview of diabetes management in schizophrenia patients: Office based strategies for primary care practitioners and endocrinologists. Int. J. Endocrinol. 2015, 2015, 8. [Google Scholar] [CrossRef] [PubMed]
- Kornetova, E.G.; Kornetov, A.N.; Mednova, I.A.; Dubrovskaya, V.V.; Boiko, A.S.; Bokhan, N.A.; Loonen, A.J.M.; Ivanova, S.A. Changes in body fat and related biochemical parameters associated with atypical antipsychotic drug treatment in schizophrenia patients with or without metabolic syndrome. Front. Psychiatry 2019, 10, 803. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Chen, Y.; McIntyre, R.S.; Yan, L. Acyl-Carnitine Plasma Levels and their Association with Metabolic Syndrome in Individuals with Schizophrenia. Psychiatry Res. 2020, 293, 113458. [Google Scholar] [CrossRef] [PubMed]
- Chace, D.H.; Kalas, T.A.; Naylor, E.W. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin. Chem. 2003, 49, 1797–1817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Indicators | Patients with Schizophrenia (n = 37) | Healthy Probands (n = 36) | p-Value |
---|---|---|---|
Age, Me (Q1; Q3), years | 35 (31.00; 39.00) | 32.5 (28.75; 40.25) | 0.798 |
Gender (male, n (%)/female, n (%)) | 19 (51.3)/18 (48.7) | 22 (61.1)/14 (38.9) | 0.340 |
Duration of disease, mean ± SD, years | 15 ± 8.5 | N/A | N/A |
BMI | 24.1 (22.3; 25.9) | 22.6 (21.9; 25.0) | 0.511 |
Amino Acid Level | Patients with Schizophrenia (n = 37) | Healthy Individuals (n = 36) | p-Value |
---|---|---|---|
Alanine | 152.16 (135.18; 196.56) | 158.69 (141.60; 187.45) | 0.631 |
Arginine | 48.538 (42.50; 54.13) | 56.16 (50.42; 62.44) | 0.002 * |
Aspartate | 21.07 (17.71; 24.82) | 29.67 (26.74; 36.58) | <0.001 * |
Citrulline | 18.94 (16.71; 21.75) | 22.65 (19.87; 26.73) | <0.001 * |
Glycine | 126.39 (106.77; 144.76) | 148.32 (126.64; 169.50) | 0.003 * |
Methionine | 14.76 (10.68; 16.53) | 15.71 (13.40; 17.71) | 0.210 |
Ornithine | 83.64 (76.87; 94.18) | 95.06 (81.12; 108.42) | 0.021 * |
Phenylalanine | 28.47 (26.06; 37.49) | 32.05 (29.71; 33.68) | 0.482 |
Tyrosine | 29.28 (23.81; 34.86) | 32.55 (27.49; 38.35) | 0.097 |
Valine | 89.80 (78.42; 107.06) | 109.26 (93.49; 121.08) | <0.001 * |
Leucine/isoleucine | 56.15 (48.03; 68.76) | 57.27 (50.53; 69.55) | 0.858 |
Proline | 99.70 (82.22; 123.27) | 92.20 (77.65; 114.56) | 0.172 |
Alanine | 75.40 (64.82; 94.60) | 158.69 (141.60; 187.45) | 0.631 |
Arginine | 126.39 (106.77; 144.76) | 56.16 (50.42; 62.44) | 0.002 * |
Aspartate | 14.76 (10.68; 16.53) | 29.67 (26.74; 36.58) | <0.001 * |
Acylcarnitine Level | Patients with Schizophrenia (n = 37) | Healthy Individuals (n = 36) | p-Value |
---|---|---|---|
C0 | 13.6498 (12.4162; 16.8279) | 14.5119 (11.8942; 18.3337) | 0.547 |
C2 | 17.7022 (12.9025; 21.0256) | 17.5045 (13.7932; 19.8577) | 0.872 |
C3 | 0.4098 (0.3502; 0.5662) | 0.3949 (0.3127; 0.4762) | 0.156 |
C3-DC | 0.0906 (0.0772; 0.1069) | 0.0917 (0.0738; 0.1062) | 0.795 |
C4 | 0.0765 (0.0646; 0.1115) | 0.0790 (0.0608; 0.0896) | 0.443 |
