Vital Carbohydrate and Lipid Metabolites in Serum Involved in Energy Metabolism during Pubertal Molt of Mud Crab (Scylla paramamosain)
Abstract
:1. Introduction
2. Results
2.1. Overview of Metabolomic Profiles from Pre- and Post-Pubertal Molt Groups
2.2. Significantly Changed Metabolites and Metabolite Pathway Analysis (MetPA)
2.3. Carbohydrate Metabolites in Serum
2.4. Lipid Metabolites in Serum
2.5. Vitamin, Hormone Analog and Carnitine Shuttle
2.6. Receiver Operating Characteristics (ROC) Analysis
3. Discussion
4. Materials and Methods
4.1. Experiment Animals and Serum Sampling
4.2. Metabolite Extraction
4.3. Liquid Chromatography–Mass Spectrometry/Mass Spectrometry (LC-MS/MS) for Metabolomics Profiling
4.4. Gas Chromatograph/Time-of-Flight Mass Spectrometer (GC/TOF-MS) for Metabolomic Profiling
4.5. Metabolomic Data Preprocessing and Identification
4.6. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, X.; Waiho, K.; Li, X.; Ikhwanuddin, M.; Miao, G.; Lin, F.; Zhang, Y.; Li, S.; Zheng, H.; Liu, W.; et al. Female-specific SNP markers provide insights into a WZ/ZZ sex determination system for mud crabs Scylla paramamosain, S. tranquebarica and S. serrata with a rapid method for genetic sex identification. BMC Genom. 2018, 19, 981. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.Z.; Li, S.J.; Zeng, C.S.; Lin, S.J.; Kong, X.H.; AI, C.X.; Lin, Q.W. Status of biological studies and aquaculture development of the mud crab, Scylla serrata, in China: An experimental ecological study. Aquacult. Int. 2005, 13, 459–468. [Google Scholar]
- Fisheries Bureau of the Ministry of Agriculture. China Fishery Statistical; China Agriculture Press: Beijing, China, 2019; p. 22.
- Khatun, M.M.; Kamal, D.; Ikejima, K.; Yi, Y. Comparisons of growth and economic performance among monosex and mixed-sex culture of red mud crab (Scylla olivacea Herbst, 1796) in bamboo pens in the tidal flats of mangrove forests, Bangladesh. Aquac. Res. 2009, 40, 473–485. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, K.J.; Zhang, F.Y.; Song, W.; Zhao, M.; Wei, H.Q.; Meng, Y.Y.; Ma, L.B. Characterization and expression analysis of the prophenoloxidase activating factor from the mud crab Scylla paramamosain. Genet. Mol. Res. 2015, 14, 8847–8860. [Google Scholar] [CrossRef] [PubMed]
- Oliphant, A.; Alexander, J.L.; Swain, M.T.; Webster, S.G.; Wilcockson, D.C. Transcriptomic analysis of crustacean neuropeptide signaling during the moult cycle in the green shore crab, Carcinus maenas. BMC Genom. 2018, 19, 711. [Google Scholar] [CrossRef] [Green Version]
- Fazhan, H.; Waiho, K.; Norfaizza, W.I.W.; Megat, F.H.; Ikhwanuddin, M. Assortative mating by size in three species of mud crabs, genus Scylla De Haan, 1833 (Brachyura: Portunidae). J. Crustacean Biol. 2017, 37, 654–660. [Google Scholar] [CrossRef]
