The Metabolic Signature of In Vitro Produced Bovine Embryos Helps Predict Pregnancy and Birth after Embryo Transfer
Abstract
:1. Introduction
2. Results
2.1. Multivariate Statistics for Sample Separation at Gestational Endpoints and Non-Random Factors
2.2. The Bull: Influence of a Random Factor
2.3. Block Analysis with Fixed Factors to Identify Metabolite Biomarkers
2.4. Univariate Statistics with Candidate Biomarker Metabolites
2.5. Pregnancy Endpoint Analysis
2.5.1. Overview
2.5.2. Impact of Biomarkers through Pregnancy Endpoints
2.6. Single Biomarker Metabolites Predict Pregnancy with >70% Effectiveness
2.7. Combinations of Biomarker Metabolites Increase Pregnancy Prediction Rates
2.8. Validation
3. Discussion
4. Materials and Methods
4.1. Rationale
4.2. Oocyte Collection and In Vitro Maturation (IVM)
4.3. In Vitro Fertilization (IVF)
4.4. In Vitro Culture (IVC)
4.5. Embryo Freezing and Thawing
4.6. Recipient Management, Embryo Transfer and Pregnancy Diagnosis
4.7. Untargeted Metabolomic Analysis and UHPLC-TOF MS Conditions
4.8. Data Processing
4.9. Statistical Analysis
4.9.1. Multivariate Statistics
4.9.2. Block Analyses
4.9.3. Metabolite Identification
4.9.4. Univariate Studies in the Whole Dataset
4.9.5. Taxonomical Analysis (Class Metabolite Analysis and Block Validation)
4.9.6. Endpoint Analysis
4.9.7. Use of Metabolites as Biomarkers
Single Biomarker Metabolites
Combined Biomarker Metabolites
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gómez, E.; Carrocera, S.; Martín, D.; Pérez-Jánez, J.J.; Prendes, J.; Prendes, J.M.; Vázquez, A.; Murillo, A.; Gimeno, I.; Muñoz, M. Efficient one-step direct transfer to recipients of thawed bovine embryos cultured in vitro and frozen in chemically defined medium. Theriogenology 2020, 146, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.S.; Alcázar-Triviño, E.; Soriano-Úbeda, C.; Hamdi, M.; Cánovas, S.; Rizos, D.; Coy, P. Reproductive Outcomes and Endocrine Profile in Artificially Inseminated versus Embryo Transferred Cows. Anim. 2020, 10, 1359. [Google Scholar] [CrossRef]
- Hansen, P.J. The incompletely fulfilled promise of embryo transfer in cattle—why aren’t pregnancy rates greater and what can we do about it? J. Anim. Sci. 2020, 98. [Google Scholar] [CrossRef]
- Ealy, A.D.; Wooldridge, L.K.; McCoski, S.R. BOARD INVITED REVIEW: Post-transfer consequences of in vitro-produced embryos in cattle. J. Anim. Sci. 2019, 97, 2555–2568. [Google Scholar] [CrossRef] [PubMed]
- Sanches, B.; Marinho, L.; Filho, B.; Pontes, J.; Basso, A.; Meirinhos, M.; Silva-Santos, K.; Ferreira, C.; Seneda, M. Cryosurvival and pregnancy rates after exposure of IVF-derived Bos indicus embryos to forskolin before vitrification. Theriogenology 2013, 80, 372–377. [Google Scholar] [CrossRef]
- Jakobsen, A.S.; Thomsen, P.D.; Avery, B. Few polyploid blastomeres in morphologically superior bovine embryos produced in vitro. Theriogenology 2006, 65, 870–881. [Google Scholar] [CrossRef]
- Salilew-Wondim, D.; Hölker, M.; Rings, F.; Ghanem, N.; Ulas-Cinar, M.; Peippo, J.; Tholen, E.; Looft, C.; Schellander, K.; Tesfaye, D. Bovine pretransfer endometrium and embryo transcriptome fingerprints as predictors of pregnancy success after embryo transfer. Physiol. Genom. 2010, 42, 201–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghanem, N.; Salilew-Wondim, D.; Gad, A.; Tesfaye, D.; Phatsara, C.; Tholen, E.; Looft, C.; Schellander, K.; Hoelker, M. Bovine blastocysts with developmental competence to term share similar expression of developmentally important genes although derived from different culture environments. Reproduction 2011, 142, 551–564. [Google Scholar] [CrossRef] [Green Version]
- Zolini, A.M.; Block, J.; Rabaglino, M.B.; Tríbulo, P.; Hoelker, M.; Rincon, G.; Bromfield, J.J.; Hansen, P.J. Molecular fingerprint of female bovine embryos produced in vitro with high competence to establish and maintain pregnancy†. Biol. Reprod. 2020, 102, 292–305. [Google Scholar] [CrossRef]
- Leaver, M.; Wells, D. Non-invasive preimplantation genetic testing (niPGT): The next revolution in reproductive genetics? Hum. Reprod. Update 2020, 26, 6–42. [Google Scholar] [CrossRef]
- Fernandes, G.D.O.; de Faria, O.A.C.; Sifuentes, D.N.; Franco, M.M.; Dode, M.A.N. Electrospray mass spectrometry analysis of blastocoel fluid as a potential tool for bovine embryo selection. J. Assist. Reprod. Genet. 2021, 1–9. [Google Scholar] [CrossRef]
- Tedeschi, G.; Albani, E.; Borroni, E.M.; Parini, V.; Brucculeri, A.M.; Maffioli, E.; Negri, A.; Nonnis, S.; Maccarrone, M.; Levi-Setti, P.E. Proteomic profile of maternal-aged blastocoel fluid suggests a novel role for ubiquitin system in blastocyst quality. J. Assist. Reprod. Genet. 2017, 34, 225–238. [Google Scholar] [CrossRef] [Green Version]
- Palini, S.; Galluzzi, L.; De Stefani, S.; Bianchi, M.; Wells, D.; Magnani, M.; Bulletti, C. Genomic DNA in human blastocoele fluid. Reprod. Biomed. Online 2013, 26, 603–610. [Google Scholar] [CrossRef] [Green Version]
- Sugimura, S.; Akai, T.; Imai, K. Selection of viable in vitro-fertilized bovine embryos using time-lapse monitoring in microwell culture dishes. J. Reprod. Dev. 2017, 63, 353–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugimura, S.; Akai, T.; Hashiyada, Y.; Somfai, T.; Inaba, Y.; Hirayama, M.; Yamanouchi, T.; Matsuda, H.; Kobayashi, S.; Aikawa, Y.; et al. Promising System for Selecting Healthy In Vitro–Fertilized Embryos in Cattle. PLoS ONE 2012, 7, e36627. [Google Scholar] [CrossRef] [Green Version]
