Plasma Lipidomic Patterns in Patients with Symptomatic Coronary Microvascular Dysfunction
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Subjects
4.2. Coronary CT Imaging
4.3. Microvascular Testing with Myocardial Contrast Echocardiography
4.4. Echocardiography
4.5. Plasma Lipid Measurements
4.6. Metabolite and Lipid Extractions
4.7. LC-MSE-Based Lipidomic Analysis
4.8. LC-MS/MS Metabolomic Analysis
4.9. Lipidomic and Metabolomic Data Processing and Structure Assignment
4.10. Statistical Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zweier, J.L.; Jacobus, W.E. Substrate-induced alterations of high energy phosphate metabolism and contractile function in the perfused heart. J. Biol. Chem. 1987, 262, 8015–8021. [Google Scholar] [CrossRef]
- Taegtmeyer, H.; Young, M.E.; Lopaschuk, G.D.; Abel, E.D.; Brunengraber, H.; Darley-Usmar, V.; Des Rosiers, C.; Gerszten, R.; Glatz, J.F.; Griffin, J.L.; et al. American Heart Association Council on Basic Cardiovascular S. Assessing Cardiac Metabolism: A Scientific Statement from the American Heart Association. Circ. Res. 2016, 118, 1659–1701. [Google Scholar] [CrossRef]
- Camici, P.G.; d’Amati, G.; Rimoldi, O.E. Coronary microvascular dysfunction: Mechanisms and functional assessment. Nat. Rev. Cardiol. 2015, 12, 48–62. [Google Scholar] [CrossRef] [PubMed]
- Duncker, D.J.; Koller, A.; Merkus, D.; Canty, J.M., Jr. Regulation of coronary blood flow in health and ischemic heart disease. Prog. Cardiovasc. Dis. 2015, 57, 409–422. [Google Scholar] [CrossRef] [PubMed]
- Murthy, V.; Naya, M.; Taqueti, V.R.; Foster, C.R.; Gaber, M.; Hainer, J.; Dorbala, S.; Blankstein, R.; Rimoldi, O.; Camici, P.G.; et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation 2014, 129, 2518–2527. [Google Scholar] [CrossRef] [Green Version]
- Pepine, C.J.; Anderson, R.D.; Sharaf, B.L.; Reis, S.E.; Smith, K.M.; Handberg, E.M.; Johnson, B.D.; Sopko, G.; Bairey Merz, C.N. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia results from the National Heart, Lung and Blood Institute WISE (Women’s Ischemia Syndrome Evaluation) study. J. Am. Coll. Cardiol. 2010, 55, 2825–2832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Y.; Li, Y.; Chen, Y.; Zhao, Y.-J.; Liu, L.-W.; Li, J.; Wang, S.-L.; Alolga, R.N.; Yin, Y.; Wang, X.-M.; et al. Comprehensive Metabolomic Characterization of Coronary Artery Diseases. J. Am. Coll. Cardiol. 2016, 68, 1281–1293. [Google Scholar] [CrossRef]
