Using Porcine Jejunum Ex Vivo to Study Absorption and Biotransformation of Natural Products in Plant Extracts: Pueraria lobata as a Case Study
Abstract
:1. Introduction
2. Results
2.1. General Overview of Ussing Chamber System
2.2. Metabolite Profiling of the Pueraria lobata Root Extract
N° | m/z [M + H]+ | Retention Time (min) | Molecular Formula | PPM a | Annotation | Taxonomy | MSI b | LogP c | |
---|---|---|---|---|---|---|---|---|---|
Figure 1 | Figure 2 | ||||||||
1 | 579.1711 | 1.02 | 0.86 | C27H30O14 | 0.4 | puerarin-6″-O-glucoside | Species | 2 | |
2 | 579.1711 | 1.30 | 1.10 | C27H30O14 | 0.4 | daidzin-4″-glucoside | Species | 2 | |
3 | 433.1131 | 1.51 | 1.31 | C21H20O10 | 0.4 | 3′-hydroxypuerarin | Species | 2 | |
4 | 565.1554 | 1.82 | 1.52 | C26H28O14 | 0.5 | genistein-8-C-apioside | Species | 2 | |
5 | 417.1181 | 2.20 | 1.97 | C21H20O9 | 0.2 | puerarin | Species | 1 | −0.03 |
6 | 549.1605 | 2.42 | 2.05 | C26H28O13 | 0.4 | mirificin (puerarin apioside) | Species | 2 | |
7 | 549.1605 | 2.64 | 2.27 | C26H28O13 | 0.4 | 6″-xylo-puerarin | Species | 2 | |
8 | 447.1287 | 2.62 | 2.30 | C22H22O10 | 0.2 | 3′-methoxypuerarin | Species | 2 | |
9 | 417.1181 | 3.31 | 2.93 | C21H20O9 | 0.2 | daidzin | Species | 1 | 0.46 |
10 | 447.1287 | 3.89 | 3.45 | C22H22O10 | 0.2 | 3′-methoxydaidzin | Species | 2 | |
11 | 433.1131 | 3.86 | 3.45 | C21H20O10 | 0.4 | genistein-8-C-glucoside | Species | 2 | |
12 | 417.1181 | 4.32 | 3.88 | C21H20O9 | 0.2 | neopuerarin A | Species | 2 | |
13 | 417.1181 | 4.42 | 3.99 | C21H20O9 | 0.2 | daidzein-4′-glucoside | Family | 2 | |
14 | 607.2024 | 4.56 | 4.10 | C29H34O14 | 0.4 | pueroside A | Species | 2 | |
15 | 417.1181 | 4.99 | 4.52 | C21H20O9 | 0.2 | neopuerarin B | Species | 2 | |
16 | 433.1131 | 5.13 | 4.71 | C21H20O10 | 0.4 | genistin | Family | 1 | 0.81 |
17 | 503.1186 | 5.94 | 5.53 | C24H22O12 | 0.3 | 6″-O-malonyldaidzin | Species | 2 | |
18 | 271.0601 | 6.14 | 5.85 | C15H10O5 | −0.1 | 8-hydroxydaidzein | Species | 2 | 2.43 |
19 | 459.1287 | 6.71 | 6.33 | C23H22O10 | 0.2 | 6″-O-acetyldaidzin | Family | 2 | |
20 | 519.1135 | 6.62 | 6.48 | C24H22O13 | 0.3 | 6″-O-malonylgenistin | Family | 2 | |
21 | 475.1602 | 6.71 | 6.58 | C24H26O10 | 0.4 | pueroside D | Species | 2 | |
22 | 431.1339 | 6.83 | 6.72 | C22H22O9 | 0.5 | -formononetin-7-O-galactoside -ononin (7-O-glucoside) | Family Species | 3 | |
23 | 255.0652 | 6.86 | 6.74 | C15H10O4 | 0.0 | daidzein | Family | 1 | 2.73 |
24 | 285.0758 | 7.05 | 6.92 | C16H12O5 | 0.1 | 3′-methoxydaidzein | Family | 2 | 2.57 |
25 | 431.1339 | 7.05 | 6.96 | C22H22O9 | 0.5 | -formononetin-7-O-galactoside -ononin (7-O-glucoside) | Family Species | 3 | |
26 | 285.0758 | 7.19 | 7.08 | C16H12O5 | 0.1 | kakkatin | Genus | 2 | 2.57 |
27 | 447.1288 | 7.67 | 7.46 | C22H22O10 | 0.5 | Sissotrin (biochanin A-7-O-glucoside) | Genus | 2 | |
28 | 271.0601 | 7.60 | 7.50 | C15H10O5 | −0.1 | genistein | Family | 1 | 3.08 |
29 | 313.107 | 7.75 | 7.66 | C18H16O5 | −0.2 | puerol B | Species | 2 | |
30 | 269.0809 | 8.25 | 8.16 | C16H12O4 | 0.2 | formononetin | Family | 2 | 2.98 |
31 | 299.0915 | 8.36 | 8.20 | C17H14O5 | 0.3 | tithonin | Family | 2 | |