- Bowser, P.R.; Rosemark, R. Mortalities of cultured lobsters, Homarus, associated with a molt death syndrome. Aquaculture 1981, 23, 11–18. [Google Scholar] [CrossRef]
- Anh, N.T.N.; Ut, V.N.; Wille, M.; Hoa, N.V.; Sorgeloos, P. Effect of different forms of Artemia biomass as a food source on survival, molting and growth rate of mud crab (Scylla paramamosain). Aquacult. Nutr. 2010, 17, e549–e558. [Google Scholar] [CrossRef]
- Teshima, S.I.; Kanazawa, A.; Yamashita, M. Dietary value of several proteins and supplemental amino acids for larvae of the prawn Penaeus japonicus. Aquaculture 1986, 51, 225–235. [Google Scholar] [CrossRef]
- Chan, S.M.; Rankin, S.M.; Keeley, L.L. Characterization of the molt stages in Penaeus vannamei: Setogenesis and hemolymph levels of total protein, ecdysteroids, and glucose. Biol. Bull. 1988, 175, 185–192. [Google Scholar] [CrossRef]
- Rivera-Pérez, C.; García-Carreño, F. Effect of fasting on digestive gland lipase transcripts expression in Penaeus vannamei. Mar. Genom. 2011, 4, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Paz, A.; García-Carreño, F.; Muhlia-Almazán, A.; Peregrino-Uriarte, A.B.; Hernández-López, J.; Yepiz-Plascencia, G. Usage of energy reserves in crustaceans during starvation: Status and future directions. Insect Biochem. Mol. Biol. 2006, 36, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.S.; Mykles, D.L. Regulation of crustacean molting: A review and our perspectives. Gen. Comp. Endocrinol. 2011, 172, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.T.B.; Chim, L. Lemaire, P.; Wantiez, L. Feed intake, molt frequency, tissue growth, feed efficiency and energy budget during a molt cycle of mud crab juveniles, Scylla serrata (Forskål, 1775), fed on different practical diets with graded levels of soy protein concentrate as main source of protein. Aquaculture 2014, 434, 499–509. [Google Scholar]
- Oh, C.W.; Hartnoll, R.G. Effects of Food Supply on the Growth and Survival of the Common Shrimp, Crangon crangon. Crustaceana 2000, 73, 83–99. [Google Scholar] [CrossRef] [Green Version]
- Niu, J.; Lin, H.Z.; Jiang, S.G.; Chen, X.; Wu, K.C.; Tian, L.X.; Liu, Y.J. Effect of seven carbohydrate sources on juvenile Penaeus monodon. Anim. Feed Sci. Technol. 2012, 174, 86–95. [Google Scholar] [CrossRef]
- Catacutan, M.R. Growth and body composition of juvenile mud crab, Scylla serrata, fed different dietary protein and lipid levels and protein to energy ratios. Aquaculture 2002, 208, 113–123. [Google Scholar] [CrossRef]
- Neiland, K.A.; Scheer, B.T. The influence of fasting and of sinus gland removal on body composition of Hemigrapsus nudus. Physiol. Comp. Oecologia 1953, 3, 321. [Google Scholar]