- Kohno, S.; Keenan, A.L.; Ntambi, J.M.; Miyazaki, M. Lipidomic insight into cardiovascular diseases. Biochem. Biophys. Res. Commun. 2018, 504, 590–595. [Google Scholar] [CrossRef]
- Ussher, J.R.; Elmariah, S.; Gerszten, R.E.; Dyck, J.R. The Emerging Role of Metabolomics in the Diagnosis and Prognosis of Cardiovascular Disease. J. Am. Coll. Cardiol. 2016, 68, 2850–2870. [Google Scholar] [CrossRef] [PubMed]
- Dean, J.; Cruz, S.D.; Mehta, P.K.; Merz, C.N.B. Coronary microvascular dysfunction: Sex-specific risk, diagnosis, and therapy. Nat. Rev. Cardiol. 2015, 12, 406–414. [Google Scholar] [CrossRef]
- Ganna, A.; Salihovic, S.; Sundstrom, J.; Broeckling, C.; Hedman, Å.; Magnusson, P.K.E.; Pedersen, N.L.; Larsson, A.; Siegbahn, A.; Zilmer, M.; et al. Large-scale metabolomic profiling identifies novel biomarkers for incident coronary heart disease. PLoS Genet. 2014, 10, e1004801. [Google Scholar] [CrossRef]
- Rinkevich, D.; Belcik, T.; Gupta, N.C.; Cannard, E.; Alkayed, N.J.; Kaul, S. Coronary autoregulation is abnormal in syndrome X: Insights using myocardial contrast echocardiography. J. Am. Soc. Echocardiogr. 2013, 26, 290–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodwill, A.G.; Dick, G.M.; Kiel, A.M.; Tune, J.D. Regulation of Coronary Blood Flow. Compr. Physiol. 2017, 7, 321–382. [Google Scholar] [PubMed] [Green Version]
- Sabatine, M.S.; Liu, E.; Morrow, D.A.; Heller, E.; McCarroll, R.; Wiegand, R.; Berriz, G.F.; Roth, F.P.; Gerszten, R.E. Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation 2005, 112, 3868–3875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limkakeng, A.T., Jr.; Henao, R.; Voora, D.; O’Connell, T.; Griffin, M.; Tsalik, E.L.; Shah, S.; Woods, C.W.; Ginsburg, G.S. Pilot study of myocardial ischemia-induced metabolomic changes in emergency department patients undergoing stress testing. PLoS ONE 2019, 14, e0211762. [Google Scholar] [CrossRef]
- Paapstel, K.; Kals, J.; Eha, J.; Tootsi, K.; Ottas, A.; Piir, A.; Jakobson, M.; Lieberg, J.; Zilmer, M. Inverse relations of serum phosphatidylcholines and lysophosphatidylcholines with vascular damage and heart rate in patients with atherosclerosis. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 44–52. [Google Scholar] [CrossRef]
- Lee, J.; Jung, S.; Kim, N.; Shin, M.-J.; Ryu, D.H.; Hwang, G.-S. Myocardial metabolic alterations in mice with diet-induced atherosclerosis: Linking sulfur amino acid and lipid metabolism. Sci. Rep. 2017, 7, 13597. [Google Scholar] [CrossRef] [Green Version]