32 | 285.0759 | ND | 8.96 | C16H12O5 | 0.4 | biochanin A | Family | 2 | 3.22 |
N° | Compound Name | R1 | R2 | R3 | R4 | R5 | R6 |
---|---|---|---|---|---|---|---|
23 | daidzein | H | H | H | H | H | H |
18 | 8-hydroxydaidzein | H | OH | H | H | H | H |
24 | 3′-methoxydaidzein | H | H | O–CH3 | H | H | |
26 | kakkatin | CH3 | H | H | H | H | OH |
28 | genistein | H | H | H | H | OH | H |
30 | formononetin | H | H | H | CH3 | H | H |
31 | tithonin | CH3 | H | H | CH3 | H | H |
32 | biochanin A | H | H | H | CH3 | OH | H |
N° | Compound Name | R1 | R2 | R3 |
---|---|---|---|---|
5 | puerarin | C-glucosyl | H | H |
1 | puerarin-6″-O-glucoside | C-glucosyl-6″-O-glucosyl | H | H |
3 | 3′-hydroxypuerarin | C-glucosyl | OH | H |
4 | genistein-8-C-apioside | C-glucosyl-6″-O-apiosyl | H | OH |
6 | mirificin | C-glucosyl-6″-O-apiosyl | H | H |
7 | 6″-xylo-puerarin | C-glucosyl-6″-O-xylosyl | H | H |
8 | 3′-methoxypuerarin | C-glucosyl | O-CH3 | H |
11 | genistein-8-C-glucoside | C-glucosyl | H | OH |
12 | neopuerarin A | C-α-glucofuranosyl | H | H |
15 | neopuerarin B | C-β-glucofuranosyl | H | H |
N° | Compound Name | R1 | R2 | R3 | R4 | R5 |
---|---|---|---|---|---|---|
9 | daidzin | O-glucosyl | H | H | H | H |
2 | daidzin-4″-glucoside | O-glucosyl-4″-O-glucosyl | H | H | H | H |
10 | 3′-methoxydaidzin | O-glucosyl | O-CH3 | H | H | H |
13 | daidzein-4′-glucoside | OH | H | O-glycosyl | H | H |
16 | genistin | O-glucosyl | H | H | OH | H |
17 | 6″-O-malonyldaidzin | O-glucosyl-6″-O-malonyl | H | H | H | H |
19 | 6″-O-acetyldaidzin | O-glucosyl-6″-O-acetyl | H | H | H | H |
20 | 6″-O-malonylgenistin | O-glucosyl-6″-O-malonyl | H | H | OH | H |
22–25 | Ononin formononetin-7-O-galactoside | O-glucosyl O-galactosyl | H | O-CH3 | H | H |
26 | kakkatin | |||||
27 | sissotrin | O-glucosyl | H | O-CH3 | OH |
2.3. Establishing UHPLC-HRMS Conditions for Profiling of PLRE during the Permeation Experiment
2.4. Measurement of Permeation of the Constituents of PLRE
2.5. Evaluation and Comparison of the Different Untargeted Metabolite Profiles
2.5.1. PLRE Constituents in the Acceptor Compartment and in the Intestinal Membrane
2.5.2. Fate of PLRE Constituents in the Donor Compartments
2.5.3. Fate of the C-glycosides in the Donor Compartment
2.5.4. Fate of the O-glycosides in the Donor Compartment
2.5.5. Isoflavones Detected in the Intestinal Membrane and in the Acceptor Compartment
2.6. Quantitative Measurements
2.6.1. Permeation of Puerarin
2.6.2. Permeation of Daidzein and Genistein
3. Discussion
3.1. Comparison between Ex Vivo Permeation Results and Plasma Data in Humans
3.1.1. Fate of C-glycosides
3.1.2. Fate of O-glycosides
3.2. Enzymatic Activities and Active Transporters
3.2.1. Hydrolysis of O-glycoside Isoflavones
3.2.2. Intestinal Absorption of Isoflavones
3.2.3. Enzymatic Hydroxylation of Isoflavones
4. Material and Methods
4.1. Chemicals
4.2. Plant Material, Extraction and Sample Preparation
4.3. Porcine Intestinal Tissue
4.4. Ussing Chamber Setup and Procedures for Intestinal Permeation Experiments
4.5. UHPLC Chromatographic Condition
4.6. UHPLC-UV-PDA-ELSD Semi-Quantitative Metabolite Profiling of PLRE