- Barclay, M.C.; Dall, W.; Smith, D.M. Changes in lipid and protein during starvation and the moulting cycle in the tiger prawn, Penaeus esculentus Haswell. J. Exp. Mar. Biol. Ecol. 1983, 68, 229–244. [Google Scholar] [CrossRef]
- Hervant, F.; Mathieu, J.; Barre, H. Comparative study on the metabolic responses of subterranean and surface-dwelling amphipod crustaceans to long-term starvation and subsequent refeeding. J. Exp. Biol. 1999, 202, 3587–3595. [Google Scholar] [CrossRef]
- Helland, S.; Nejstgaard, J.C.; Fyhn, H.J.; Egge, J.K.; Bamstedt, U. Effects of starvation, season, and diet on the free amino acid and protein content of Calanus finmarchicus females. Mar. Biol. 2003, 143, 297–306. [Google Scholar]
- Neves, C.A.; Pastor, M.P.; Nery, L.E.; Santos, E.A. Effects of the parasite Probopyrus ringueleti (Isopoda) on glucose, glycogen and lipid concentration in starved Palaemonetes argentinus (Decapoda). Dis. Aquat. Organ. 2004, 58, 209–213. [Google Scholar] [CrossRef]
- Ritar, A.J.; Dunstan, G.A.; Crear, B.J.; Brown, M.R. Biochemical composition during growth and starvation of early larval stages of cultured spiny lobster (Jasus edwardsii) phyllosoma. Comp. Biochem. Physiol. 2003, 136, 353–370. [Google Scholar] [CrossRef] [Green Version]
- Johnston, D.J.; Ritar, A.J.; Thomas, C.W. Digestive enzyme profiles reveal digestive capacity and potential energy sources in fed and starved spiny lobster (Jasus edwardsii) phyllosoma larvae. Comp. Biochem. Phys. B 2004, 138, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Paz, A.; García-Carreño, F.; Hernández-López, J.; Muhlia-Almazán, A.; Yepiz-Plascencia, G. Effect of short-term starvation on hepatopancreas and plasma energy reserves of the Pacific white shrimp (Litopenaeus vannamei). J. Exp. Mar. Biol. Ecol. 2007, 340, 184–193. [Google Scholar] [CrossRef]
- Adiyodi, K.G.; Adiyodi, R.G. Endocrine control of reproduction in decapod Crustacea. Biol. Rev. 1970, 45, 121–165. [Google Scholar] [CrossRef] [PubMed]
- Capparelli, M.V.; Flores, A.A.V. Environmentally driven shift between alternative female morphotypes in the mottled shore crab. Zoology 2011, 114, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Congleton, J.L.; Wagner, T. Blood-chemistry indicators of nutritional status in juvenile salmonids. J. Fish Biol. 2006, 69, 473–490. [Google Scholar] [CrossRef]
- Li, S.; Alfaro, A.C.; Nguyen, T.V.; Young, T.; Lulijwa, R. An integrated omics approach to investigate summer mortality of New Zealand Greenshell™ mussels. Metabolomics 2020, 16, 100. [Google Scholar] [CrossRef]
- Cherel, Y.; Robin, J.P.; Heitz, A.; Calgari, C.; Maho, L.Y. Relationships between lipid availability and protein utilization during prolonged fasting. J. Comp. Physiol. B 1992, 162, 305–313. [Google Scholar] [CrossRef]