- Kurosawa, H.; Utsunomiya, H.; Shiga, N.; Takahashi, A.; Ihara, M.; Ishibashi, M.; Nishimoto, M.; Watanabe, Z.; Kumagai, J.; Igarashi, H.; et al. Development of a new clinically applicable device for embryo evaluation which measures embryo oxygen consumption. Hum. Reprod. 2016, 31, 2321–2330. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.; Madsen, S.; Ramsing, N.B.; Løvendahl, P.; Greve, T.; Callesen, H. Investigation of respiration of individual bovine embryos produced in vivo and in vitro and correlation with viability following transfer. Hum. Reprod. 2007, 22, 558–566. [Google Scholar] [CrossRef] [Green Version]
- Lindgren, K.E.; Yaldir, F.G.; Hreinsson, J.; Holte, J.; Kårehed, K.; Sundström-Poromaa, I.; Kaihola, H.; Åkerud, H. Differences in secretome in culture media when comparing blastocysts and arrested embryos using multiplex proximity assay. Upsala J. Med. Sci. 2018, 123, 143–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellisho, E.; Briones, M.A.; Velasquez, A.E.; Cabezas, J.; Castro, F.O.; Rodriguez-Alvarez, L. Extracellular vesicles secreted during blastulation show viability of bovine embryos. Reprodction 2019, 158, 477–492. [Google Scholar] [CrossRef]
- Mellisho, E.A.; Velasquez, A.E.; Núñez, M.J.; Cabezas, J.; Cueto, J.A.; Fader, C.; Castro, F.O.; Rodríguez-Alvarez, L. Identification and characteristics of extracellular vesicles from bovine blastocysts produced in vitro. PLoS ONE 2017, 12, e0178306. [Google Scholar] [CrossRef]
- Muñoz, M.; Uyar, A.; Correia, E.; Diez, C.; Fernández-González, A.; Caamaño, J.N.; Martínez-Bello, D.; Trigal, B.; Humblot, P.; Ponsart, C.; et al. Prediction of pregnancy viability in bovine in vitro-produced embryos and recipient plasma with Fourier transform infrared spectroscopy. J. Dairy Sci. 2014, 97, 5497–5507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz, M.; Uyar, A.; Correia, E.; Ponsart, C.; Guyader-Joly, C.; Martinez-Bello, D.; Guienne, B.M.-L.; Fernández-González, A.; Diez, C.; Caamaño, J.N.; et al. Metabolomic Prediction of Pregnancy Viability in Superovulated Cattle Embryos and Recipients with Fourier Transform Infrared Spectroscopy. BioMed Res. Int. 2014, 2014, 608579. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, M.; Uyar, A.; Correia, E.; Diez, C.; Fernández-González, A.; Caamaño, J.N.; Trigal, B.; Carrocera, S.; Seli, E.; Gómez, E.; et al. Non-invasive assessment of embryonic sex in cattle by metabolic fingerprinting of in vitro culture medium. Metabolomics 2013, 10, 443–451. [Google Scholar] [CrossRef]
- Gomez, E.; Canela, N.; Herrero, P.; Cereto, A.; Gimeno, I.; Carrocera, S.; Martin-Gonzalez, D.; Murillo, A.; Muñoz, M. Metabolites Secreted by Bovine Embryos In Vitro Predict Pregnancies That the Recipient Plasma Metabolome Cannot, and Vice Versa. Metabolites 2021, 11, 162. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, G.D.O.; Milazzotto, M.P.; Fidelis, A.A.G.; Kawamoto, T.S.; Leme, L.D.O.; de Lima, C.B.; Franco, M.M.; Dode, M.A.N. Biochemical markers for pregnancy in the spent culture medium of in vitro produced bovine embryos. Biol. Reprod. 2021. [Google Scholar] [CrossRef]
- Gimeno, I.; García-Manrique, P.; Carrocera, S.; López-Hidalgo, C.; Muñoz, M.; Valledor, L.; Martín-González, D.; Gómez, E. Non-invasive identification of bovine embryonic sex sustained by metabolomic variability in culture. (submitted).
- Gómez, E.; Carrocera, S.; Martin, D.; Herrero, P.; Canela, N.; Muñoz, M. Differential release of cell-signaling metabolites by male and female bovine embryos cultured in vitro. Theriogenology 2018, 114, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Gomez, E.; Muñoz, M.; Simó, C.; Ibáñez, C.; Carrocera, S.; Martín-González, D.; Cifuentes, A. Non-invasive metabolomics for improved determination of embryonic sex markers in chemically defined culture medium. J. Chromatogr. A 2016, 1474, 138–144, Erratum in 2017, 1526, 1–67. [Google Scholar] [CrossRef] [PubMed]
- Obeidat, Y.; Catandi, G.; Carnevale, E.; Chicco, A.J.; DeMann, A.; Field, S.; Chen, T. A multi-sensor system for measuring bovine embryo metabolism. Biosens. Bioelectron. 2019, 126, 615–623. [Google Scholar] [CrossRef]
- Guerif, F.; McKeegan, P.; Leese, H.J.; Sturmey, R.G. A Simple Approach for COnsumption and RElease (CORE) Analysis of Metabolic Activity in Single Mammalian Embryos. PLoS ONE 2013, 8, e67834. [Google Scholar] [CrossRef]
- De Lima, C.B.; Dos Santos, E.C.; Ispada, J.; Fontes, P.K.; Nogueira, M.F.G.; Dos Santos, C.M.D.; Milazzotto, M.P. The dynamics between in vitro culture and metabolism: Embryonic adaptation to environmental changes. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Smith, A. Formative pluripotency: The executive phase in a developmental continuum. Development 2017, 144, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Ehnes, D.; Hussein, A.; Ware, C.; Mathieu, J.; Ruohola-Baker, H. Combinatorial metabolism drives the naive to primed pluripotent chromatin landscape. Exp. Cell Res. 2020, 389, 111913. [Google Scholar] [CrossRef]
- Block, J.; Bonilla, L.; Hansen, P. Effect of addition of hyaluronan to embryo culture medium on survival of bovine embryos in vitro following vitrification and establishment of pregnancy after transfer to recipients. Theriogenology 2009, 71, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- Obuchi, T.; Osada, M.; Ozawa, T.; Nakagawa, H.; Hayashi, M.; Akiyama, K.; Sakagami, N.; Miura, R.; Geshi, M.; Ushijima, H. Comparative evaluation of the cost and efficiency of four types of sexing methods for the production of dairy female calves. J. Reprod. Dev. 2019, 65, 345–352. [Google Scholar] [CrossRef]
