N-acetyltaurine and Acetylcarnitine Production for the Mitochondrial Acetyl-CoA Regulation in Skeletal Muscles during Endurance Exercises
Abstract
:1. Introduction
2. Results
2.1. Serum Concentrations of Taurine, Carnitine, Its Acetylated Forms, and Energy Substrates during Endurace Exercises
2.2. Intracellular and Extracellular Taurine, NAT, Carnitine, and ACT Concentrations in the Myotube Exposed to Acetate Combined with Taurine or Carnitine
2.3. Extracellular NAT and ACT Concentrations in the Myotube Exposed to Palmitic Acid Combined with Taurine or/and Carnitine
2.4. Mitochondrial Acetyl-CoA/Free-CoA Ratio in the Myotube Exposed to Acetate or Palmitic Acid Combined with Taurine or Carnitine
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Exercise Experiment in Humans
4.3. Differentiation of Cultured Skeletal Muscle Cell and Treatments
4.4. Taurine, NAT, Carnitine, and ACT Analyses
4.5. Other Blood Biochemical Analyses
4.6. Mitochondrial Free-CoA and Acetyl-CoA Concentrations in Myotubes
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
βHB-13C4 | [13C4]β-hydroxybutyrate-13C4 |
2PM | 2-pyridinemethanol |
ACT | acetylcarnitine |
ACT-d3 | acetyl-L-[2H3]carnitine HCl |
ACS2 | acetyl-CoA synthetase 2 |
BSA | bovine serum albumin |
CACT | carnitine acylcarnitine translocase |
carnitine-d3 | L-[2H3]carnitine HCl |
CAT | carnitine acetyltransferase |
CPT | carnitine palmitoyl transferase |
CrAT | carnitine acetyltransferase |
CT | carnitine |
DBAA | dibutylammonium acetate |
DM | differentiation medium |
DMEM | Dulbecco’s modified Eagle’s medium |
ESI | electrospray ionization |
FBS | Fetal bovine serum |
FFA | free fatty acid |
GLUT4 | glucose transporter 4 |
GM | growth medium |
IS | internal standard |
lactate-d3 | DL-lactate-[2H3] |
MCT | monocarboxylate transporter |
NAT | N-acetyltaurine |
OCTN2 | organic anion transporter 2 |
PDH | pyruvate dehydrogenase |
SEM | standard error |
taurine-d4 | [2H4]taurine |
References
- Constantin-Teodosiu, D.; Carlin, J.I.; Cederblad, G.; Harris, R.C.; Hultman, E. Acetyl group accumulation and pyruvate dehydrogenase activity in human muscle during incremental exercise. Acta Physiol. Scand. 1991, 143, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Howlett, R.A.; Parolin, M.L.; Dyck, D.J.; Hultman, E.; Jones, N.L.; Heigenhauser, G.J.; Spriet, L.L. Regulation of skeletal muscle glycogen phosphorylase and PDH at varying exercise power outputs. Am. J. Physiol. 1998, 275, R418–R425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randle, P.J.; Garland, P.B.; Hales, C.N.; Newsholme, E.A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963, 1, 785–789. [Google Scholar] [CrossRef]
- Stephens, F.B.; Constantin-Teodosiu, D.; Greenhaff, P.L. New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle. J. Physiol. 2007, 581, 431–444. [Google Scholar] [CrossRef] [PubMed]
- Fukao, T.; Lopaschuk, G.D.; Mitchell, G.A. Pathways and control of ketone body metabolism: On the fringe of lipid biochemistry. Prostaglandins Leukot. Essent. Fatty Acids 2004, 70, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Luong, A.; Hannah, V.C.; Brown, M.S.; Goldstein, J.L. Molecular characterization of human acetyl-CoA synthetase, an enzyme regulated by sterol regulatory element-binding proteins. J. Biol. Chem. 2000, 275, 26458–26466. [Google Scholar] [CrossRef] [Green Version]