- Tawakol, A.; Sims, K.; MacRae, C.; Friedman, J.R.; Alpert, N.M.; Fischman, A.J.; Gewirtz, H. Myocardial flow regulation in people with mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes/myoclonic epilepsy and ragged red fibers and other mitochondrial syndromes. Coron. Artery Dis. 2003, 14, 197–205. [Google Scholar] [CrossRef]
- Feng, L.; Yang, J.; Liu, W.; Wang, Q.; Wang, H.; Shi, L.; Fu, L.; Xu, Q.; Wang, B.; Li, T. Lipid Biomarkers in Acute Myocardial Infarction Before and After Percutaneous Coronary Intervention by Lipidomics Analysis. Med. Sci. Monit. 2018, 24, 4175–4182. [Google Scholar] [CrossRef] [PubMed]
- Lesnefsky, E.J.; Chen, Q.; Tandler, B.; Hoppel, C.L. Mitochondrial Dysfunction and Myocardial Ischemia-Reperfusion: Implications for Novel Therapies. Annu. Rev. Pharmacol. Toxicol. 2017, 57, 535–565. [Google Scholar] [CrossRef]
- Lewandowski, E.D.; Kudej, R.K.; White, L.T.; O’Donnell, J.M.; Vatner, S.F. Mitochondrial preference for short chain fatty acid oxidation during coronary artery constriction. Circulation 2002, 105, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Safdar, B.; D’Onofrio, G.; Dziura, J.; Russell, R.R.; Johnson, C.; Sinusas, A.J. Ranolazine and Microvascular Angina by PET in the Emergency Department: Results From a Pilot Randomized Controlled Trial. Clin. Ther. 2017, 39, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Liao, J.; Kuo, L. Interaction between adenosine and flow-induced dilation in coronary microvascular network. Am. J. Physiol. Heart Circ. Physiol. 1997, 272, H1571–H1581. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, P.A.; Gnecchi-Ruscone, T.; Schäfers, K.P.; Lüscher, T.F.; Camici, P.G. Low density lipoprotein cholesterol and coronary microvascular dysfuntion in hypercholesterolemia. J. Am. Coll. Cardiol. 2000, 36, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Taqui, S.; Ferencik, M.; Davidson, B.; Belcik, J.T.; Moccetti, F.; Layoun, M.; Raber, J.; Turker, M.; Tavori, H.; Fazio, S.; et al. Coronary microvascular dysfunction by myocardial contrast echocardiography in nonelderly patients referred for computed tomographic coronary angiography. J. Am. Soc. Echocardiogr. 2019, 32, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Agatston, A.S.; Janowitz, F.W.R.; Hildner, F.J.; Zusmer, N.R.; Viamonte, M., Jr.; Detrano, R. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990, 15, 827–832. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, U.; Moselewski, F.; Nieman, K.; Jang, I.