4.7. Untargeted UHPLC-HRMS/MS Metabolite Profiling of PLRE
4.8. Data Processing of the Metabolite Profiling
4.8.1. Characterization of the Chemical Composition of PLRE
4.8.2. Data Processing of Metabolite Profiling from Permeation Experiments
4.9. UHPLC-MS-TQ-MRM Quantitative Analyses
4.10. Permeation Data Analysis
4.10.1. Apparent Permeability Coefficient
4.10.2. Evaluation of the Retention of NPs in the Intestinal Membrane
4.10.3. Evaluation of the Biotransformation of NPs in the Intestinal Membrane
4.11. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdel-Aziz, H.; Kelber, O.; Lorkowski, G.; Storr, M. Evaluating the Multitarget Effects of Combinations through Multistep Clustering of Pharmacological Data: The Example of the Commercial Preparation Iberogast. Planta Med. 2017, 83, 1130–1140. [Google Scholar] [CrossRef]
- Knoess, W.; Wiesner, J. The Globalization of Traditional Medicines: Perspectives Related to the European Union Regulatory Environment. Engineering 2019, 5, 22–31. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [Green Version]
- WHO. WHO Traditional Medicine Strategy: 2014–2023; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Cordell, G.A. Sixty Challenges—A 2030 Perspective on Natural Products and Medicines Security. Nat. Prod. Commun. 2017, 12, 1371–1379. [Google Scholar] [CrossRef] [Green Version]
- Gertsch, J. How scientific is the science in ethnopharmacology? Historical perspectives and epistemological problems. J. Ethnopharmacol. 2009, 122, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Butterweck, V.; Nahrstedt, A. What is the best strategy for preclinical testing of botanicals? A critical perspective. Planta Med. 2012, 78, 747–754. [Google Scholar] [CrossRef] [Green Version]
- Sugano, K.; Kansy, M.; Artursson, P.; Avdeef, A.; Bendels, S.; Di, L.; Ecker, G.F.; Faller, B.; Fischer, H.; Gerebtzoff, G.; et al. Coexistence of passive and carrier-mediated processes in drug transport. Nat. Rev. Drug Discov. 2010, 9, 597–614. [Google Scholar] [CrossRef]
- Sjogren, E.; Abrahamsson, B.; Augustijns, P.; Becker, D.; Bolger, M.B.; Brewster, M.; Brouwers, J.; Flanagan, T.; Harwood, M.; Heinen, C.; et al. In vivo methods for drug absorption—Comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for formulation/API/excipient characterization including food effects. Eur. J. Pharm. Sci. 2014, 57, 99–151. [Google Scholar] [CrossRef]
- Fritz, A.; Busch, D.; Lapczuk, J.; Ostrowski, M.; Drozdzik, M.; Oswald, S. Expression of clinically relevant drug-metabolizing enzymes along the human intestine and their correlation to drug transporters and nuclear receptors: An intra-subject analysis. Basic Clin. Pharmacol. Toxicol. 2019, 124, 245–255. [Google Scholar] [CrossRef]
- Zhang, K.M.; Yan, G.L.; Zhang, A.H.; Sun, H.; Wang, X.J. Recent advances in pharmacokinetics approach for herbal medicine. RSC Adv. 2017, 7, 28876–28888. [Google Scholar] [CrossRef] [Green Version]
- NC3Rs. The 3Rs, National Centre for the Replacement, Refinement and Reduction of Animals in Research. Available online: https://nc3rs.org.uk/the-3rs (accessed on 23 April 2019).