- Nõmm, M.; Porosk, R.; Pärn, P.; Kilk, K.; Soomets, U.; Kõks, S.; Jaakma, Ü. In vitro culture and non-invasive metabolic profiling of single bovine embryos. Reprod. Fertil. Dev. 2019, 31, 306. [Google Scholar] [CrossRef]
- Gómez, E.; Muñoz, M.; Gatien, J.; Carrocera, S.; Martín-González, D.; Salvetti, P. Metabolomic identification of pregnancy-specific biomarkers in blood plasma of BOS TAURUS beef cattle after transfer of in vitro produced embryos. J. Proteom. 2020, 225, 103883. [Google Scholar] [CrossRef]
- Gamarra, D.; Aldai, N.; Arakawa, A.; Barron, L.J.R.; López-Oceja, A.; De Pancorbo, M.M.; Taniguchi, M. Distinct correlations between lipogenic gene expression and fatty acid composition of subcutaneous fat among cattle breeds. BMC Vet. Res. 2018, 14, 1–12. [Google Scholar] [CrossRef]
- Huang, W.; Guo, Y.; Du, W.; Zhang, X.; Li, A.; Miao, X. Global transcriptome analysis identifies differentially expressed genes related to lipid metabolism in Wagyu and Holstein cattle. Sci. Rep. 2017, 7, 5278. [Google Scholar] [CrossRef] [Green Version]
- Murillo, A.; Muñoz, M.; Martín-González, D.; Carrocera, S.; Martínez-Nistal, A.; Gómez, E. Low serum concentration in bovine embryo culture enhances early blastocyst rates on Day-6 with quality traits in the expanded blastocyst stage similar to BSA-cultured embryos. Reprod. Biol. 2017, 17, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Simpson, S.A.; Alexander, D.J.; Reed, C.J. Induction of heat shock protein 70 in rat olfactory epithelium by toxic chemicals: In vitro and in vivo studies. Arch. Toxicol. 2005, 79, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, L.; Driscoll, C.; Kelly, D.P.; Staples, R.E.; Chromey, N.C.; Kennedy, G.L. Developmental Toxicity of Dibasic Esters by Inhalation in the Rat. Drug Chem. Toxicol. 1995, 18, 295–314. [Google Scholar] [CrossRef] [PubMed]
- Idrissi, S.J.; Le Bourhis, D.; Lefevre, A.; Emond, P.; Le Berre, L.; Desnoës, O.; Joly, T.; Buff, S.; Maillard, V.; Schibler, L.; et al. Lipid profile of bovine grade-1 blastocysts produced either in vivo or in vitro before and after slow freezing process. Sci. Rep. 2021, 11, 1–16. [Google Scholar] [CrossRef]
- Sata, R.; Tsujii, H.; Abe, H.; Yamashita, S.; Hoshi, H. Fatty Acid Composition of Bovine Embryos Cultured in Serum-Free and Serum-Containing Medium during Early Embryonic Development. J. Reprod. Dev. 1999, 45, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Gomez, E.; Rodríguez, A.; Muñoz, M.; Caamaño, J.N.; Hidalgo, C.; Morán, E.; Facal, N.; Díez, C. Serum free embryo culture medium improves in vitro survival of bovine blastocysts to vitrification. Theriogenology 2008, 69, 1013–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizos, D.; Gutiérrez-Adán, A.; Pérez-Garnelo, S.; De La Fuente, J.; Boland, M.; Lonergan, P. Bovine embryo culture in the presence or absence of serum: Implications for blastocyst development, cryotolerance, and messenger RNA expression. Biol. Reprod. 2003, 68, 236–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, J. Defining the requirements for bovine embryo culture. Theriogenology 1996, 45, 27–40. [Google Scholar] [CrossRef]
- Ferguson, E.M.; Leese, H.J. A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development. Mol. Reprod. Dev. 2006, 73, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Homa, S.T.; Racowsky, C.; McGaughey, R.W. Lipid analysis of immature pig oocytes. J. Reprod. Fertil. 1986, 77, 425–434. [Google Scholar] [CrossRef]
- Gómez, E.; Carrocera, S.; Uzbekova, S.; Martín, D.; Murillo, A.; Alonso-Guervós, M.; Goyache, F.; Muñoz, M. Protein in culture and endogenous lipid interact with embryonic stages in vitro to alter calf birthweight after embryo vitrification and warming. Reprod. Fertil. Dev. 2017, 29, 1932–1943. [Google Scholar] [CrossRef] [Green Version]
- Sutton-McDowall, M.L.; Feil, D.; Robker, R.; Thompson, J.; Dunning, K. Utilization of endogenous fatty acid stores for energy production in bovine preimplantation embryos. Theriogenology 2012, 77, 1632–1641. [Google Scholar] [CrossRef] [Green Version]
- Sturmey, R.G.; Reis, A.; Leese, H.J.; McEvoy, T.G. Role of Fatty Acids in Energy Provision During Oocyte Maturation and Early Embryo Development. Reprod. Domest. Anim. 2009, 44, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Sudano, M.J.; Santos, V.G.; Tata, A.; Ferreira, C.R.; Paschoal, D.M.; Machado, R.; Buratini, J.; Eberlin, M.N.; Landim-Alvarenga, F. Phosphatidylcholine and Sphingomyelin Profiles Vary in Bos taurus indicus and Bos taurus taurus In Vitro- and In Vivo-Produced Blastocysts1. Biol. Reprod. 2012, 87, 130. [Google Scholar] [CrossRef]
- Beggiato, S.; Tomasini, M.C.; Cassano, T.; Ferraro, L. Chronic Oral Palmitoylethanolamide Administration Rescues Cognitive Deficit and Reduces Neuroinflammation, Oxidative Stress, and Glutamate Levels in A Transgenic Murine Model of Alzheimer’s Disease. J. Clin. Med. 2020, 9, 428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuel, H.; Burkman, L.J.; Lippes, J.; Crickard, K.; Forester, E.; Piomelli, D.; Giuffrida, A. N-Acylethanolamines in human reproductive fluids. Chem. Phys. Lipids 2002, 121, 211–227. [Google Scholar] [CrossRef] [Green Version]
