Measurement of Exhaled Nitric Oxide in 456 Lung Cancer Patients Using a Ringdown FENO Analyzer
Abstract
:1. Introduction
2. Results
2.1. Patients
2.2. The Level of Exhaled NO among Patients with Different Types of Lung Cancer
2.3. Comparison of Exhaled NO Level in LC across Different TNM Stages
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Ethics Approval
4.3. Sampling of Exhaled NO
4.4. Ringdown Exhaled NO Analyzer
Measuring Method of Exhaled NO
4.5. Self-Reported Outcomes
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Duma, N.; Santana-Davila, R.; Molina, J.R. Non-small cell lung cancer: Epidemiology, screening, diagnosis, and treatment. Mayo Clin. Proc. 2019, 94, 1623–1640. [Google Scholar] [CrossRef]
- King, J.D.; Casavant, B.P.; Lang, J.M. Rapid translation of circulating tumor cell biomarkers into clinical practice: Technology development, clinical needs and regulatory requirements. Lab. Chip 2014, 14, 24–31. [Google Scholar] [CrossRef]
- Liu, P.F.; Zhao, D.H.; Qi, Y.; Wang, J.G.; Zhao, M.; Xiao, K.; Xie, L.X. The clinical value of exhaled nitric oxide in patients with lung cancer. Clin. Respir. J. 2018, 12, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.Y.; Wang, C.H.; Chen, T.C.; Lin, H.C.; Yu, C.T.; Kuo, H.P. Increased level of exhaled nitric oxide and up-regulation of inducible nitric oxide synthase in patients with primary lung cancer. Br. J. Cancer 1998, 78, 534–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masri, F.A.; Comhair, S.A.A.; Koeck, T.; Xu, W.; Janocha, A.; Ghosh, S.; Dweik, R.A.; Golish, J.; Kinter, M.; Stuehr, D.J.; et al. Abnormalities in nitric oxide and its derivatives in lung cancer. Am. J. Respir. Crit. Care Med. 2005, 172, 597–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hickok, J.R.; Thomas, D.D. Nitric oxide and cancer therapy: The emperor has NO clothes. Curr. Pharm. Des. 2010, 16, 381–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhari, S.K.; Chaudhary, M.; Bagde, S.; Gadbail, A.R.; Joshi, V. Nitric oxide and cancer: A review. World J. Surg. Oncol. 2013, 11, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kallianos, A.; Kallianos, A.; Tsimpoukis, S.; Zarogoulidis, P.; Darwiche, K.; Charpidou, A.; Tsioulis, I.; Trakada, G.; Porpodis, K.; Spyratos, D.; et al. Measurement of exhaled alveolar nitrogen oxide in patients with lung cancer: A friend from the past still precious today. Onco Targets Ther. 2013, 6, 609–613. [Google Scholar] [PubMed] [Green Version]
- Cristescu, S.M.; Mandon, J.; Harren, F.J.; Meriläinen, P.; Högman, M. Methods of NO detection in exhaled breath. J. Breath. Res. 2013, 7, 017104. [Google Scholar] [CrossRef]
- Mandon, J.; Högman, M.; Merkus, P.J.F.M.; Amsterdam, J.V.; Harren, F.J.M.; Cristescu, S.M. Exhaled nitric oxide monitoring by quantum cascade laser: Comparison with chemiluminescent and electrochemical sensors. J. Biomed. Opt. 2012, 17, 017003. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Han, Y.; Li, B. Pressure optimization of an EC-QCL based cavity ring-down spectroscopy instrument for exhaled NO detection. Appl Phys. B Lasers Opt. 2018, 124, 27. [Google Scholar] [CrossRef]
- Namjou, K.; Roller, C.B.; Reich, T.E.; Jeffers, J.D.; McMillen, G.L.; McCann, P.J.; Camp, M.A. Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy. Appl Phys. B Lasers Opt. 2006, 85, 427–435. [Google Scholar] [CrossRef]
- Brooks, C.R.; Brogan, S.B.M.; Dalen, C.J.V.; Lampshire, P.K.; Crane, J.; Douwes, J. Measurement of exhaled nitric oxide in a general population sample: A comparison of the Medisoft HypAir FE(NO) and Aerocrine NIOX analyzers. J. Asthma 2011, 48, 324–328. [Google Scholar] [CrossRef]