- Fujino, T.; Kondo, J.; Ishikawa, M.; Morikawa, K.; Yamamoto, T.T. Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate. J. Biol. Chem. 2001, 276, 11420–11426. [Google Scholar] [CrossRef] [Green Version]
- Sakakibara, I.; Fujino, T.; Ishii, M.; Tanaka, T.; Shimosawa, T.; Miura, S.; Zhang, W.; Tokutake, Y.; Yamamoto, J.; Awano, M.; et al. Fasting-induced hypothermia and reduced energy production in mice lacking acetyl-CoA synthetase 2. Cell Metab. 2009, 9, 191–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, X.; Yao, D.; Chen, C. Identification of N-acetyltaurine as a novel metabolite of ethanol through metabolomics-guided biochemical analysis. J. Biol. Chem. 2012, 287, 6336–6349. [Google Scholar] [CrossRef] [Green Version]
- Airaksinen, E.M.; Paljarvi, L.; Partanen, J.; Collan, Y.; Laakso, R.; Pentikainen, T. Taurine in normal and diseased human skeletal muscle. Acta Neurol. Scand. 1990, 81, 1–7. [Google Scholar] [CrossRef]
- Awapara, J. The taurine concentration of organs from fed and fasted rats. J. Biol. Chem. 1956, 218, 571–576. [Google Scholar] [CrossRef]
- Iwata, H.; Obara, T.; Kim, B.K.; Baba, A. Regulation of taurine transport in rat skeletal muscle. J. Neurochem. 1986, 47, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Pasantes, M.H.; Quesada, O.; Moran, J. Taurine: An osmolyte in mammalian tissues. Adv. Exp. Med. Biol. 1998, 442, 209–217. [Google Scholar] [CrossRef]
- Huxtable, R.J. Physiological actions of taurine. Physiol. Rev. 1992, 72, 101–163. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, T.; Matsuzaki, Y. Taurine and liver diseases: A focus on the heterogeneous protective properties of taurine. Amino Acids 2014, 46, 101–110. [Google Scholar] [CrossRef]
- Nakamura, T.; Ogasawara, M.; Koyama, I.; Nemoto, M.; Yoshida, T. The protective effect of taurine on the biomembrane against damage produced by oxygen radicals. Biol. Pharm. Bull. 1993, 16, 970–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyazaki, T. Involvement of taurine in the skeletal muscle on exercise. Adv. Exerc. Sports Physiol. 2010, 15, 131–134. [Google Scholar]
- da Silva, L.A.; Tromm, C.B.; Bom, K.F.; Mariano, I.; Pozzi, B.; da Rosa, G.L.; Tuon, T.; da Luz, G.; Vuolo, F.; Petronilho, F.; et al. Effects of taurine supplementation following eccentric exercise in young adults. Appl. Physiol. Nutr. Metab. 2014, 39, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; Matsuzaki, Y.; Ikegami, T.; Miyakawa, S.; Doy, M.; Tanaka, N.; Bouscarel, B. Optimal and effective oral dose of taurine to prolong exercise performance in rat. Amino Acids 2004, 27, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Yatabe, Y.; Miyakawa, S.; Miyazaki, T.; Matsuzaki, Y.; Ochiai, N. The effects of taurine administration in rat skeletal muscles on exercise. J. Orthop. Sci. 2003, 8, 415–419. [Google Scholar] [CrossRef]
- Matsuzaki, Y.; Miyazaki, T.; Miyakawa, S.; Bouscarel, B.; Ikegami, T.; Tanaka, N. Decreased taurine concentration in skeletal muscles after exercise for various durations. Med. Sci. Sports Exerc. 2002, 34, 793–797. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; Honda, A.; Ikegami, T.; Iwamoto, J.; Monma, T.; Hirayama, T.; Saito, Y.; Yamashita, K.; Matsuzaki, Y. Simultaneous quantification of salivary 3-hydroxybutyrate, 3-hydroxyisobutyrate, 3-hydroxy-3-methylbutyrate, and 2-hydroxybutyrate as possible markers of amino acid and fatty acid catabolic pathways by LC-ESI-MS/MS. Springer Plus 2015, 4, 494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, A.M.; Williamson, D.H. Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol. Rev. 1980, 60, 143–187. [Google Scholar] [CrossRef] [PubMed]