- Hall, E.; Volkov, P.; Dayeh, T.; Bacos, K.; Rönn, T.; Nitert, M.D.; Ling, C. Effects of palmitate on genome-wide mRNA expression and DNA methylation patterns in human pancreatic islets. BMC Med. 2014, 12, 103. [Google Scholar] [CrossRef] [Green Version]
- Pescador-Tapia, A.; Silva-Martínez, G.A.; Fragoso-Bargas, N.; Rodríguez-Ríos, D.; Esteller, M.; Moran, S.; Zaina, S.; Lund, G. Distinct Associations of BMI and Fatty Acids With DNA Methylation in Fasting and Postprandial States in Men. Front. Genet. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Longo, V.D.; Mattson, M.P. Fasting: Molecular Mechanisms and Clinical Applications. Cell Metab. 2014, 19, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Kwong, W.; Wild, A.; Roberts, P.; Willis, A.; Fleming, T. Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development 2000, 127, 4195–4202. [Google Scholar] [CrossRef]
- Desmet, K.L.J.; Marei, W.F.A.; Richard, C.; Sprangers, K.; Beemster, G.T.S.; Meysman, P.; Laukens, K.; Declerck, K.; Berghe, W.V.; Bols, P.E.J.; et al. Oocyte maturation under lipotoxic conditions induces carryover transcriptomic and functional alterations during post-hatching development of good-quality blastocysts: Novel insights from a bovine embryo-transfer model. Hum. Reprod. 2020, 35, 293–307. [Google Scholar] [CrossRef]
- Marei, W.F.; De Bie, J.; Mohey-Elsaeed, O.; Wydooghe, E.; Bols, P.E.; Leroy, J.L. Alpha-linolenic acid protects the developmental capacity of bovine cumulus–oocyte complexes matured under lipotoxic conditions in vitro. Biol. Reprod. 2017, 96, 1181–1196. [Google Scholar] [CrossRef]
- Desmet, K.L.J.; Van Hoeck, V.; Gagné, D.; Fournier, E.; Thakur, A.; O’Doherty, A.M.; Walsh, C.P.; Sirard, M.A.; Bols, P.E.J.; Leroy, J.L.M.R. Exposure of bovine oocytes and embryos to elevated non-esterified fatty acid concentrations: Integration of epigenetic and transcriptomic signatures in resultant blastocysts. BMC Genom. 2016, 17, 1–18. [Google Scholar] [CrossRef]
- Van Hoeck, V.; Sturmey, R.; Bermejo-Álvarez, P.; Rizos, D.; Gutierrez-Adan, A.; Leese, H.J.; Bols, P.E.J.; Leroy, J.L.M.R. Elevated Non-Esterified Fatty Acid Concentrations during Bovine Oocyte Maturation Compromise Early Embryo Physiology. PLoS ONE 2011, 6, e23183. [Google Scholar] [CrossRef]
- Leese, H.J.; Guerif, F.; Allgar, V.; Brison, D.; Lundin, K.; Sturmey, R.G. Biological optimization, the Goldilocks principle, and how much islagomin the preimplantation embryo. Mol. Reprod. Dev. 2016, 83, 748–754. [Google Scholar] [CrossRef]
- Houghton, F.D.; Hawkhead, J.A.; Humpherson, P.G.; Hogg, J.E.; Balen, A.H.; Rutherford, A.J.; Leese, H.J. Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum. Reprod. 2002, 17, 999–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrick, L.; Lee, Y.S.L.; Gardner, D.K. Metabolic activity of human blastocysts correlates with their morphokinetics, morphological grade, KIDScore and artificial intelligence ranking. Hum. Reprod. 2020, 35, 2004–2016. [Google Scholar] [CrossRef] [PubMed]
- Kelley, R.L.; Gardner, D.K. Individual culture and atmospheric oxygen during culture affect mouse preimplantation embryo metabolism and post-implantation development. Reprod. Biomed. Online 2019, 39, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Perkel, K.J.; Madan, P. Spent culture medium analysis from individually cultured bovine embryos demonstrates metabolomic differences. Zygote 2017, 25, 662–674. [Google Scholar] [CrossRef]
- Lee, Y.; Thouas, G.A.; Gardner, D.K. Developmental kinetics of cleavage stage mouse embryos are related to their subsequent carbohydrate and amino acid utilization at the blastocyst stage. Hum. Reprod. 2015, 30, 543–552. [Google Scholar] [CrossRef]
- Wale, P.L.; Gardner, D. Oxygen Regulates Amino Acid Turnover and Carbohydrate Uptake During the Preimplantation Period of Mouse Embryo Development1. Biol. Reprod. 2012, 87, 24, 1–8, Erratum in 2010, 77, 472. [Google Scholar] [CrossRef]
- Sturmey, R.; Bermejo-Álvarez, P.; Gutierrez-Adan, A.; Rizos, D.; Leese, H.; Lonergan, P. Amino acid metabolism of bovine blastocysts: A biomarker of sex and viability. Mol. Reprod. Dev. 2010, 77, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Picton, H.M.; Elder, K.; Houghton, F.; Hawkhead, J.A.; Rutherford, A.J.; Hogg, J.E.; Leese, H.J.; Harris, S.E. Association between amino acid turnover and chromosome aneuploidy during human preimplantation embryo development in vitro. Mol. Hum. Reprod. 2010, 16, 557–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humpherson, P.; Leese, H.; Sturmey, R. Amino acid metabolism of the porcine blastocyst. Theriogenology 2005, 64, 1852–1866. [Google Scholar] [CrossRef]
- Brison, D.; Houghton, F.; Falconer, D.; Roberts, S.; Hawkhead, J.; Humpherson, P.; Lieberman, B.; Leese, H. Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum. Reprod. 2004, 19, 2319–2324. [Google Scholar] [CrossRef] [Green Version]
- Tríbulo, P.; Balzano-Nogueira, L.; Conesa, A.; Siqueira, L.G.; Hansen, P.J. Changes in the uterine metabolome of the cow during the first 7 days after estrus. Mol. Reprod. Dev. 2018, 86, 75–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Liang, X.; Bi, R.; Liu, Y.; He, Y.; Feng, J.; Li, D. Highly efficient CuCr-MMO catalyst for a base-free styrene epoxidation with H2O2 as the oxidant: Synergistic effect between Cu and Cr. Dalton Trans. 2019, 48, 16402–16411. [Google Scholar] [CrossRef]
- Kim, J.; Seli, E. Mitochondria as a Biomarker for IVF Outcome. Reproduction 2019, 157, R235–R242. [Google Scholar] [CrossRef]