- Sugumar, V.; Vijayalakshmi, G.; Saranya, K. Molt cycle related changes and effect of short-term starvation on the biochemical constituents of the blue swimmer crab Portunus pelagicus. Saudi J. Biol. Sci. 2013, 20, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Aaqillah-Amr, A.A.; Hidir, A.; Noordiyan, M.N.; Ikhwanuddin, M. Morphological, biochemical and histological analysis of mud crab ovary and hepatopancreas at different stages of development. Anim. Reprod. Sci. 2018, 195, 274–283. [Google Scholar] [CrossRef]
- Cheng, Y.X.; Du, N.S.; Lai, W. The lipid accumulations during the stages of the ovarian fast maturation and their effect on the spawning of Eriocheir sinensis. J. Fish. China 2000, 24, 113–118. [Google Scholar]
- Teshima, S.; Kanazawa, A.; Okamoto, H. Effects of dietary cholesterol levels on the growth, molt performance, and immunity of juvenile swimming crab, Portunus trituberculatus. Mar. Biol. 1977, 39, 129–136. [Google Scholar] [CrossRef]
- Huang, X.; Feng, Y.; Duan, J.; Xiong, G.; Fan, W.; Liu, S.; Zhong, L.; Wang, K.; Geng, Y.; Ouyang, P.; et al. Antistarvation strategies of E. Sinensis: Regulatory networks under hepatopancreas consumption. Oxid. Med. Cell. Longev. 2020, 4, e6085343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, T.; Wang, J.T.; Li, X.Y.; Yang, Y.X.; Yang, M.; Tian, H.L.; Zheng, P.Q.; Wang, C.L. Effects of dietary phospholipid and cholesterol levels on growth and fatty acid composition of juvenile swimming crab, Portunus trituberculatus. Aquacult. Nutr. 2018, 24, 164–172. [Google Scholar] [CrossRef]
- Fang, F.; Yuan, Y.; Jin, M.; Shi, B.; Zhu, T.; Luo, J.; Lu, J.; Wang, X.; Jiao, L.; Zhou, Q. Hepatopancreas transcriptome analysis reveals the molecular responses to different dietary n-3 PUFA lipid sources in the swimming crab Portunus trituberculatus. Aquaculture 2021, 543, e737016. [Google Scholar] [CrossRef]
- Kumar, V.; Sinha, A.K.; Romano, N.; Allen, K.M.; Bowman, B.A.; Thompson, K.R.; Tidwell, J.H. Metabolism and nutritive role of cholesterol in the growth, gonadal development, and reproduction of crustaceans. Rev. Fish. Sci. Aquac. 2018, 26, 254–273. [Google Scholar] [CrossRef]
- Glencross, B.D. Exploring the nutritional demand for essential fatty acids by aquaculture species. Rev. Aquacult. 2009, 1, 71–124. [Google Scholar] [CrossRef]
- Suprayudi, M.A.; Takeuchi, T.; Hamasaki, K. Essential fatty acids for larval mud crab Scylla serrata: Implications of lack of the ability to bioconvert C18 unsaturated fatty acids to highly unsaturated fatty acids. Aquaculture 2004, 231, 403–416. [Google Scholar] [CrossRef]
- Taipale, S.J.; Kainz, M.J.; Brett, M.T. Diet-switching experiments show rapid accumulation and preferential retention of highly unsaturated fatty acids in Daphnia. Oikos 2011, 120, 1674–1682. [Google Scholar] [CrossRef]