- Petit, C.; Bujard, A.; Skalicka-Wozniak, K.; Cretton, S.; Houriet, J.; Christen, P.; Carrupt, P.-A.; Wolfender, J.-L. Prediction of the Passive Intestinal Absorption of Medicinal Plant Extract Constituents with the Parallel Artificial Membrane Permeability Assay (PAMPA). Planta Med. 2016, 82, 424–431. [Google Scholar] [CrossRef] [Green Version]
- Hubatsch, I.; Ragnarsson, E.G.E.; Artursson, P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat. Protoc. 2007, 2, 2111–2119. [Google Scholar] [CrossRef]
- Walgren, R.A.; Walle, U.K.; Walle, T. Transport of quercetin and its glucosides across human intestinal epithelial Caco-2 cells. Biochem. Pharmacol. 1998, 55, 1721–1727. [Google Scholar] [CrossRef]
- Fang, Y.J.; Cao, W.W.; Xia, M.M.; Pan, S.Y.; Xu, X.Y. Study of Structure and Permeability Relationship of Flavonoids in Caco-2 Cells. Nutrients 2017, 9, 1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Kuang, Y.; Song, W.; Qian, Y.; Qiao, X.; Guo, D.-A.; Ye, M. Permeability through the Caco-2 cell monolayer of 42 bioactive compounds in the TCM formula Gegen-Qinlian Decoction by liquid chromatography tandem mass spectrometry analysis. J. Pharm. Biomed. Anal. 2017, 146, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Feng, G.F.; Sun, Y.F.; Liu, S.; Pi, Z.F.; Song, F.R.; Liu, Z.Q. Study on the compatibility interactions of formula Ding-Zhi-Xiao-Wan based on their main components transport characteristics across Caco-2 monolayers model. J. Pharm. Biomed. Anal. 2018, 159, 179–185. [Google Scholar] [CrossRef]
- Du, T.; Zeng, M.; Chen, L.; Cao, Z.; Cai, H.; Yang, G.D. Chemical and absorption signatures of Xiao Chai Hu Tang. Rapid Commun. Mass Spectrom. 2018, 32, 1107–1125. [Google Scholar] [CrossRef]
- Sjöberg, Å.; Lutz, M.; Tannergren, C.; Wingolf, C.; Borde, A.; Ungell, A.-L. Comprehensive study on regional human intestinal permeability and prediction of fraction absorbed of drugs using the Ussing chamber technique. Eur. J. Pharm. Sci. 2013, 48, 166–180. [Google Scholar] [CrossRef]
- Ussing, H.H.; Zerahn, K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol. Scand. 1951, 23, 110–127. [Google Scholar] [CrossRef] [PubMed]
- Rozehnal, V.; Nakai, D.; Hoepner, U.; Fischer, T.; Kamiyama, E.; Takahashi, M.; Yasuda, S.; Mueller, J. Human small intestinal and colonic tissue mounted in the Ussing chamber as a tool for characterizing the intestinal absorption of drugs. Eur. J. Pharm. Sci. 2012, 46, 367–373. [Google Scholar] [CrossRef]
- Nejdfors, P.; Ekelund, M.; Jeppsson, B.; Weström, B.R. Mucosal in vitro permeability in the intestinal tract of the pig, the rat, and man: Species- and region-related differences. Scand J. Gastroenterol. 2000, 35, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Miyake, M.; Toguchi, H.; Nishibayashi, T.; Higaki, K.; Sugita, A.; Koganei, K.; Kamada, N.; Kitazume, M.T.; Hisamatsu, T.; Sato, T.; et al. Establishment of Novel Prediction System of Intestinal Absorption in Humans Using Human Intestinal Tissues. J. Pharm. Sci. 2013, 102, 2564–2571. [Google Scholar] [CrossRef] [PubMed]