- Gómez, E.; Salvetti, P.; Gatien, J.; Carrocera, S.; Martin-Gonzalez, D.; Muñoz, M. Blood Plasma Metabolomics Predicts Pregnancy in Holstein Cattle Transferred with Fresh and Vitrified/Warmed Embryos Produced in Vitro. J. Proteome Res. 2020, 19, 1169–1182. [Google Scholar] [CrossRef] [PubMed]
- Forshed, J. Experimental Design in Clinical ‘Omics Biomarker Discovery. J. Proteome Res. 2017, 16, 3954–3960. [Google Scholar] [CrossRef]
- Pepe, M.S.; Li, C.I.; Feng, Z. Improving the Quality of Biomarker Discovery Research: The Right Samples and Enough of Them. Cancer Epidemiology Biomarkers Prev. 2015, 24, 944–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldansaz, S.A.; Guo, A.C.; Sajed, T.; Steele, M.A.; Plastow, G.S.; Wishart, D.S. Livestock metabolomics and the livestock metabolome: A systematic review. PLoS ONE 2017, 12, e0177675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierzchala, M.; Hoekman, A.; Urbanski, P.; Kruijt, L.; Kristensen, L.; Young, J.F.; Oksbjerg, N.; Goluch, D.; Pas, M.T. Validation of biomarkers for loin meat quality (M. longissimus) of pigs. J. Anim. Breed. Genet. 2014, 131, 258–270. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, C.; Díez, C.; Duque, P.; Prendes, J.M.; Rodríguez, A.; Goyache, F.; Fernández, I.; Facal, N.; Ikeda, S.; Montes, C.A.; et al. Oocytes recovered from cows treated with retinol become unviable as blastocysts produced in vitro. Reproduction 2005, 129, 411–421. [Google Scholar] [CrossRef] [Green Version]
- Murillo-Ríos, A.; Maillo, V.; Muñoz, M.; Gutierrez-Adan, A.; Carrocera, S.; Martín-González, D.; Fernandez-Buznego, A.; Gómez, E. Short- and long-term outcomes of the absence of protein during bovine blastocyst formation in vitro. Reprod. Fertil. Dev. 2017, 29, 1064–1073. [Google Scholar] [CrossRef] [Green Version]
- Gómez, E.; Salvetti, P.; Gatien, J.; Muñoz, M.; Martín-González, D.; Carrocera, S.; Goyache, F. Metabolomic Profiling of Bos taurus Beef, Dairy, and Crossbred Cattle: A Between-Breeds Meta-Analysis. J. Agric. Food Chem. 2020, 68, 8732–8743. [Google Scholar] [CrossRef] [PubMed]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 395. [Google Scholar] [CrossRef] [Green Version]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494. [Google Scholar] [CrossRef] [Green Version]
Cryopreservation | Culture | Day | n | Day-40 | Day-62 | Birth |
---|---|---|---|---|---|---|
Fresh | BSA | 7 | 17 | 12 (70.6) | 11 (64.7) | 9 (52.9) |
Fresh | BSA + FCS | 7 | 11 | 8 (72.7) | 8 (72.7) | 7/10 (70.0) (1) |
Frozen | BSA | 7 | 30 | 18 (60) | 18 (60) | 14 (46.7) |
8 | 8 | 2 (25) | 2 (25) | 1 (12.5) | ||
Frozen | BSA + FCS | 7 | 18 | 11 (61.1) | 10 (55.5) | 8 (44.4) |
Birth | Day-62 | Day-40 | Miscarriage | |||||
---|---|---|---|---|---|---|---|---|
Metabolite | p-Value | Bon | p-Value | Bon | p-Value | Bon | p-Value | Bon |
l-Leucine | 0.0454 | 0.05 | ||||||
l-Lysine | 0.0494 | 0.05 | 0.009 | 0.05 | 0.0143 | 0.05 | ||
Palmitoylethanolamide | 0.0782 | 0.10 | ||||||
l-Valine | 0.0439 | 0.05 | 0.0729 | 0.05 | ||||
l-Glutamic acid | 0.0740 | 0.05 | 0.0844 | 0.05 | ||||
Dimethyl adipate | 0.0774 | 0.05 | 0.0266 | 0.05 | 0.0018 | 0.05 | ||
Lauroyl diethanolamide | 0.0112 | 0.05 | ||||||
Phosphatidylethanolamine(18:2/20:2) | 0.0518 | 0.05 | 0.0168 | 0.05 |
Blocks (N) at Gestational Endpoints | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Day-40 | Day-62 | Birth | Total | ||||||||||
Metabolite | Class | Fz | Fh | FF | Fz | Fh | FF | Fz | Fh | FF | Fz | Fh | FF |
Citramalic acid | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 2 | 1 | 0 |
5Z-Dodecenoic acid | 1 | 3 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 1 | 6 | 0 | 1 |
Dimethyl adipate | 1 | 14 | 0 | 4 | 12 | 1 | 6 | 1 | 1 | 2 | 27 | 2 | 12 |
Lauroyl diethanolamide | 1 | 4 | 0 | 0 | 3 | 0 | 3 | 7 | 1 | 5 | 14 | 1 | 8 |
Linoleamide | 1 | 6 | 0 | 4 | 8 | 0 | 2 | 5 | 0 | 1 | 19 | 0 | 7 |
Oleamide | 1 | 2 | 0 | 0 | 3 | 1 | 2 | 0 | 2 | 3 | 5 | 3 | 5 |
Palmitic amide | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 2 | 2 | 1 | 2 |
Palmitoylethanolamide | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 7 | 0 | 0 | 8 | 0 | 1 |
Phosphatidylethanolamine(18:2/20:2) | 1 | 4 | 2 | 2 | 3 | 2 | 5 | 4 | 1 | 3 | 11 | 5 | 10 |
MG(16:0/0:0/0:0) | 1 | 1 | 0 | 0 | 1 | 3 | 0 | 12 | 1 | 3 | 14 | 4 | 3 |
12-Hydroxydodecanoic acid | 1 | 9 | 0 | 2 | 11 | 0 | 3 | 14 | 0 | 4 | 34 | 0 | 9 |
Dihydro-alpha-ionone | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 3 | 4 | 0 | 3 |
60 | 73 | 91 | 224 | ||||||||||
l-Threonine | 2 | 4 | 0 | 1 | 1 | 0 | 0 | 4 | 0 | 0 | 9 | 0 | 1 |
l-Arginine | 2 | 4 | 0 | 0 | 1 | 0 | 2 | 5 | 0 | 6 | 10 | 0 | 8 |
l-Glutamic acid | 2 | 4 | 1 | 1 | 4 | 1 | 1 | 2 | 4 | 1 | 10 | 6 | 3 |
l-Glutamine | 2 | 4 | 0 | 1 | 1 | 0 | 3 | 5 | 0 | 3 | 10 | 0 | 7 |
l-Leucine | 2 | 1 | 0 | 0 | 1 | 2 | 0 | 2 | 1 | 1 | 4 | 3 | 1 |
l-Lysine | 2 | 0 | 3 | 1 | 1 | 2 | 3 | 0 | 2 | 1 | 1 | 7 | 5 |
l-Methionine | 2 | 2 | 0 | 1 | 3 | 0 | 0 | 7 | 0 | 3 | 12 | 0 | 4 |
l-Proline | 2 | 3 | 0 | 1 | 2 | 0 | 1 | 3 | 0 | 2 | 8 | 0 | 4 |
l-Tryptophan | 2 | 0 | 0 | 1 | 1 | 0 | 3 | 0 | 1 | 3 | 1 | 1 | 7 |
l-Tyrosine | 2 | 0 | 0 | 1 | 2 | 0 | 2 | 0 | 0 | 2 | 2 | 0 | 5 |
l-Valine | 2 | 5 | 1 | 2 | 3 | 0 | 1 | 0 | 0 | 0 | 8 | 1 | 3 |
Pipecolic acid | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 1 | 0 | 3 | 1 | 0 |
l-Histidine | 2 | 2 | 0 | 2 | 2 | 0 | 5 | 3 | 0 | 2 | 7 | 0 | 9 |
l-Phenylalanine | 2 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 3 | 0 | 2 |