C4-OH | 0.0095 (0.0078; 0.0134) | 0.0104 (0.0079; 0.0138) | 0.855 |
C4-DC | 0.0327 (0.0286; 0.0365) | 0.0248 (0.0220; 0.0279) | <0.001 * |
C5 | 0.0389 (0.0320; 0.0490) | 0.0394 (0.0324; 0.0472) | 0.574 |
C5-OH | 0.0227 (0.0204; 0.0253) | 0.0224 (0.0203; 0.0254) | 0.511 |
C5:1 | 0.0061 (0.0053; 0.0076) | 0.0078 (0.0069; 0.0099) | <0.001 * |
C5-DC | 0.0698 (0.0585; 0.0869) | 0.0792 (0.0547; 0.1026) | 0.312 |
C6 | 0.0224 (0.0196; 0.0319) | 0.0299 (0.0225; 0.0393) | 0.099 |
C8 | 0.0413 (0.0270; 0.0611) | 0.0504 (0.0336; 0.0767) | 0.187 |
C8:1 | 0.0279 (0.0203; 0.0349) | 0.0246 (0.0166; 0.0339) | 0.126 |
C10 | 0.0532 (0.0351; 0.0755) | 0.0576 (0.0356; 0.0834) | 0.615 |
C10:1 | 0.0671 (0.0464; 0.1033) | 0.0566 (0.0454; 0.0790) | 0.169 |
C12 | 0.0200 (0.0127; 0.0254) | 0.0229 (0.0169; 0.0331) | 0.080 |
C14 | 0.0097 (0.0085; 0.0122) | 0.0121 (0.0107; 0.0149) | 0.019* |
C14-OH | 0.0023 (0.0019; 0.0030) | 0.0030 (0.0025; 0.0039) | 0.018 * |
C14:1 | 0.0172 (0.0130; 0.0267) | 0.0180 (0.0140; 0.0267) | 0.719 |
C14:2 | 0.0130 (0.0081; 0.0187) | 0.0129 (0.0085; 0.0177) | 0.855 |
C16 | 0.0291 (0.0238; 0.0335) | 0.0332 (0.0251; 0.0356) | 0.155 |
C16-OH | 0.0018 (0.0015; 0.0025) | 0.0038 (0.0031; 0.0045) | <0.001 * |
C16:1 | 0.0067 (0.0049; 0.0097) | 0.0097 (0.0084; 0.0120) | 0.003 * |
C16:1-OH | 0.0027 (0.0020; 0.0032) | 0.0060 (0.0049; 0.0068) | <0.001 * |
C18 | 0.0125 (0.0105; 0.0157) | 0.0248 (0.0215; 0.0289) | <0.001 * |
C18-OH | 0.0031 (0.0025; 0.0046) | 0.0051 (0.0044; 0.0061) | <0.001 * |
C18:1 | 0.0297 (0.0263; 0.0359) | 0.0348 (0.0304; 0.0416) | 0.029 * |
C18:1-OH | 0.0023 (0.0019; 0.0030) | 0.0069 (0.0054; 0.0086) | <0.001 * |
C18:2-OH | 0.0028 (0.0021; 0.0040) | 0.0038 (0.0031; 0.0044) | 0.003 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mednova, I.A.; Chernonosov, A.A.; Kasakin, M.F.; Kornetova, E.G.; Semke, A.V.; Bokhan, N.A.; Koval, V.V.; Ivanova, S.A. Amino Acid and Acylcarnitine Levels in Chronic Patients with Schizophrenia: A Preliminary Study. Metabolites 2021, 11, 34. https://doi.org/10.3390/metabo11010034
Mednova IA, Chernonosov AA, Kasakin MF, Kornetova EG, Semke AV, Bokhan NA, Koval VV, Ivanova SA. Amino Acid and Acylcarnitine Levels in Chronic Patients with Schizophrenia: A Preliminary Study. Metabolites. 2021; 11(1):34. https://doi.org/10.3390/metabo11010034
Chicago/Turabian StyleMednova, Irina A., Alexander A. Chernonosov, Marat F. Kasakin, Elena G. Kornetova, Arkadiy V. Semke, Nikolay A. Bokhan, Vladimir V. Koval, and Svetlana A. Ivanova. 2021. "Amino Acid and Acylcarnitine Levels in Chronic Patients with Schizophrenia: A Preliminary Study" Metabolites 11, no. 1: 34. https://doi.org/10.3390/metabo11010034
APA StyleMednova, I. A., Chernonosov, A. A., Kasakin, M. F., Kornetova, E. G., Semke, A. V., Bokhan, N. A., Koval, V. V., & Ivanova, S. A. (2021). Amino Acid and Acylcarnitine Levels in Chronic Patients with Schizophrenia: A Preliminary Study. Metabolites, 11(1), 34. https://doi.org/10.3390/metabo11010034