- Wu-Pong, S.; Livesay, V.; Dvorchik, B.; Barr, W.H. Oligonucleotide transport in rat and human intestine ussing chamber models. Biopharm. Drug Dispos. 1999, 20, 411–416. [Google Scholar] [CrossRef]
- Haslam, I.S.; O’Reilly, D.A.; Sherlock, D.J.; Kauser, A.; Womack, C.; Coleman, T. Pancreatoduodenectomy as a source of human small intestine for Ussing chamber investigations and comparative studies with rat tissue. Biopharm. Drug Dispos. 2011, 32, 210–221. [Google Scholar] [CrossRef] [PubMed]
- Miyake, M.; Kondo, S.; Koga, T.; Yoda, N.; Nakazato, S.; Emoto, C.; Mukai, T.; Toguchi, H. Evaluation of intestinal metabolism and absorption using the Ussing chamber system equipped with intestinal tissue from rats and dogs. Eur. J. Pharm. Biopharm. 2018, 122, 49–53. [Google Scholar] [CrossRef]
- Miyake, M.; Koga, T.; Kondo, S.; Yoda, N.; Emoto, C.; Mukai, T.; Toguchi, H. Prediction of drug intestinal absorption in human using the Ussing chamber system: A comparison of intestinal tissues from animals and humans. Eur. J. Pharm. Sci. 2017, 96, 373–380. [Google Scholar] [CrossRef]
- Arnold, Y.E.; Thorens, J.; Bernard, S.; Kalia Yogeshvar, N. Drug Transport across Porcine Intestine Using an Ussing Chamber System: Regional Differences and the Effect of P-Glycoprotein and CYP3A4 Activity on Drug Absorption. Pharmaceutics 2019, 11, 139. [Google Scholar] [CrossRef] [Green Version]
- Patterson, J.K.; Lei, X.G.; Miller, D.D. The pig as an experimental model for elucidating the mechanisms governing dietary influence on mineral absorption. Exp. Biol. Med. 2008, 233, 651–664. [Google Scholar] [CrossRef]
- Wolffram, S.; Block, M.; Ader, P. Quercetin-3-glucoside is transported by the glucose carrier SGLT1 across the brush border membrane of rat small intestine. J. Nutr. 2002, 132, 630–635. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, M.; Matsukawa, N.; Mineo, H.; Chiji, H.; Hara, H. A soluble flavonoid-glycoside, alpha G-rutin, is absorbed as glycosides in the isolated gastric and intestinal mucosa. Biosci. Biotechnol. Biochem. 2004, 68, 1929–1934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, L.-Y.; Fan, M.-X.; Zhao, H.-Y.; Li, M.-X.; Wu, X.; Gao, W.-Y. Pharmacokinetics and Bioavailability of the Isoflavones Formononetin and Ononin and Their in Vitro Absorption in Ussing Chamber and Caco-2 Cell Models. J. Agric. Food Chem. 2018, 66, 2917–2924. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Wang, M.; Xia, Z. In vitro evaluation of intestinal absorption of tiliroside from Edgeworthia gardneri (Wall.) Meisn. Xenobiotica 2021, 51, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Deußer, H.; Rogoll, D.; Scheppach, W.; Volk, A.; Melcher, R.; Richling, E. Gastrointestinal absorption and metabolism of apple polyphenols ex vivo by the pig intestinal mucosa in the Ussing chamber. Biotechnol. J. 2013, 8, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Erk, T.; Hauser, J.; Williamson, G.; Renouf, M.; Steiling, H.; Dionisi, F.; Richling, E. Structure–and dose–absorption relationships of coffee polyphenols. BioFactors 2014, 40, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Vermaak, I.; Viljoen, A.M.; Chen, W.; Hamman, J.H. In vitro transport of the steroidal glycoside P57 from Hoodia gordonii across excised porcine intestinal and buccal tissue. Phytomedicine 2011, 18, 783–787. [Google Scholar] [CrossRef]