Pyroglutamic acid | 2 | 6 | 0 | 2 | 4 | 0 | 3 | 3 | 0 | 2 | 13 | 0 | 7 |
55 | 59 | 72 | 186 | ||||||||||
Benzoic acid | 3 | 4 | 0 | 1 | 1 | 0 | 1 | 2 | 0 | 4 | 7 | 0 | 6 |
Indole | 3 | 2 | 0 | 2 | 1 | 0 | 3 | 5 | 1 | 2 | 8 | 1 | 7 |
Phenylacetaldehyde | 3 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 3 | 0 | 3 | 4 | 0 |
p-Cresol | 3 | 7 | 0 | 1 | 8 | 0 | 3 | 2 | 0 | 1 | 17 | 0 | 5 |
18 | 19 | 21 | 58 | ||||||||||
cis-Aconitic acid | 4 | 8 | 1 | 1 | 9 | 0 | 1 | 5 | 2 | 2 | 22 | 3 | 4 |
Citric acid | 4 | 2 | 2 | 0 | 1 | 2 | 1 | 2 | 1 | 1 | 5 | 5 | 2 |
14 | 14 | 13 | 41 | ||||||||||
5-Hydroxy-l-tryptophan | 5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
Cumulative | 147 | 166 | 198 | 511 |
ROC-Analysis | IC Stage | N | Coverage | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Metabolite | AUC | P1 | LogFCh | P2 | Endpoint | Cryo | Breed | Culture | 0 h | 24 h | Age | P | O | Impact | Predicted |
Lauroyl diethanolamide | 1.000 | 0.000 | −99.000 | 0.003 | Birth | Frozen | AV | BSA | 8 | 5 | 100.000 | 100.000 | |||
l-Glutamic acid | 1.000 | 0.110 | −99.000 | 0.004 | Birth | Fresh | H | BSA | 8 | 4 | 100.000 | 100.000 | |||
l-Proline | 1.000 | 0.000 | −99.000 | 0.003 | P40 | Frozen | AV | BSA | 9 | 4 | 100.000 | 100.000 | |||
l-Proline | 1.000 | 0.000 | −99.000 | 0.003 | P62 | Frozen | AV | BSA | 9 | 4 | 100.000 | 100.000 | |||
l-Proline | 0.952 | 0.010 | −99.000 | 0.005 | Birth | Frozen | AV | FCS | 6 | 7 | 100.000 | 95.238 | |||
l-Proline | 0.952 | 0.010 | −99.000 | 0.005 | P40 | Frozen | AV | FCS | 6 | 7 | 100.000 | 95.238 | |||
l-Proline | 0.952 | 0.010 | −99.000 | 0.005 | P62 | Frozen | AV | FCS | 6 | 7 | 100.000 | 95.238 | |||
l-Methionine | 0.944 | 0.024 | −99.000 | 0.011 | P40 | Frozen | AV | BSA | 9 | 4 | 100.000 | 94.444 | |||
l-Methionine | 0.944 | 0.024 | −99.000 | 0.011 | P62 | Frozen | AV | BSA | 9 | 4 | 100.000 | 94.444 | |||
Pyroglutamic acid | 0.929 | 0.084 | −99.000 | 0.008 | Birth | Frozen | AV | FCS | 6 | 7 | 100.000 | 92.857 | |||
Pyroglutamic acid | 0.929 | 0.084 | −99.000 | 0.008 | P40 | Frozen | AV | FCS | 6 | 7 | 100.000 | 92.857 | |||
Pyroglutamic acid | 0.929 | 0.084 | −99.000 | 0.008 | P62 | Frozen | AV | FCS | 6 | 7 | 100.000 | 92.857 | |||
l-Glutamic acid | 0.920 | 0.110 | −99.000 | 0.019 | Birth | Fresh | H | 10 | 5 | 100.000 | 92.000 | ||||
l-Arginine | 0.905 | 0.016 | −99.000 | 0.014 | Birth | Frozen | AV | FCS | 6 | 7 | 100.000 | 90.476 | |||
l-Arginine | 0.905 | 0.016 | −99.000 | 0.014 | P40 | Frozen | AV | FCS | 6 | 7 | 100.000 | 90.476 | |||
l-Arginine | 0.905 | 0.016 | −99.000 | 0.014 | P62 | Frozen | AV | FCS | 6 | 7 | 100.000 | 90.476 | |||
l-Lysine | 0.905 | 0.008 | −99.000 | 0.008 | P62 | Fresh | AV | 7 | 6 | 100.000 | 90.476 | ||||
l-Threonine | 0.905 | 0.014 | −99.000 | 0.014 | Birth | Frozen | AV | FCS | 6 | 7 | 100.000 | 90.476 | |||
l-Threonine | 0.905 | 0.014 | −99.000 | 0.014 | P40 | Frozen | AV | FCS | 6 | 7 | 100.000 | 90.476 | |||
l-Threonine | 0.905 | 0.014 | −99.000 | 0.014 | P62 | Frozen | AV | FCS | 6 | 7 | 100.000 | 90.476 | |||
l-Glutamine | 0.900 | 0.021 | −99.000 | 0.003 | Birth | Frozen | FCS | 8 | 10 | 100.000 | 90.000 | ||||
l-Methionine | 0.900 | 0.025 | −99.000 | 0.019 | Birth | Frozen | AV | BSA | 8 | 5 | 100.000 | 90.000 | |||
l-Methionine | 0.900 | 0.025 | −99.000 | 0.019 | Birth | Frozen | AV | BSA | 8 | 5 | 100.000 | 90.000 | |||
12-Hydroxydodecanoic acid | 0.889 | 0.029 | −99.000 | 0.035 | P40 | Frozen | AV | BSA | 9 | 4 | 100.000 | 88.889 | |||
12-Hydroxydodecanoic acid | 0.889 | 0.029 | −99.000 | 0.035 | P62 | Frozen | AV | BSA | 9 | 4 | 100.000 | 88.889 | |||
Benzoic acid | 0.889 | 0.021 | −99.000 | 0.034 | P40 | Frozen | AV | BSA | 9 | 4 | 100.000 | 88.889 | |||
Benzoic acid | 0.889 | 0.021 | −99.000 | 0.034 | P62 | Frozen | AV | BSA | 9 | 4 | 100.000 | 88.889 | |||
Dihydro-alpha-ionone | 0.889 | 0.019 | −99.000 | 0.036 | P40 | Frozen | AV | BSA | 9 | 4 | 100.000 | 88.889 | |||
Dihydro-alpha-ionone | 0.889 | 0.019 | −99.000 | 0.036 | P62 | Frozen | AV | BSA | 9 | 4 | 100.000 | 88.889 | |||
l-Lysine | 0.889 | 0.011 | −3.512 | 0.026 | Birth | Fresh | AV | 6 | 6 | 100.000 | 88.889 | ||||
Citric acid | 0.881 | 0.069 | −99.000 | 0.022 | P62 | Fresh | AV | 7 | 6 | 100.000 | 88.095 | ||||
citramalic acid | 0.861 | 0.027 | −99.000 | 0.045 | Birth | Fresh | AV | 6 | 6 | 100.000 | 86.111 | ||||
Phenylacetaldehyde | 0.860 | 0.021 | −99.000 | 0.045 | Birth | Fresh | H | 10 | 5 | 100.000 | 86.000 | ||||
MG(16:0/0:0/0:0) | 0.857 | 0.062 | −99.000 | 0.035 | P62 | Fresh | AV | 7 | 6 | 100.000 | 85.714 | ||||
cis-Aconitic acid | 0.850 | 0.023 | −99.000 | 0.047 | Birth | Frozen | AV | BSA | 8 | 5 | 100.000 | 85.000 | |||
Phenylacetaldehyde | 0.846 | 0.070 | −99.000 | 0.082 | P62 | Fresh | H | 13 | 3 | 100.000 | 84.615 | ||||
l-Histidine | 0.833 | 0.020 | −99.000 | 0.051 | Birth | Frozen | AV | FCS | 6 | 7 | 100.000 | 83.333 | |||
l-Histidine | 0.833 | 0.020 | −99.000 | 0.051 | P40 | Frozen | AV | FCS | 6 | 7 | 100.000 | 83.333 | |||
l-Histidine | 0.833 | 0.020 | −99.000 | 0.051 | P62 | Frozen | AV | FCS | 6 | 7 | 100.000 | 83.333 | |||
MG(16:0/0:0/0:0) | 0.833 | 0.098 | −99.000 | 0.065 | Birth | Fresh | AV | 6 | 6 | 100.000 | 83.333 | ||||
Dimethyl adipate | 0.818 | 0.003 | −20.168 | 0.003 | P40 | Frozen | AV | 15 | 11 | 100.000 | 81.818 | ||||
Dimethyl adipate | 0.818 | 0.003 | −20.168 | 0.003 | P62 | Frozen | AV | 15 | 11 | 100.000 | 81.818 | ||||