- Ginjupalli, G.K.; Gerard, P.D.; Baldwin, W.S. Arachidonic acid enhances reproduction in Daphnia magna and mitigates changes in sex ratios induced by pyriproxyfen. Environ. Toxicol. Chem. 2015, 34, 527–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Yuan, Y.; Jin, M.; Wang, X.; Hu, X.; Zhao, M.; Luo, J.; Xu, F.; Zhao, Y.; Jiao, L.; et al. Growth performance, antioxidant capacity, tissue fatty acid composition and lipid metabolism of juvenile green mud crab Scylla paramamosain in response to different dietary n-3 PUFA lipid sources. Aquacult. Rep. 2021, 19, e100599. [Google Scholar] [CrossRef]
- Stanley, D. Prostaglandins and other eicosanoids in insects: Biological significance. Annu. Rev. Entomol. 2006, 51, 25–44. [Google Scholar] [CrossRef]
- Stein, S.E.; Scott, D.R. Optimization and testing of mass spectral library search algorithms for compound identification. J. Am. Soc. Mass. Spectrom. 1994, 5, 859–866. [Google Scholar] [CrossRef] [Green Version]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Lou, B.; Liu, J.; She, J. Serum metabolite profiles as potential biochemical markers in young adults with community acquired pneumonia cured by moxifloxacin therapy. Sci. Rep. 2020, 10, 4436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Category | Subclass | Compound Name | Score 1 | Rt 2 | Mz 3 | Platform 4 | Post-Pubertal Molt | Pre-Pubertal Molt | VIP Score | p Value | Fold Change (Post/Pre) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | ||||||||||
Lipids | Glycerophospholipids | PC(14:0_22:4) | 0.967 | 513.5 | 782.56 | POS | 1.00 × 10−4 | 3.02 × 10−5 | 6.17 × 10−5 | 2.67 × 10−5 | 1.146 | 0.04116 | 1.625 |
LPC(16:0/0:0) | 0.903 | 450.7 | 496.34 | POS | 2.63 × 10−5 | 9.16 × 10−6 | 7.79 × 10−5 | 4.75 × 10−5 | 1.556 | 0.04460 | 0.338 | ||
LPC(20:5) | 0.724 | 410.9 | 542.32 | POS | 8.55 × 10−6 | 4.12 × 10−6 | 2.86 × 10−5 | 6.08 × 10−6 | 2.235 | 0.00005 | 0.299 | ||
LPC(22:6) | 0.793 | 430.1 | 568.34 | POS | 1.42 × 10−5 | 6.30 × 10−6 | 5.18 × 10−5 | 1.84 × 10−5 | 2.098 | 0.00296 | 0.275 | ||
LPC(22:5) | 0.864 | 439.7 | 570.35 | POS | 1.84 × 10−6 | 1.02 × 10−6 | 7.87 × 10−6 | 1.93 × 10−6 | 2.203 | 0.00005 | 0.233 | ||
LPC(O-14:0) | 0.644 | 419.4 | 454.33 | POS | 2.19 × 10−5 | 6.68 × 10−6 | 7.49 × 10−5 | 1.99 × 10−5 | 2.284 | 0.00076 | 0.293 | ||
LPC(O-16:1) | 0.795 | 444.3 | 480.34 | POS | 9.69 × 10−6 | 4.13 × 10−6 | 2.90 × 10−5 | 7.15 × 10−6 | 2.110 | 0.00019 | 0.334 | ||
LPC(O-18:1) | 0.559 | 509.1 | 508.37 | POS | 4.74 × 10−6 | 2.34 × 10−6 | 4.32 × 10−5 | 2.19 × 10−5 | 2.252 | 0.00745 | 0.110 | ||
LPC(P-17:0) | 0.749 | 480.4 | 494.36 | POS | 7.76 × 10−6 | 5.11 × 10−6 | 4.73 × 10−5 | 1.85 × 10−5 | 2.210 | 0.00262 | 0.164 | ||
Fatty acyls | Palmitic acid | 0.932 | 1162.0 | 117.00 | GC | 2.01 × 10−5 | 9.46 × 10−6 | 4.56 × 10−5 | 2.48 × 10−5 | 1.526 | 0.04039 | 0.441 | |
Nonadecanoic acid | 0.996 | 617.2 | 297.28 | NEG | 9.99 × 10−5 | 6.45 × 10−5 | 2.86 × 10−4 | 9.73 × 10−5 | 1.932 | 0.00298 | 0.350 | ||