-K.; Ferencik, M.; Rahman, A.M.; Cury, R.C.; Abbara, S.; Joneidi-Jafari, H.; Achenbach, S.; et al. Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J. Am. Coll. Cardiol. 2006, 47, 1655–1662. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Barton, D.; Xie, F.; O’Leary, E.; Steuter, J.; Pavlides, G.; Porter, T.R. Comparison of Fractional Flow Reserve Assessment With Demand Stress Myocardial Contrast Echocardiography in Angiographically Intermediate Coronary Stenoses. Circ. Cardiovasc. Imaging 2016, 9, e004129. [Google Scholar] [CrossRef] [Green Version]
- Wei, K.; Jayaweera, A.R.; Firoozan, S.; Linka, A.; Skyba, D.M.; Kaul, S. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 1998, 97, 473–483. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef] [Green Version]
-MVD (n = 11) | +MVD (n = 9) | p-Value | |
---|---|---|---|
Rest | |||
Heart rate (min−1) | 68 ± 11 | 71 ± 14 | 0.45 |
Systolic BP (mm Hg) | 118 ± 18 | 116 ± 17 | 0.82 |
Diastolic BP (mm Hg) | 64 ± 10 | 66 ± 11 | 0.63 |
Double product (mm Hg/min) | 7659 ± 2320 | 7989 ± 2628 | 0.78 |
Regadenoson stress | |||
Heart rate (min−1) | 82 ± 19 | 79 ± 11 | 0.64 |
Systolic BP (mm Hg) | 112 ± 20 | 119 ± 21 | 0.47 |
Diastolic BP (mm Hg) | 64 ± 9 | 79 ± 11 | 0.26 |
Double product (mm Hg/min) | 9219 ± 2625 | 9326 ± 1811 | 0.92 |
-MVD (n = 11) | +MVD (n = 9) | p-Value | |
---|---|---|---|
LVIDd (cm) | 4.67 ± 0.57 | 4.61 ± 0.73 | 0.84 |
LVIDs (cm) | 3.01 ± 0.81 | 3.43 ± 0.76 | 0.30 |
IVSd (cm) | 0.91 (IQR 0.67–0.99) | 0.80 (IQR 0.58–1.15) | 0.49 |
IVSs (cm) | 1.36 (IQR 1.16–1.47) | 1.10 (IQR 1.00–1.66) | 0.37 |
PWd (cm) | 1.36 ± 0.05 | 1.28 ± 0.12 | 0.11 |
Stroke volume (mL) | 75.1 ± 12.4 | 74.8 ± 16.0 | 0.97 |
Cardiac output (L/min) | 5.04 ± 0.97 | 5.20 ± 1.34 | 0.76 |
Stroke work (mL × mm Hg) | 8818 ± 1942 | 8559 ± 1852 | 0.78 |
Myocardial work (×1000 mL × mm Hg/min) | 596 ± 161 | 582 ± 199 | 0.87 |
-MVD (n = 11) | +MVD (n = 9) | p-Value | -CAD (n = 7) | +CAD (n = 13) | p-Value | |
---|---|---|---|---|---|---|
Male, n (%) | 5 (45%) | 2 (22%) | 0.37 | 3 (23%) | 3 (43%) | 0.61 |
Caucasian n (%) | 11 (100%) | 8 (89%) | 1 | 12 (92%) | 7 (100%) | 1 |
Age (years) | 49 ± 5 | 49 ± 5 | 0.88 | 49 ± 5 | 50 ± 6 | 0.60 |
BMI (kg/m2) | 29.8 ± 6.9 | 27.2 ± 7.3 | 0.43 | 28.8 ± 7.6 | 28.7 ± 6.2 | 0.98 |
Obese, n (%) | 5 (45%) | 2 (22%) | 0.37 | 5 (38%) | 2 (29%) | 0.37 |
Non-obstruct. CAD, n (%) | 5 (45%) | 2 (22%) | 0.37 | |||
MVD, n (%) | 6 (46%) | 2 (29%) | 0.44 | |||
Atherosclerotic risk factors (n) | 2.7 ± 1.1 | 2.8 ± 1.0 | 0.92 | 2.6 ± 0.8 | 3.0 ± 1.4 | 0.52 |