p-Cresol | 0.813 | 0.050 | 11.024 | 0.050 | P62 | Frozen | FCS | 7 | 10 | 8 | 100.000 | 81.250 | |||
Citric acid | 0.810 | 0.085 | 2.460 | 0.073 | Birth | Frozen | AV | FCS | 6 | 7 | 100.000 | 80.952 | |||
Citric acid | 0.810 | 0.085 | −2.460 | 0.073 | P40 | Frozen | AV | FCS | 6 | 7 | 100.000 | 80.952 | |||
Citric acid | 0.810 | 0.085 | −2.460 | 0.073 | P62 | Frozen | AV | FCS | 6 | 7 | 100.000 | 80.952 | |||
Citric acid | 0.800 | 0.043 | −99.000 | 0.093 | P40 | Fresh | AV | 8 | 4 | 100.000 | 80.000 | ||||
Indole | 0.800 | 0.054 | −1.835 | 0.093 | Birth | Frozen | AV | BSA | 8 | 5 | 100.000 | 80.000 | |||
Indole | 0.800 | 0.054 | −1.835 | 0.093 | Birth | Frozen | AV | BSA | 8 | 5 | 100.000 | 80.000 | |||
l-Lysine | 0.800 | 0.091 | 3.031 | 0.093 | P40 | Fresh | AV | 8 | 5 | 100.000 | 80.000 | ||||
l-Proline | 0.800 | 0.050 | −99.000 | 0.093 | Birth | Frozen | AV | BSA | 8 | 5 | 100.000 | 80.000 | |||
l-Proline | 0.800 | 0.050 | −99.000 | 0.093 | Birth | Frozen | AV | BSA | 8 | 5 | 100.000 | 80.000 | |||
12-Hydroxydodecanoic acid | 0.799 | 0.007 | −99.000 | 0.011 | Birth | Frozen | H | 9 | 21 | 100.000 | 79.894 | ||||
5-Hydroxy- l -tryptophan | 0.798 | 0.063 | −99.000 | 0.086 | P62 | Fresh | AV | 7 | 6 | 100.000 | 79.762 | ||||
l-Valine | 0.791 | 0.014 | −22.286 | 0.014 | P40 | Frozen | AV | 15 | 11 | 100.000 | 79.091 | ||||
l-Valine | 0.791 | 0.014 | −22.286 | 0.014 | P62 | Frozen | AV | 15 | 11 | 100.000 | 79.091 | ||||
12-Hydroxydodecanoic acid | 0.788 | 0.003 | −99.000 | 0.003 | Birth | Frozen | BSA | 15 | 33 | 100.000 | 78.841 | ||||
Indole | 0.786 | 0.052 | −99.000 | 0.100 | Birth | Frozen | AV | FCS | 6 | 7 | 100.000 | 78.571 | |||
Indole | 0.786 | 0.052 | −99.000 | 0.100 | P40 | Frozen | AV | FCS | 6 | 7 | 100.000 | 78.571 | |||
Indole | 0.786 | 0.052 | −99.000 | 0.100 | P62 | Frozen | AV | FCS | 6 | 7 | 100.000 | 78.571 | |||
MG(16:0/0:0/0:0) | 0.784 | 0.020 | 5.508 | 0.018 | P62 | Fresh | 19 | 9 | 100.000 | 78.363 | |||||
l-Glutamic acid | 0.780 | 0.002 | −99.000 | 0.004 | P40 | Fresh | AV | ExB + FEB | 8 | 3 | 100.000 | 77.950 | |||
p-Cresol | 0.771 | 0.045 | 11.457 | 0.045 | P40 | Frozen | AV | 7 | 15 | 8 | 100.000 | 77.083 | |||
p-Cresol | 0.771 | 0.045 | 11.457 | 0.045 | P62 | Frozen | AV | 7 | 15 | 8 | 100.000 | 77.083 | |||
l -Leucine | 0.770 | 0.031 | −99.000 | 0.017 | P62 | Fresh | 19 | 9 | 100.000 | 77.005 | |||||
l-Glutamic acid | 0.762 | 0.018 | −14.573 | 0.018 | P62 | Fresh | AV | 7 | 7 | 6 | 100.000 | 76.190 | |||
l-Glutamine | 0.762 | 0.033 | 15.617 | 0.033 | Birth | Frozen | AV | 7 | 14 | 9 | 100.000 | 76.190 | |||
12-Hydroxydodecanoic acid | 0.762 | 0.017 | −99.000 | 0.049 | Birth | Frozen | H | BSA | 7 | 18 | 100.000 | 76.190 | |||
MG(16:0/0:0/0:0) | 0.759 | 0.026 | 5.619 | 0.026 | P62 | Fresh | ExB + FEB | 19 | 7 | 100.000 | 75.940 | ||||
Citric acid | 0.759 | 0.033 | −99.000 | 0.024 | P62 | Fresh | 19 | 9 | 100.000 | 75.936 | |||||
Dimethyl adipate | 0.756 | 0.017 | 17.092 | 0.017 | Birth | Frozen | AV | 14 | 12 | 100.000 | 75.595 | ||||
Dimethyl adipate | 0.750 | 0.054 | −18.047 | 0.054 | P40 | Frozen | AV | 7 | 15 | 8 | 100.000 | 75.000 | |||
Lauroyl diethanolamide | 0.750 | 0.006 | −9.767 | 0.006 | Birth | Frozen | AV | 14 | 12 | 100.000 | 75.000 | ||||
l-Leucine | 0.750 | 0.065 | −99.000 | 0.065 | P62 | Fresh | AV | 7 | 6 | 100.000 | 75.000 | ||||
Indole | 0.744 | 0.017 | −99.000 | 0.037 | Birth | Frozen | AV | 14 | 12 | 100.000 | 74.405 | ||||
cis-Aconitic acid | 0.739 | 0.026 | −21.627 | 0.026 | P40 | Frozen | AV | 15 | 11 | 100.000 | 73.939 | ||||
Pyroglutamic acid | 0.739 | 0.060 | −99.000 | 0.041 | P40 | Frozen | AV | 15 | 11 | 100.000 | 73.939 | ||||
Pyroglutamic acid | 0.739 | 0.060 | −99.000 | 0.041 | P62 | Frozen | AV | 15 | 11 | 100.000 | 73.939 | ||||
l-Methionine | 0.739 | 0.034 | −99.000 | 0.013 | Birth | Frozen | BSA | 15 | 33 | 100.000 | 73.913 | ||||
cis-Aconitic acid | 0.738 | 0.014 | −16.641 | 0.014 | P40 | Frozen | BSA | 7 | 18 | 12 | 100.000 | 73.843 | |||
l-Glutamic acid | 0.738 | 0.043 | 8.994 | 0.043 | Birth | Frozen | AV | 14 | 12 | 100.000 | 73.810 | ||||
Phosphatidylethanolamine(18:2/20:2) | 0.738 | 0.094 | −99.000 | 0.090 | Birth | Frozen | FCS | 8 | 10 | 100.000 | 73.750 | ||||
l-Valine | 0.736 | 0.006 | 4.109 | 0.018 | P40 | Fresh | AV | ExB + FEB | 8 | 3 | 100.000 | 73.602 | |||
cis-Aconitic acid | 0.733 | 0.015 | −99.000 | 0.020 | P40 | Fresh | AV | ExB + FEB | 8 | 3 | 100.000 | 73.292 | |||
Palmitoylethanolamide | 0.730 | 0.086 | −99.000 | 0.085 | Birth | Frozen | H | BSA | 7 | 18 | 100.000 | 73.016 | |||
l-Glutamine | 0.725 | 0.064 | −13.100 | 0.064 | P40 | Frozen | AV | 7 | 15 | 8 | 100.000 | 72.500 | |||
l -Methionine | 0.720 | 0.064 | −99.000 | 0.063 | Birth | Frozen | H | 9 | 21 | 100.000 | 71.958 | ||||
Oleamide | 1.000 | 0.011 | 3.786 | 0.009 | P62 | Fresh | BSA | FEB | 6 | 3 | 71.490 | 71.490 | |||
Lauroyl diethanolamide | 0.713 | 0.022 | −99.000 | 0.022 | Birth | Frozen | BSA | 15 | 33 | 100.000 | 71.304 | ||||
Citric acid | 0.713 | 0.052 | 2.972 | 0.088 | P40 | Fresh | 20 | 8 | 100.000 | 71.250 | |||||
Indole | 0.706 | 0.011 | −4.439 | 0.032 | Birth | AV | 20 | 18 | 100.000 | 70.556 | |||||
l-Lysine | 0.705 | 0.011 | 3.605 | 0.040 | P40 | Fresh | AV | ExB + FEB | 8 | 3 | 100.000 | 70.497 | |||
l-Threonine | 0.702 | 0.037 | −99.000 | 0.085 | Birth | Frozen | AV | 14 | 12 | 100.000 | 70.238 | ||||
Phosphatidylethanolamine(18:2/20:2) | 0.700 | 0.055 | −5.441 | 0.055 | P40 | Frozen | AV | 7 | 15 | 8 | 100.000 | 70.000 |