Arachidonic acid | 0.995 | 504.5 | 303.23 | NEG | 1.45 × 10−3 | 5.39 × 10−4 | 2.95 × 10−3 | 7.91 × 10−4 | 1.669 | 0.00318 | 0.490 | ||
10Z-nonadecenoic acid | 0.994 | 572.9 | 295.26 | NEG | 2.74 × 10−4 | 1.73 × 10−4 | 4.87 × 10−4 | 7.96 × 10−5 | 1.690 | 0.02093 | 0.563 | ||
17-Octadecynoic acid | 0.999 | 498.9 | 279.23 | NEG | 8.43 × 10−6 | 7.46 × 10−7 | 1.33 × 10−5 | 2.97 × 10−6 | 2.025 | 0.00930 | 0.635 | ||
8,11-eicosadiynoic acid | 0.908 | 523.9 | 303.23 | NEG | 5.89 × 10−5 | 2.11 × 10−5 | 1.23 × 10−4 | 2.81 × 10−5 | 1.906 | 0.00120 | 0.478 | ||
Eicosapentaenoic acid | 0.984 | 474.7 | 301.22 | NEG | 1.05 × 10−3 | 7.09 × 10−4 | 1.99 × 10−3 | 5.09 × 10−4 | 1.526 | 0.02503 | 0.529 | ||
2-Hydroxyglutarate | 0.997 | 26.8 | 147.03 | NEG | 7.26 × 10−5 | 6.35 × 10−5 | 1.68 × 10−4 | 8.01 × 10−5 | 1.650 | 0.04580 | 0.433 | ||
14(15)-EpETE | 0.868 | 382.7 | 317.21 | NEG | 6.15 × 10−6 | 4.62 × 10−6 | 2.83 × 10−5 | 1.09 × 10−5 | 1.724 | 0.00102 | 0.217 | ||
15(R)-HETE | 0.891 | 467.8 | 303.23 | POS | 4.14 × 10−6 | 4.37 × 10−6 | 2.22 × 10−5 | 9.47 × 10−6 | 1.404 | 0.00174 | 0.187 | ||
19S-HETE | 0.817 | 516.2 | 319.23 | NEG | 2.78 × 10−7 | 7.00 × 10−6 | 8.24 × 10−6 | 3.77 × 10−7 | 1.889 | 0.03851 | 0.034 | ||
9-HETE | 0.713 | 406.9 | 319.23 | NEG | 1.02 × 10−5 | 7.12 × 10−6 | 3.02 × 10−5 | 7.94 × 10−6 | 1.761 | 0.00100 | 0.338 | ||
4-HDoHE | 0.680 | 401.8 | 343.23 | NEG | 5.46 × 10−6 | 4.53 × 10−6 | 2.22 × 10−5 | 1.10 × 10−5 | 1.627 | 0.00627 | 0.246 | ||
1-Hexadecanol | 0.724 | 1111.7 | 75.00 | GC | 1.38 × 10−7 | 3.36 × 10−7 | 1.32 × 10−6 | 8.63 × 10−7 | 1.645 | 0.01063 | 0.104 | ||
Stearamide | 0.997 | 585.1 | 284.29 | POS | 2.58 × 10−5 | 1.57 × 10−5 | 5.16 × 10−5 | 2.16 × 10−5 | 1.625 | 0.03936 | 0.500 | ||
Prenol Lipids | Astaxanthin | 0.827 | 590.3 | 597.39 | POS | 2.60 × 10−6 | 3.11 × 10−6 | 4.48 × 10−5 | 2.55 × 10−5 | 2.038 | 0.00944 | 0.058 | |
Sterol Lipids | Ponasterone A | 0.831 | 317.4 | 465.32 | POS | 6.21 × 10−6 | 2.09 × 10−6 | 2.18 × 10−5 | 6.15 × 10−6 | 2.225 | 0.00098 | 0.284 | |
Sphingolipids | Phytosphingosine | 0.689 | 361.7 | 318.30 | POS | 3.96 × 10−5 | 7.79 × 10−6 | 3.15 × 10−5 | 2.44 × 10−6 | 1.507 | 0.04973 | 1.260 | |
Carbohydrates | Glucose | 0.944 | 1081.6 | 73.00 | GC | 5.32 × 10−5 | 6.36 × 10−5 | 2.97 × 10−4 | 1.59 × 10−4 | 1.921 | 0.00590 | 0.179 | |
2-Deoxy-d-galactose | 0.579 | 1007.3 | 103.00 | GC | 9.54 × 10−7 | 1.08 × 10−6 | 9.63 × 10−6 | 7.41 × 10−6 | 1.525 | 0.03465 | 0.099 | ||
Allose | 0.497 | 915.5 | 117.00 | GC | 3.70 × 10−8 | 4.14 × 10−8 | 1.41 × 10−7 | 1.01 × 10−7 | 1.477 | 0.04207 | 0.263 | ||
Cellobiotol | 0.748 | 1513.0 | 73.00 | GC | 1.65 × 10−6 | 1.86 × 10−6 | 9.33 × 10−6 | 7.32 × 10−6 | 1.694 | 0.04945 | 0.176 | ||