- Brevetti, G.; di Lisa, F.; Perna, S.; Menabo, R.; Barbato, R.; Martone, V.D.; Siliprandi, N. Carnitine-related alterations in patients with intermittent claudication: Indication for a focused carnitine therapy. Circulation 1996, 93, 1685–1689. [Google Scholar] [CrossRef]
- Constantin-Teodosiu, D.; Cederblad, G.; Hultman, E. PDC activity and acetyl group accumulation in skeletal muscle during prolonged exercise. J. Appl. Physiol. 1992, 73, 2403–2407. [Google Scholar] [CrossRef]
- Meienberg, F.; Loher, H.; Bucher, J.; Jenni, S.; Krusi, M.; Kreis, R.; Boesch, C.; Betz, M.J.; Christ, E. The effect of exercise on intramyocellular acetylcarnitine (AcCtn) concentration in adult growth hormone deficiency (GHD). Sci. Rep. 2019, 9, 19431. [Google Scholar] [CrossRef] [Green Version]
- St Amand, T.A.; Spriet, L.L.; Jones, N.L.; Heigenhauser, G.J. Pyruvate overrides inhibition of PDH during exercise after a low-carbohydrate diet. Am. J. Physiol. Endocrinol. Metab. 2000, 279, E275–E283. [Google Scholar] [CrossRef] [PubMed]
- Bremer, J. Carnitine--metabolism and functions. Physiol. Rev. 1983, 63, 1420–1480. [Google Scholar] [CrossRef] [PubMed]
- Bezaire, V.; Bruce, C.R.; Heigenhauser, G.J.; Tandon, N.N.; Glatz, J.F.; Luiken, J.J.; Bonen, A.; Spriet, L.L. Identification of fatty acid translocase on human skeletal muscle mitochondrial membranes: Essential role in fatty acid oxidation. Am. J. Physiol. Endocrinol. Metab. 2006, 290, E509–E515. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; Nakamura, Y.; Ebina, K.; Mizushima, T.; Ra, S.G.; Ishikura, K.; Matsuzaki, Y.; Ohmori, H.; Honda, A. Increased N-acetyltaurine in the skeletal muscle after endurance exercise in rat. Adv. Exp. Med. Biol. 2017, 975, 403–411. [Google Scholar] [CrossRef]
- Miyazaki, T.; Ishikura, K.; Honda, A.; Ra, S.G.; Komine, S.; Miyamoto, Y.; Ohmori, H.; Matsuzaki, Y. Increased N-acetyltaurine in serum and urine after endurance exercise in human. Adv. Exp. Med. Biol. 2015, 803, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Hoy, A.J.; Brandon, A.E.; Turner, N.; Watt, M.J.; Bruce, C.R.; Cooney, G.J.; Kraegen, E.W. Lipid and insulin infusion-induced skeletal muscle insulin resistance is likely due to metabolic feedback and not changes in IRS-1, Akt, or AS160 phosphorylation. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E67–E75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz, A.; Raz, I.; Spencer, M.K.; Rising, R.; Mott, D.M. Hyperglycemia induces accumulation of glucose in human skeletal muscle. Am. J. Physiol. 1991, 260, R698–R703. [Google Scholar] [CrossRef] [PubMed]
- Fueger, P.T.; Lee-Young, R.S.; Shearer, J.; Bracy, D.P.; Heikkinen, S.; Laakso, M.; Rottman, J.N.; Wasserman, D.H. Phosphorylation barriers to skeletal and cardiac muscle glucose uptakes in high-fat fed mice: Studies in mice with a 50% reduction of hexokinase II. Diabetes 2007, 56, 2476–2484. [Google Scholar] [CrossRef] [Green Version]
- Furler, S.M.; Jenkins, A.B.; Storlien, L.H.; Kraegen, E.W. In vivo location of the rate-limiting step of hexose uptake in muscle and brain tissue of rats. Am. J. Physiol. 1991, 261, E337–E347. [Google Scholar] [CrossRef]