Any, n (%) | 10 (91%) | 8 (89%) | 1 | 11 (92%) | 6 (86%) | 1 |
Family History, n (%) | 6 (55%) | 6 (67%) | 0.67 | 7 (54%) | 5 (71%) | 0.64 |
Smoking history n (%) | 2 (18%) | 0 (0%) | 0.49 | 2 (17%) | 0 (0%) | 0.51 |
Hypertension n (%) | 6 (55%) | 6 (67%) | 0.67 | 7 (54%) | 5 (71%) | 0.64 |
Diabetes mellitus n (%) | 0 (0%) | 1 (11%) | 0.45 | 0 (0%) | 1 (11%) | 0.35 |
Hyperlipidemia n (%) | 9 (82%) | 7 (78%) | 1 | 8 (62%) | 5 (71%) | 1 |
Medications, n (%) | 2.0 ± 0.8 | 2.1 ± 0.6 | 0.90 | 1.2 ± 0.9 | 3.6 ± 2.1 | 0.02 |
Any, n (%) | 9 (82%) | 7 (78%) | 1 | 10 (77%) | 6 (89%) | 1 |
ACE-inhibitors, n (%) | 1 (9%) | 4 (44%) | 0.13 | 3 (23%) | 2 (29%) | 1 |
Antiplatelets, n (%) | 5 (45%) | 1 (11%) | 0.16 | 1 (8%) | 5 (71%) | 0.007 |
Beta Blockers, n (%) | 3 (27%) | 4 (44%) | 0.64 | 3 (23%) | 4 (57%) | 0.17 |
CCBs, n (%) | 2 (18%) | 1 (11%) | 1 | 1 (8%) | 2 (29%) | 0.27 |
Statins, n (%) | 4 (36%) | 3 (33%) | 1 | 2 (15%) | 5 (71%) | 0.02 |
Plasma Lipid Values | ||||||
Total cholesterol (mg/dL) | 178 ± 30 | 209 ± 13 | 0.06 | 201 ± 32 | 175 ± 40 | 0.07 |
LDL cholesterol (mg/dL) | 100 ± 22 | 121 ± 31 | 0.10 | 115 ± 25 | 98 ± 31 | 0.12 |
HDL cholesterol (mg/dL) | 56 ± 13 | 65 ± 11 | 0.04 | 67 ± 13 | 52 ± 11 | 0.13 |
VLDL cholesterol (mg/dL) | 25 ± 7 | 24 ± 11 | 0.81 | 24 ± 9 | 24 ± 8 | 0.95 |
Triglycerides (mg/dL) | 123 ± 36 | 118 ± 54 | 0.81 | 121 ± 47 | 120 ± 41 | 0.95 |
Lipoprotein(a) (mg/dL) | 38 ± 48 | 13 ± 7 | 0.12 | 13 ± 10 | 51 ± 55 | 0.07 |
Lipid Class | Lipid Species | -MVD (n = 11) | +MVD (n = 9) | p-Value | -CAD (n = 13) | +CAD (n = 7) | p-Value |
---|---|---|---|---|---|---|---|
Total | 1533 ± 129 | 1477 ± 112 | 0.32 | 1501 ± 107 | 1520 ± 155 | 0.74 | |
Acylglycerols | 636 ± 111 | 529 ± 90.4 | 0.03 | 555 ± 93 | 650 ± 129 | 0.07 | |
Triacylglycerol | 74 | 615 ± 110 | 510 ± 88.8 | 0.03 | 535 ± 91 | 628 ± 129 | 0.08 |
Diacylglycerol | 15 | 18.1 ± 4.32 | 16.2 ± 4.07 | 0.34 | 16.5 ± 4.19 | 18.8 ± 4.11 | 0.26 |
Monoacylglycerol | 3 | 3.26 ± 0.64 | 3.13 ± 0.84 | 0.68 | 3.16 ± 0.71 | 3.29 ± 0.79 | 0.71 |
Cholesteroyl ester | 4 | 3.63 ± 0.65 | 3.90 ± 1.19 | 0.55 | 3.53 ± 0.82 | 4.15 ± 1.02 | 0.16 |
Glycerophospholipids | 808 ± 108 | 851 ± 112 | 0.39 | 849 ± 114 | 786 ± 92 | 0.22 | |
Lyso PC | 6 | 11.6 ± 4.30 | 11.5 ± 3.14 | 0.93 | 11.6 ± 4.11 | 11.6 ± 3.19 | 0.99 |
Phosphatidyl choline | 21 | 657 ± 87.2 | 694 ± 94.1 | 0.38 | 688 ± 96.3 | 647 ± 75.8 | 0.34 |
Phosphatidyl ethanolamine | 9 | 7.61 ± 1.01 | 8.67 ± 1.42 | 0.07 | 8.45 ± 1.35 | 7.41 ± 0.90 | 0.08 |