- Mandon, J.; Högman, M.; Merkus, P.J.F.M.; Amsterdam, J.G.C.V.; Harren, F.; Cristescu, S.M. Quantum Cascade Laser for Breath Analysis: Application to Nitric Oxide Monitoring. In Laser Applications to Chemical, Security and Environmental Analysis 2012; OSA: Washington, DC, USA, 2012; paper LM3B.6. [Google Scholar]
- Wang, C.; Sahay, P. Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits. Sensors 2009, 9, 8230–8262. [Google Scholar] [CrossRef]
- Menzel, L.; Kosterev, A.A.; Curl, R.F.; Tittel, F.K.; Gmachl, C.; Capasso, F.; Sivco, D.L.; Baillargeon, J.N.; Hutchinson, A.L.; Cho, A.Y.; et al. Spectroscopic detection of biological NO with a quantum cascade laser. Appl Phys. B Lasers Opt. 2001, 72, 859–863. [Google Scholar] [CrossRef] [PubMed]
- Cristescu, S.M.; Marchenko, D.; Mandon, J.; Hebelstrup, K.; Griffith, G.W.; Mur, L.A.J.; Harren, F.J.M. Spectroscopic monitoring of NO traces in plants and human breath: Applications and perspectives. Appl Phys. B Lasers Opt. 2013, 110, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Spagnolo, V.; Lewicki, R.; Tittel, F.K. Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor. Opt Express 2011, 19, 24037–24045. [Google Scholar] [CrossRef]
- Bakhirkin, Y.A.; Kosterev, A.A.; Curl, R.F.; Tittel, F.K.; Yarekha, D.A.; Hvozdara, L.; Giovannini, M.; Faist, J. Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy. Appl Phys. B Lasers Opt. 2006, 82, 149–154. [Google Scholar] [CrossRef]
- McManus, J.B.; Shorter, J.H.; Nelson, D.D.; Zahniser, M.S.; Glenn, D.E.; McGovern, R.M. Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air. Appl Phys. B Lasers Opt. 2008, 92, 387–392. [Google Scholar] [CrossRef]
- Shorter, J.H.; Nelson, D.D.; Barry McManus, J.; Zahniser, M.S.; Milton, D.K. Multicomponent breath analysis with infrared absorption using room-temperature quantum cascade lasers. IEEE Sens. J. 2009, 10, 76–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shorter, J.H.; Nelson, D.D.; McManus, J.B.; Zahniser, M.S.; Sama, S.R.; Milton, D.K. Clinical study of multiple breath biomarkers of asthma and COPD (NO, CO2, CO and N2O) by infrared laser spectroscopy. J. Breath Res. 2011, 5, 037108. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Scherrer, S.T.; Hossain, D. Measurements of cavity ringdown spectroscopy of acetone in the ultraviolet and near-infrared spectral regions: Potential for development of a breath analyzer. Appl. Spectrosc. 2004, 58, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Kosterev, A.A.; Malinovsky, A.L.; Tittel, F.K.; Gmachl, C.; Capasso, F.; Sivco, D.L.; Baillargeon, J.N.; Hutchinson, A.L.; Cho, A.Y. Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser. Appl. Opt. 2001, 40, 5522–5529. [Google Scholar] [CrossRef] [PubMed]
- Engeln, R. Cavity ring-down spectroscopy: Techniques and applications. J. Am. Chem. Soc. 2010, 28, 789–796. [Google Scholar]
- Wang, C.; Srivastava, N.; Jones, B.A.; Reese, R.B. A novel multiple species ringdown spectrometer for in situ measurements of methane, carbon dioxide, and carbon isotope. Appl Phys. B Lasers Opt. 2008, 92, 259–270. [Google Scholar] [CrossRef]
- Kiyosawa, H.; Suko, M.; Okudaira, H.; Murata, K.; Miyamoto, T.; Chung, M.H.; Kasai, H.; Nishimura, S. Cigarette smoking induces formation of 8-hydroxydeoxyguanosine, one of the oxidative DNA damages in human peripheral leukocytes. Free Radic. Res. Commun. 1990, 11, 23–27. [Google Scholar] [CrossRef]