- Furler, S.M.; Oakes, N.D.; Watkinson, A.L.; Kraegen, E.W. A high-fat diet influences insulin-stimulated posttransport muscle glucose metabolism in rats. Metabolism 1997, 46, 1101–1106. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Miyazaki, T.; Honda, A.; Shimohata, H.; Hirayama, K.; Kobayashi, M. Retention of acetylcarnitine in chronic kidney disease causes insulin resistance in skeletal muscle. J. Clin. Biochem. Nutr. 2016, 59, 199–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, C.H.; Patterson, A.D.; Krausz, K.W.; Lanz, C.; Kang, D.W.; Luecke, H.; Gonzalez, F.J.; Idle, J.R. Radiation metabolomics. 4. UPLC-ESI-QTOFMS-Based metabolomics for urinary biomarker discovery in gamma-irradiated rats. Radiat. Res. 2011, 175, 473–484. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, T.; Honda, A.; Ikegami, T.; Matsuzaki, Y. The role of taurine on skeletal muscle cell differentiation. Adv. Exp. Med. Biol. 2013, 776, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Namikawa-Kanai, H.; Miyazaki, T.; Matsubara, T.; Shigefuku, S.; Ono, S.; Nakajima, E.; Morishita, Y.; Honda, A.; Furukawa, K.; Ikeda, N. Comparison of the amino acid profile between the nontumor and tumor regions in patients with lung cancer. Am. J. Cancer Res. 2020, 10, 2145–2159. [Google Scholar] [PubMed]
- Honda, A.; Salen, G.; Matsuzaki, Y.; Batta, A.K.; Xu, G.; Leitersdorf, E.; Tint, G.S.; Erickson, S.K.; Tanaka, N.; Shefer, S. Differences in hepatic levels of intermediates in bile acid biosynthesis between Cyp27(-/-) mice and CTX. J. Lipid Res. 2001, 42, 291–300. [Google Scholar] [CrossRef]
Parameter | Pre | Post | Next |
---|---|---|---|
Glucose (mg/dL) | 86.5 ± 1.0 | 83.0 ± 3.0 | 81.0 ± 1.7 |
Lactate (mg/dL) | 18.1 ± 1.5 | 43.3 ± 3.9 aa | 20.2 ± 1.0 bb |
FFA (mEq/mL) | 0.59 ± 0.08 | 1.73 ± 0.12 aa | 0.64 ± 0.07 bb |
β-hydroxybutyrate (µM) | 48.2 ± 13.8 | 305.6 ± 40.1 aa | 74.8 ± 15.6 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyazaki, T.; Nakamura-Shinya, Y.; Ebina, K.; Komine, S.; Ra, S.-G.; Ishikura, K.; Ohmori, H.; Honda, A. N-acetyltaurine and Acetylcarnitine Production for the Mitochondrial Acetyl-CoA Regulation in Skeletal Muscles during Endurance Exercises. Metabolites 2021, 11, 522. https://doi.org/10.3390/metabo11080522
Miyazaki T, Nakamura-Shinya Y, Ebina K, Komine S, Ra S-G, Ishikura K, Ohmori H, Honda A. N-acetyltaurine and Acetylcarnitine Production for the Mitochondrial Acetyl-CoA Regulation in Skeletal Muscles during Endurance Exercises. Metabolites. 2021; 11(8):522. https://doi.org/10.3390/metabo11080522
Chicago/Turabian StyleMiyazaki, Teruo, Yuho Nakamura-Shinya, Kei Ebina, Shoichi Komine, Song-Gyu Ra, Keisuke Ishikura, Hajime Ohmori, and Akira Honda. 2021. "N-acetyltaurine and Acetylcarnitine Production for the Mitochondrial Acetyl-CoA Regulation in Skeletal Muscles during Endurance Exercises" Metabolites 11, no. 8: 522. https://doi.org/10.3390/metabo11080522
APA StyleMiyazaki, T., Nakamura-Shinya, Y., Ebina, K., Komine, S., Ra, S. -G., Ishikura, K., Ohmori, H., & Honda, A. (2021). N-acetyltaurine and Acetylcarnitine Production for the Mitochondrial Acetyl-CoA Regulation in Skeletal Muscles during Endurance Exercises. Metabolites, 11(8), 522. https://doi.org/10.3390/metabo11080522