Phosphatidyl serine | 7 | 107 ± 20.7 | 114 ± 15.3 | 0.45 | 116 ± 16.3 | 100 ± 18.5 | 0.07 |
Plasmenyl PC | 3 | 17.2 ± 7.48 | 16.3 ± 3.97 | 0.73 | 18.1 ± 7.00 | 14.5 ± 2.66 | 0.11 |
Plasmanyl PC | 4 | 4.25 ± 1.57 | 5.00 ± 2.06 | 0.37 | 5.11 ± 1.93 | 3.63 ± 1.06 | 0.08 |
Plasmenyl PE | 4 | 2.14 ± 0.94 | 1.85 ± 0.43 | 0.37 | 1.99 ± 0.77 | 2.04 ± 0.77 | 0.89 |
Sphingolipids | 87.2 ± 16.6 | 94.2 ± 16.2 | 0.35 | 94.9 ± 13.6 | 82.0 ± 18.9 | 0.10 | |
Ceramide | 5 | 2.52 ± 1.94 | 1.56 ± 1.45 | 0.23 | 1.78 ± 1.41 | 2.66 ± 2.30 | 0.30 |
Sphingomyelin | 21 | 84.7 ± 17.0 | 92.7 ± 16.8 | 0.31 | 93.1 ± 14.4 | 79.4 ± 18.8 | 0.08 |
Fatty Acid | -MVD (n = 11) | +MVD (n = 9) | p-Value | -CAD (n = 13) | +CAD (n = 7) | p-Value |
---|---|---|---|---|---|---|
C12:0 | 2.57 ± 2.70 | 6.83 ± 6.60 | 0.10 | 4.66 ± 5.67 | 4.16 ± 4.57 | 0.84 |
C14:0 | 77.3 ± 32.2 | 88.7 ± 48.3 | 0.54 | 80.9 ± 37.6 | 85.3 ± 45.8 | 0.82 |
C14:1 | 5.33 ± 2.45 | 11.15 ± 9.47 | 0.11 | 8.64 ± 8.10 | 6.67 ± 4.84 | 0.57 |
C15:0 | 2.35 ± 1.19 | 2.55 ± 1.23 | 0.71 | 2.50 ± 12.3 | 23.4 ± 11.6 | 0.78 |
C16:0 | 349 ± 84.9 | 297 ± 51.9 | 0.13 | 303 ± 63.1 | 369 ± 80.7 | 0.06 |
C16:1 | 139 ± 26.0 | 126 ± 32.1 | 0.32 | 127 ± 30.5 | 144 ± 30.5 | 0.23 |
C17:0 | 3.71 ± 1.89 | 3.42 ± 1.63 | 0.72 | 3.36 ± 1.77 | 3981 ± 1.72 | 0.46 |
C17:1 | 11.0 ± 4.34 | 9.25 ± 2.47 | 0.29 | 10.1 ± 3.26 | 10,506 ± 4.56 | 0.81 |
C18:0 | 166 ± 40.82 | 107 ± 25.7 | 0.002 | 134 ± 45.9 | 150 ± 45.8 | 0.46 |
C18:1 | 452 ± 103 | 386 ± 68.6 | 0.12 | 395 ± 78.5 | 472 ± 104 | 0.08 |
C18:2 | 372 ± 72.9 | 294 ± 82.0 | 0.04 | 317 ± 72.5 | 372 ± 100 | 0.17 |
C18:3 | 44.4 ± 36.2 | 37.4 ± 17.6 | 0.31 | 77.8 ± 87.4 | 87.4 ± 30.4 | 0.48 |
C20:1 | 107 ± 23.4 | 81.4 ± 13.5 | 0.01 | 91.7 ± 19.8 | 102 ± 28.6 | 0.36 |
C20:3 | 5.16 ± 2.26 | 4.76 ± 3.59 | 0.76 | 3.91 ± 1.76 | 6.98 ± 3.54 | 0.06 |
C20:4 | 46.9 ± 12.3 | 39.5 ± 17.7 | 0.29 | 38.7 ± 12.0 | 52.6 ± 16.9 | 0.05 |
C21:0 | 8.41 ± 2.11 | 5.80 ± 2.22 | 0.02 | 6.96 ± 2.00 | 7.75 ± 3.33 | 0.52 |
C22:4 | 10.05 ± 4.31 | 7.54 ± 3.37 | 0.17 | 7.71 ± 3.22 | 11.18 ± 4.63 | 0.06 |
C22:6 | 7.71 ± 2.32 | 7.49 ± 4.21 | 0.88 | 6.47 ± 2.19 | 9.73 ± 3.87 | 0.07 |
C23:0 | 3.50 ± 1.30 | 1.66 ± 0.85 | 0.002 | 2.64 ± 1.49 | 2.71 ± 1047 | 0.92 |
MCSFA | 82.3 ± 33.4 | 98.1 ± 54.6 | 0.43 | 88.1 ± 42.3 | 91.8 ± 49.7 | 0.86 |
LCSFA | 546 ± 105 | 456 ± 61.1 | 0.04 | 474 ± 77.1 | 564 ± 109 | 0.05 |
FAΩ3 | 103 ± 27.3 | 71.6 ± 21.8 | 0.01 | 84.2 ± 28.1 | 97.1 ± 31.3 | 0.36 |
FAΩ6 | 434 ± 82.9 | 346 ± 97.5 | 0.04 | 368 ± 83.8 | 444 ± 110 | 0.10 |