1,4-Dideoxy-1,4-imino-d-arabinitol | 0.898 | 46.3 | 134.08 | POS | 1.07 × 10−5 | 6.83 × 10−6 | 3.69 × 10−5 | 1.25 × 10−5 | 1.935 | 0.00114 | 0.290 | ||
alpha-d-Glucosamine 1-phosphate | 0.469 | 1016.4 | 103.00 | GC | 1.46 × 10−6 | 1.78 × 10−6 | 1.49 × 10−5 | 1.16 × 10−5 | 2.001 | 0.03534 | 0.098 | ||
Vitamin B2 | Riboflavin | 0.852 | 230.3 | 377.14 | POS | 7.43 × 10−6 | 3.15 × 10−6 | 2.39 × 10−5 | 1.46 × 10−5 | 1.809 | 0.03828 | 0.310 | |
Neurotransmitter | Acetylcholine | 0.981 | 35.9 | 146.12 | POS | 1.11 × 10−3 | 2.07 × 10−4 | 5.99 × 10−4 | 2.30 × 10−4 | 1.861 | 0.00248 | 1.845 | |
Nucleic acids | Uracil | 0.997 | 59.1 | 113.03 | POS | 1.76 × 10−4 | 5.35 × 10−5 | 9.86 × 10−5 | 2.42 × 10−5 | 1.885 | 0.00891 | 1.787 | |
Guanine | 0.990 | 74.5 | 150.04 | NEG | 2.29 × 10−5 | 9.93 × 10−6 | 5.15 × 10−5 | 1.56 × 10−5 | 1.875 | 0.00356 | 0.445 | ||
Amino acid | Tryptophan | 0.736 | 193.8 | 203.08 | NEG | 2.27 × 10−4 | 1.82 × 10−4 | 8.34 × 10−4 | 4.99 × 10−4 | 1.778 | 0.02970 | 0.272 | |
trans-2-Hydroxycinnamic acid | 0.393 | 1026.2 | 102.00 | GC | 4.40 × 10−10 | 7.60 × 10−12 | 9.90 × 10−8 | 7.66 × 10−8 | 2.062 | 0.02538 | 0.004 | ||
Taxifolin | 0.472 | 26.7 | 303.05 | NEG | 2.49 × 10−5 | 1.80 × 10−5 | 8.88 × 10−5 | 2.91 × 10−5 | 2.079 | 0.00102 | 0.280 | ||
Sulfoacetic acid | 0.739 | 26.6 | 138.97 | NEG | 5.96 × 10−4 | 2.86 × 10−4 | 2.55 × 10−5 | 2.51 × 10−5 | 2.219 | 0.00444 | 23.357 | ||
Plumbagin | 0.560 | 549.7 | 187.04 | NEG | 1.84 × 10−4 | 9.72 × 10−5 | 4.55 × 10−4 | 1.69 × 10−4 | 1.705 | 0.00676 | 0.404 | ||
Phytomonic acid | 0.983 | 605.0 | 295.26 | NEG | 1.85 × 10−5 | 1.47 × 10−5 | 5.24 × 10−5 | 1.75 × 10−5 | 1.788 | 0.00459 | 0.353 | ||
Pelargonate | 0.999 | 557.1 | 157.12 | NEG | 2.68 × 10−4 | 8.10 × 10−5 | 4.32 × 10−4 | 1.41 × 10−4 | 1.655 | 0.03322 | 0.621 | ||
Oleic acid ethyl ester | 0.997 | 600.3 | 309.28 | NEG | 5.67 × 10−4 | 4.21 × 10−4 | 1.05 × 10−3 | 2.32 × 10−4 | 1.583 | 0.03257 | 0.538 | ||
Mytilin A | 0.903 | 46.5 | 333.13 | POS | 3.66 × 10−6 | 2.82 × 10−6 | 9.31 × 10−5 | 7.59 × 10−5 | 2.084 | 0.03433 | 0.039 | ||
Methyl heptadecanoic acid | 0.997 | 574.2 | 283.26 | NEG | 9.41 × 10−5 | 1.38 × 10−5 | 1.19 × 10−4 | 2.12 × 10−5 | 1.442 | 0.04009 | 0.794 | ||
Isoxanthopterin | 0.422 | 1213.8 | 73.00 | GC | 1.14 × 10−6 | 2.13 × 10−7 | 7.95 × 10−7 | 2.05 × 10−7 | 1.643 | 0.01774 | 1.430 | ||
Isokobusone | 0.821 | 457.4 | 221.15 | NEG | 2.55 × 10−5 | 2.45 × 10−6 | 2.95 × 10−5 | 2.36 × 10−6 | 1.629 | 0.01791 | 0.867 | ||
Idazoxan | 0.966 | 204.3 | 205.10 | POS | 1.26 × 10−3 | 1.01 × 10−3 | 4.53 × 10−3 | 2.68 × 10−3 | 1.771 | 0.01892 | 0.277 | ||
Glutaraldehyde | 0.203 | 527.6 | 100.00 | GC | 4.90 × 10−7 | 1.73 × 10−7 | 1.02 × 10−6 | 3.09 × 10−7 | 1.960 | 0.00422 | 0.479 | ||
Glucoheptonic acid | 0.581 | 1209.7 | 73.00 | GC | 9.49 × 10−7 | 4.74 × 10−7 | 1.96 × 10−6 | 3.79 × 10−7 | 2.031 | 0.00219 | 0.484 | ||