IC Stage | N | Single Coverage | Combined | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Series | Metabolite | Class | Endpoint | Cryo | Breed | Culture | 0 h | 24 h | Age | P | O | Impact | Predicted | Coverage |
1 | p-Cresol | 3 | P40 | Frozen | H | EB + B | 11 | 10 | 56.371 | 44.071 | * | |||
1 | citramalic acid | 1 | P40 | Frozen | H | M | 5 | 4 | 43.630 | 39.267 | 83.3385 | |||
2 | Dimethyl adipate | 1 | P40 | Frozen | EB + B | 21 | 20 | 56.371 | 47.781 | * | ||||
2 | Linoleamide | 1 | P40 | Frozen | M | 10 | 5 | 43.630 | 38.394 | 86.1751 | ||||
3 | l -Proline | 2 | P40 | EB + B | ExB | 8 | 2 | 15.871 | 12.998 | * | ||||
3 | Linoleamide | 1 | P40 | EB + B | FEB | 28 | 23 | 40.500 | 34.977 | * | ||||
3 | Linoleamide | 1 | P40 | M | ExB | 8 | 3 | 20.080 | 18.825 | * | ||||
3 | l -Tyrosine | 2 | P40 | M | FEB | 7 | 3 | 23.550 | 23.550 | 90.3504 | ||||
4 | 12-Hydroxydodecanoic acid | 1 | P62 | Frozen | BSA | EB | FEB | 3 | 8 | 23.770 | 22.780 | * | ||
4 | Pyroglutamic acid | 2 | P62 | Frozen | BSA | B | FEB | 10 | 6 | 10.790 | 9.531 | * | ||
4 | l -Tyrosine | 2 | P62 | Frozen | BSA | M | FEB | 6 | 3 | 36.930 | 36.930 | * | ||
4 | l -Histidine | 2 | P62 | Frozen | BSA | ExB | 7 | 3 | 28.510 | 25.795 | 95.0353 | |||
5 | Dimethyl adipate | 1 | P62 | Frozen | EB | 6 | 13 | 41.470 | 35.090 | * | ||||
5 | Phosphatidylethanolamine(18:2/20:2) | 1 | P62 | Frozen | B | 7 | 13 | 6 | 14.900 | 11.462 | * | |||
5 | Linoleamide | 1 | P62 | Frozen | M | 4 | 3 | 43.630 | 38.176 | 84.7278 | ||||
6 | Palmitoylethanolamide | 1 | P62 | BSA | ExB | 7 | 3 | 28.510 | 28.510 | * | ||||
6 | Dimethyl adipate | 1 | P62 | BSA | FEB | 24 | 19 | 71.490 | 53.539 | 82.0489 | ||||
7 | Pyroglutamic acid | 2 | P62 | FCS | ExB | 8 | 3 | 43.380 | 37.958 | * | ||||
7 | l -Glutamine/D-Glutamine | 2 | P62 | FCS | FEB | 10 | 8 | 56.620 | 49.543 | 87.5000 | ||||
8 | Dimethyl adipate | 1 | P62 | EB | 15 | 16 | 41.470 | 29.374 | * | |||||
8 | 12-Hydroxydodecanoic acid | 1 | P62 | B | 20 | 10 | 14.900 | 10.430 | * | |||||
8 | l -Lysine | 2 | P62 | M | ExB | 7 | 4 | 20.080 | 17.211 | * | ||||
8 | l -Tyrosine | 2 | P62 | M | FEB | 7 | 3 | 23.550 | 23.550 | 80.5658 | ||||
9 | citramalic acid | 1 | Birth | Frozen | H | M | 5 | 4 | 43.630 | 39.267 | 87.3472 | |||
9 | MG(16:0/0:0/0:0) | 1 | Birth | Frozen | H | EB + B | 4 | 17 | 56.370 | 48.080 | * | |||
10 | 12-Hydroxydodecanoic acid | 1 | Birth | Frozen | BSA | EB + B | 9 | 19 | 42.992 | 36.956 | * | |||
10 | Pipecolic acid | 2 | Birth | Frozen | BSA | M | 6 | 4 | 57.010 | 46.321 | 83.2765 | |||
11 | Pyroglutamic acid | 2 | Birth | Frozen | M | 10 | 5 | 43.628 | 34.902 | * | ||||
11 | 12-Hydroxydodecanoic acid | 1 | Birth | Frozen | EB + B | 13 | 28 | 56.370 | 46.924 | 81.8259 | ||||
12 | l -Glutamic acid | 2 | Birth | Fresh | H | EB + B | 8 | 5 | 56.370 | 50.733 | * | |||
12 | L-Lysine | 2 | Birth | Fresh | M | 4 | 4 | 43.630 | 40.903 | 91.6361 | ||||
13 | l -Glutamic acid | 2 | Birth | Fresh | BSA | EB + B | 6 | 4 | 42.990 | 42.990 | * | |||
13 | Indole | 3 | Birth | Fresh | BSA | M | 3 | 4 | 57.010 | 57.010 | 100.0000 | |||
14 | cis-Aconitic acid | 4 | Birth | Fresh | BSA | FEB | 5 | 4 | 71.490 | 64.341 | * | |||
14 | Phenylacetaldehyde | 3 | Birth | Fresh | BSA | ExB + B6 | 4 | 3 | 28.510 | 28.510 | 92.8510 | |||
15 | Oleamide | 1 | Birth | BSA | EB | 8 | 11 | 29.684 | 25.299 | * | ||||
15 | cis-Aconitic acid | 4 | Birth | BSA | B | 7 | 12 | 13.308 | 12.199 | * | ||||
15 | Indole | 3 | Birth | BSA | M | ExB | 3 | 5 | 20.079 | 20.079 | * | |||
15 | l -Tyrosine | 2 | Birth | BSA | M | FEB | 6 | 3 | 36.927 | 36.927 | 94.5039 | |||
16 | Citric acid | 4 | Birth | FCS | ExB | 7 | 4 | 43.381 | 37.184 | * | ||||
16 | l -Glutamine | 2 | Birth | FCS | FEB | 8 | 9 | 56.618 | 49.541 | 86.7245 | ||||
17 | l -Proline | 2 | Birth | EB | ExB | 4 | 4 | 12.610 | 11.034 | * | ||||
17 | Dimethyl adipate | 1 | Birth | EB | FEB | 8 | 15 | 28.863 | 23.090 | * | ||||
17 | l -Methionine | 2 | Birth | B | 13 | 16 | 14.898 | 11.531 | * | |||||
17 | l -Glutamine | 2 | Birth | M | ExB | 7 | 4 | 20.075 | 18.068 | * | ||||
17 | l -Tyrosine | 2 | Birth | M | FEB | 6 | 4 | 23.553 | 23.553 | 87.2759 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gimeno, I.; García-Manrique, P.; Carrocera, S.; López-Hidalgo, C.; Valledor, L.; Martín-González, D.; Gómez, E. The Metabolic Signature of In Vitro Produced Bovine Embryos Helps Predict Pregnancy and Birth after Embryo Transfer. Metabolites 2021, 11, 484. https://doi.org/10.3390/metabo11080484
Gimeno I, García-Manrique P, Carrocera S, López-Hidalgo C, Valledor L, Martín-González D, Gómez E. The Metabolic Signature of In Vitro Produced Bovine Embryos Helps Predict Pregnancy and Birth after Embryo Transfer. Metabolites. 2021; 11(8):484. https://doi.org/10.3390/metabo11080484
Chicago/Turabian StyleGimeno, Isabel, Pablo García-Manrique, Susana Carrocera, Cristina López-Hidalgo, Luis Valledor, David Martín-González, and Enrique Gómez. 2021. "The Metabolic Signature of In Vitro Produced Bovine Embryos Helps Predict Pregnancy and Birth after Embryo Transfer" Metabolites 11, no. 8: 484. https://doi.org/10.3390/metabo11080484
APA StyleGimeno, I., García-Manrique, P., Carrocera, S., López-Hidalgo, C., Valledor, L., Martín-González, D., & Gómez, E. (2021). The Metabolic Signature of In Vitro Produced Bovine Embryos Helps Predict Pregnancy and Birth after Embryo Transfer. Metabolites, 11(8), 484. https://doi.org/10.3390/metabo11080484