- Wiseman, H.; Halliwell, B. Damage to DNA by reactive oxygen and nitrogen species: Role in inflammatory disease and progression to cancer. Biochem. J. 1996, 313, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Moulik, S.; Chatterjee, A. Vascular endothelial growth factor (VEGF) & tumour angiogenesis. Indian J. Med. Res. 2007, 125, 715–716. [Google Scholar]
- Shigyo, H.; Nonaka, S.; Katada, A.; Bandoh, N.; Ogino, T.; Katayama, A.; Takahara, M.; Hayashi, T.; Harabuchi, Y. Inducible nitric oxide synthase expression in various laryngeal lesions in relation to carcinogenesis, angiogenesis, and patients’ prognosis. Acta Otolaryngol. 2007, 127, 970–979. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, H.O.; Coulter, J.A.; Robson, T.; Hirst, D.G. Gene therapy via inducible nitric oxide synthase: A tool for the treatment of a diverse range of pathological conditions. J. Pharm. Pharmacol. 2008, 60, 999–1017. [Google Scholar] [CrossRef]
- Romero, K.M.; Robinson, C.L.; Baumann, L.M.; Gilman, R.H.; Hamilton, R.G.; Hansel, N.N.; Checkley, W. PURA Study Investigators. Role of exhaled nitric oxide as a predictor of atopy. Respir. Res. 2013, 14, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brightling, C.E.; Symon, F.A.; Birring, S.S.; Bradding, P.; Wardlaw, A.J. Pavord, I.D.Comparison of airway immunopathology of eosinophilic bronchitis and asthma. Thorax 2003, 58, 528–532. [Google Scholar] [CrossRef] [Green Version]
- Gratziou, C.; Lignos, M.; Dassiou, M.; Roussos, C. Influence of atopy on exhaled nitric oxide in patients with stable asthma and rhinitis. Eur. Respir. J. 1999, 14, 897–901. [Google Scholar] [CrossRef]
- Henriksen, A.H.; Sue-Chu, M.; Holmen, T.L.; Langhammer, A.; Bjermer, L. Exhaled and nasal NO levels in allergic rhinitis: Relation to sensitization, pollen season and bronchial hyperresponsiveness. Eur. Respir. J. 1999, 13, 1399–3003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jouaville, L.F.; Annesi-Maesano, I.; Nguyen, L.T.; Bocage, A.S.; Bedu, M.; Caillaud, D. Interrelationships among asthma, atopy, rhinitis and exhaled nitric oxide in a population-based sample of children. Clin. Exp. Allergy 2003, 33, 1506–1511. [Google Scholar] [CrossRef] [PubMed]
- Kharitonov, S.A.; Robbins, R.A.; Yates, D.; Keatings, V.; Barnes, P.J. Acute and chronic effects of cigarette smoking on exhaled nitric oxide. Am. J. Respir. Crit. Care Med. 1995, 152, 609–612. [Google Scholar] [CrossRef] [PubMed]
- Persson, M.G.; Zetterström, O.; Agrenius, V.; Ihre, E.; Gustafsson, L.E. Single-breath nitric oxide measurements in asthmatic patients and smokers. Lancet 1994, 343, 146–147. [Google Scholar] [CrossRef]
- Taylor, D.R.; Mandhane, P.; Greene, J.M.; Hancox, R.J.; Filsell, S.; McLachlan, C.R.; Williamson, A.J.; Cowan, J.O.; Smith, A.D.; Sears, M.R. Factors affecting exhaled nitric oxide measurements: The effect of sex. Respir. Res. 2007, 8, 82. [Google Scholar] [CrossRef] [Green Version]
- Olin, A.C.; Rosengren, A.; Thelle, D.S.; Lissner, L.; Bake, B.; Torén, K. Height, age, and atopy are associated with fraction of exhaled nitric oxide in a large adult general population sample. Chest 2006, 130, 1319–1325. [Google Scholar] [CrossRef] [PubMed]
- Ai, Y.; Li, J.; Li, Q.; Sun, M.; Li, Y.; Wang, C. Cavity ringdown spectroscopy of nitric oxide in the ultraviolet region for human breath test. J. Breath Res. 2020, 14, 037101. [Google Scholar] [CrossRef] [PubMed]
- American Thoracic Society, European Respiratory Society. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide. Am. J. Respir. Crit. Care. Med. 2005, 171, 912–930. [Google Scholar] [CrossRef]