Ethyldodecanoate | 0.626 | 536.5 | 227.20 | NEG | 6.26 × 10−5 | 1.36 × 10−5 | 3.81 × 10−5 | 1.74 × 10−5 | 1.254 | 0.02164 | 1.643 | ||
Diglycerol | 0.566 | 986.0 | 292.00 | GC | 7.35 × 10−8 | 1.81 × 10−8 | 1.09 × 10−7 | 2.50 × 10−8 | 1.603 | 0.01831 | 0.675 | ||
Di(2-ethylhexyl)phthalate | 0.994 | 612.1 | 391.28 | POS | 6.79 × 10−5 | 1.32 × 10−5 | 5.32 × 10−5 | 3.63 × 10−6 | 1.602 | 0.04011 | 1.277 | ||
Debromohymenialdisine | 0.846 | 42.9 | 246.10 | POS | 3.89 × 10−6 | 7.01 × 10−6 | 5.95 × 10−5 | 3.48 × 10−5 | 2.124 | 0.01046 | 0.065 | ||
5(Z),14(Z)-Eicosadienoic acid | 0.999 | 558.9 | 307.26 | NEG | 5.17 × 10−4 | 2.53 × 10−4 | 1.01 × 10−3 | 1.58 × 10−4 | 1.822 | 0.00250 | 0.514 | ||
4-Formyl indole | 0.982 | 280.8 | 144.04 | NEG | 6.81 × 10−5 | 6.28 × 10−6 | 9.17 × 10−5 | 1.60 × 10−5 | 1.853 | 0.00721 | 0.743 | ||
2-Butyne-1,4-diol | 0.609 | 593.5 | 244.00 | GC | 5.34 × 10−8 | 8.26 × 10−8 | 2.06 × 10−7 | 1.03 × 10−7 | 1.306 | 0.01769 | 0.259 | ||
1,5-Naphthalenediamine | 0.878 | 204.3 | 159.09 | POS | 2.88 × 10−5 | 2.21 × 10−5 | 9.87 × 10−5 | 5.45 × 10−5 | 1.792 | 0.01549 | 0.291 |
Metabolite | AUC | p Value | Log2 Fold Change (Post/Pre) |
---|---|---|---|
Sulfoacetic acid | 1 | 0.00012 | 4.53038 |
Uracil | 1 | 0.00489 | 0.82525 |
Ethyldodecanoate | 1 | 0.00531 | 0.80785 |
LPC(22:5) | 1 | 0.00007 | −0.57454 |
LPC(O–14:0) | 1 | 0.00010 | −1.65232 |
Ponasterone A | 1 | 0.00017 | −1.11677 |
LPC(O–18:1) | 1 | 0.00103 | −2.03488 |
14(15)–EpETE | 1 | 0.00132 | −1.44197 |
Nonadecanoic acid | 1 | 0.00222 | −1.67867 |
LPC(22:6) | 1 | 0.00375 | −1.59613 |
Astaxanthin | 1 | 0.00432 | −2.23112 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.-F.; Li, S.; Liu, J.; Wang, X.-F.; Chen, H.-Y.; Hao, H.; Wang, K.-J. Vital Carbohydrate and Lipid Metabolites in Serum Involved in Energy Metabolism during Pubertal Molt of Mud Crab (Scylla paramamosain). Metabolites 2021, 11, 651. https://doi.org/10.3390/metabo11100651
Li W-F, Li S, Liu J, Wang X-F, Chen H-Y, Hao H, Wang K-J. Vital Carbohydrate and Lipid Metabolites in Serum Involved in Energy Metabolism during Pubertal Molt of Mud Crab (Scylla paramamosain). Metabolites. 2021; 11(10):651. https://doi.org/10.3390/metabo11100651
Chicago/Turabian StyleLi, Wen-Feng, Shuang Li, Jie Liu, Xiao-Fei Wang, Hui-Yun Chen, Hua Hao, and Ke-Jian Wang. 2021. "Vital Carbohydrate and Lipid Metabolites in Serum Involved in Energy Metabolism during Pubertal Molt of Mud Crab (Scylla paramamosain)" Metabolites 11, no. 10: 651. https://doi.org/10.3390/metabo11100651
APA StyleLi, W. -F., Li, S., Liu, J., Wang, X. -F., Chen, H. -Y., Hao, H., & Wang, K. -J. (2021). Vital Carbohydrate and Lipid Metabolites in Serum Involved in Energy Metabolism during Pubertal Molt of Mud Crab (Scylla paramamosain). Metabolites, 11(10), 651. https://doi.org/10.3390/metabo11100651