FAΩ7/9 | 697 ± 138 | 592 ± 108 | 0.08 | 614 ± 111 | 717 ± 154 | 0.10 |
C22:6/18:3 | 0.09 ± 0.03 | 0.12 ± 0.06 | 0.14 | 0.09 ± 0.04 | 0.12 ± 0.05 | 0.22 |
C20:4/18:2 | 0.13 ± 0.03 | 0.13 ± 0.05 | 0.17 | 0.12 ± 0.03 | 0.14 ± 0.05 | 0.33 |
C16:1/0 | 0.87 ± 0.18 | 1.21 ± 0.39 | 0.03 | 1.01 ± 0.29 | 1.04 ± 0.43 | 0.85 |
C18:1/0 | 2.88 ± 1.00 | 3.81 ± 1.25 | 0.08 | 3.23 ± 1.09 | 3.42 ± 1.44 | 0.73 |
-MVD (n = 11) | +MVD (n = 9) | p-Value | AUC of ROC-Curve (95% CI) | |
---|---|---|---|---|
DAG (C18:0/C18:2) | 1800 ± 443 | 1103 ± 131 | 0.0002 | 1.0 |
DAG (C18:1/C18:2) | 1464 ± 377 | 859 ± 455 | 0.01 | 0.83 (0.63, 1) |
TAG (C16:0/C18:1/C20:1) | 15,119 ± 6336 | 9281 ± 2744 | 0.007 | 0.86 (0.70, 1) |
TAG (C18:0/C18:0/C18:3) | 54,822 ± 18,572 | 31,364 ± 9593 | 0.003 | 0.90 (0.74, 1) |
TAG (C18:1/C18:1/C18:1) | 158 ± 80 | 61 ± 46 | 0.004 | 0.88 (0.73, 1) |
TAG (C18:1/C20:3/C23:0) | 215 ± 182 | 67 ± 53 | 0.009 | 0.85 (0.38, 1) |
TAG (C18:1/C20:4/C23:0) | 1529 ± 636 | 674 ± 279 | 0.002 | 0.91 (0.78, 1) |
TAG (C18:2/C20:4/C23:0) | 1752 ± 604 | 916 ± 593 | 0.01 | 0.83 (0.63, 1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindner, J.R.; Davidson, B.P.; Song, Z.; Maier, C.S.; Minnier, J.; Stevens, J.F.; Ferencik, M.; Taqui, S.; Belcik, J.T.; Moccetti, F.; et al. Plasma Lipidomic Patterns in Patients with Symptomatic Coronary Microvascular Dysfunction. Metabolites 2021, 11, 648. https://doi.org/10.3390/metabo11100648
Lindner JR, Davidson BP, Song Z, Maier CS, Minnier J, Stevens JF, Ferencik M, Taqui S, Belcik JT, Moccetti F, et al. Plasma Lipidomic Patterns in Patients with Symptomatic Coronary Microvascular Dysfunction. Metabolites. 2021; 11(10):648. https://doi.org/10.3390/metabo11100648
Chicago/Turabian StyleLindner, Jonathan R., Brian P. Davidson, Zifeng Song, Claudia S. Maier, Jessica Minnier, Jan Frederick Stevens, Maros Ferencik, Sahar Taqui, J. Todd Belcik, Federico Moccetti, and et al. 2021. "Plasma Lipidomic Patterns in Patients with Symptomatic Coronary Microvascular Dysfunction" Metabolites 11, no. 10: 648. https://doi.org/10.3390/metabo11100648
APA StyleLindner, J. R., Davidson, B. P., Song, Z., Maier, C. S., Minnier, J., Stevens, J. F., Ferencik, M., Taqui, S., Belcik, J. T., Moccetti, F., Layoun, M., Spellman, P., Turker, M. S., Tavori, H., Fazio, S., Raber, J., & Bobe, G. (2021). Plasma Lipidomic Patterns in Patients with Symptomatic Coronary Microvascular Dysfunction. Metabolites, 11(10), 648. https://doi.org/10.3390/metabo11100648