- Horváth, I.; Barnes, P.J.; Loukides, S.; Sterk, P.J.; Högman, M.; Olin, A.; Amann, A.; Antus, B.; Baraldi, E.; Bikov, A.; et al. A European Respiratory Society technical standard: Exhaled biomarkers in lung disease. Eur. Respir. J. 2017, 49, 1600965. [Google Scholar] [CrossRef] [Green Version]
- Peters, F.; Hirschberg, J.; Mertens, N.; Wieneke, S.; Viöl, W. Comparison of nitric oxide concentrations in μs-and ns-atmospheric pressure plasmas by UV absorption spectroscopy. Plasma Sci. Technol. 2016, 18, 406–411. [Google Scholar] [CrossRef]
Lung Cancer (n = 456) | Heathy Control (n = 284) | |
---|---|---|
Male (%) | 256 (56%) | 159 (56%) |
Age (range) | 60 ± 8 (29–81) | 47 ± 14 (22–86) |
Smokers | 164 | 72 |
Ex-smokers | 86 | 19 |
Non-smokers | 206 | 193 |
BMI | 24.35 ± 3.32 | 23.88 ± 3.22 |
Fasting (%) | 166 (36%) | 253 (89%) |
Adenocarcinoma (%) | 292 (64%) | NA |
Squamous cell carcinoma (%) | 65 (14%) | NA |
Small-cell lung cancer (%) | 40 (9%) | NA |
0 (%) | 19 (5%) | NA |
I (%) | 140 (35%) | NA |
II (%) | 74 (19%) | NA |
III (%) | 70 (18%) | NA |
IV (%) | 90 (23%) | NA |
EXHALEDNO (ppb) | 32.0 (21.8, 44.8) | 19 (11.4, 30.1) |
Subtype | n (%) | Exhaled NO (Medians (25% and 75%), ppb) | p-Value |
---|---|---|---|
Adenocarcinoma | 292 (74%) | 31.5 (21.6, 43.1) | p = 0.064 > 0.05 |
Squamous cell carcinoma | 65 (16%) | 31.6 (22.2, 49.1) | |
Small-cell lung cancer | 41 (10%) | 24.0 (17.0, 39.0) |
Stage | n (%) | Exhaled NO (Medians (25% and 75%), ppb) | p-Value |
---|---|---|---|
0 | 19 (5%) | 29.4 (17.8, 41.0) | p = 0.685 > 0.05 |
I | 140 (35%) | 31.6 (22.1, 44.0) | |
II | 74 (19%) | 31.6 (21.9, 41.9) | |
III | 70 (18%) | 33.6 (22.9, 45.5) | |
IV | 90 (23%) | 31.0 (20.5, 48.4) |
Group | n | Exhaled NO (Medians (25% and 75%), ppb) | p-Value | |
---|---|---|---|---|
Lung cancer | Smoker | 164 | 30.2 (20.6, 41.9) | 0.064 |
Ex-smoker | 86 | 29.7 (20.8, 40.8) | ||
Non-smoker | 206 | 33.8 (23.5, 47.2) | ||
Fasted | 166 | 31.5 (21.0, 43.8) | 0.811 | |
Fed | 260 | 31.4 (21.7, 43.0) | ||
MALE | 256 | 30.9 (21.6, 42.6) | 0.481 | |
FEMALE | 198 | 32.2 (22.0, 46.0) | ||
Age > 50 | 395 | 31.9 (21.9, 45.8) | 0.104 | |
Age < 50 | 58 | 27.7 (20.6, 38.1) | ||
BMI < 23.9 | 213 | 31.4 (21.6, 45.5) | 0.284 | |
BMI > 23.9 | 247 | 31.9 (22.0, 44.1) | ||
Healthy control | Smoker | 72 | 26.9 (16.5, 41.7) | 1 |
Ex-smoker | 19 | 22.5 (20.3, 33.3) | ||
Non-smoker | 193 | 30.6 (25.1, 47.3) | ||
Fasted | 253 | 19.5 (11.8, 30.0) | 0.197 | |
Fed | 29 | 13.1 (7.8, 31.1) | ||
MALE | 159 | 19.7 (12.3, 29.7) | 0.59 | |
FEMALE | 123 | 18.0 (9.6, 31.1) | ||
Age > 50 | 111 | 18.7 (12.3, 28.0) | 0.866 | |
Age < 50 | 171 | 19.4 (10.2, 31.2) | ||
BMI < 23.9 | 146 | 19.2 (11.6, 30.1) | 0.984 | |
BMI > 23.9 | 136 | 19.3 (10.9, 30.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, Q.; Wei, X.; Chen, Q.; Sun, M.; Li, Y. Measurement of Exhaled Nitric Oxide in 456 Lung Cancer Patients Using a Ringdown FENO Analyzer. Metabolites 2021, 11, 352. https://doi.org/10.3390/metabo11060352
Li J, Li Q, Wei X, Chen Q, Sun M, Li Y. Measurement of Exhaled Nitric Oxide in 456 Lung Cancer Patients Using a Ringdown FENO Analyzer. Metabolites. 2021; 11(6):352. https://doi.org/10.3390/metabo11060352
Chicago/Turabian StyleLi, Jing, Qingyuan Li, Xin Wei, Qing Chen, Meixiu Sun, and Yingxin Li. 2021. "Measurement of Exhaled Nitric Oxide in 456 Lung Cancer Patients Using a Ringdown FENO Analyzer" Metabolites 11, no. 6: 352. https://doi.org/10.3390/metabo11060352
APA StyleLi, J., Li, Q., Wei, X., Chen, Q., Sun, M., & Li, Y. (2021). Measurement of Exhaled Nitric Oxide in 456 Lung Cancer Patients Using a Ringdown FENO Analyzer. Metabolites, 11(6), 352. https://doi.org/10.3390/metabo11060352