- Arnold, Y.E.; Kalia, Y.N. Using Ex Vivo Porcine Jejunum to Identify Membrane Transporter Substrates: A Screening Tool for Early-Stage Drug Development. Biomedicines 2020, 8, 340. [Google Scholar] [CrossRef]
- Wolfender, J.-L.; Nuzillard, J.-M.; van der Hooft, J.J.J.; Renault, J.-H.; Bertrand, S. Accelerating Metabolite Identification in Natural Product Research: Toward an Ideal Combination of Liquid Chromatography–High-Resolution Tandem Mass Spectrometry and NMR Profiling, in Silico Databases, and Chemometrics. Anal. Chem. 2019, 91, 704–742. [Google Scholar] [CrossRef]
- Allard, P.-M.; Peresse, T.; Bisson, J.; Gindro, K.; Marcourt, L.; Pham, V.C.; Roussi, F.; Litaudon, M.; Wolfender, J.-L. Integration of Molecular Networking and In-Silico MS/MS Fragmentation for Natural Products Dereplication. Anal. Chem. 2016, 88, 3317–3323. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef] [Green Version]
- Nothias, L.F.; Petras, D.; Schmid, R.; Duhrkop, K.; Rainer, J.; Sarvepalli, A.; Protsyuk, I.; Ernst, M.; Tsugawa, H.; Fleischauer, M.; et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 2020, 17, 905–908. [Google Scholar] [CrossRef]
- Zhang, Z.; Lam, T.-N.; Zuo, Z. Radix Puerariae: An overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J. Clin. Pharmacol. 2013, 53, 787–811. [Google Scholar] [CrossRef] [PubMed]
- Rowland, I.; Faughnan, M.; Hoey, L.; Waehaelae, K.; Williamson, G.; Cassidy, A. Bioavailability of phyto-oestrogens. Br. J. Nutr. 2003, 89, S45–S58. [Google Scholar] [CrossRef]
- Prasain, J.K.; Jones, K.; Brissie, N.; Moore, R.; Wyss, J.M.; Barnes, S. Identification of Puerarin and Its Metabolites in Rats by Liquid Chromatography-Tandem Mass Spectrometry. J. Agric. Food Chem. 2004, 52, 3708–3712. [Google Scholar] [CrossRef]
- Qiao, X.; Wang, Q.; Wang, S.; Miao, W.-J.; Li, Y.-J.; Xiang, C.; Guo, D.-A.; Ye, M. Compound to Extract to Formulation: A knowledge-transmitting approach for metabolites identification of Gegen-Qinlian Decoction, a traditional Chinese medicine formula. Sci. Rep. 2016, 6, 39534. [Google Scholar] [CrossRef] [Green Version]
- Messina, M. Soy and Health Update: Evaluation of the Clinical and Epidemiologic Literature. Nutrients 2016, 8, 754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dornstauder, E.; Jisa, E.; Unterrieder, I.; Krenn, L.; Kubelka, W.; Jungbauer, A. Estrogenic activity of two standardized red clover extracts (Menoflavon®) intended for large scale use in hormone replacement therapy. J. Steroid Biochem. Mol. Biol. 2001, 78, 67–75. [Google Scholar] [CrossRef]
- Setchell, K.D.R.; Brown, N.M.; Desai, P.; Zimmer-Nechemias, L.; Wolfe, B.E.; Brashear, W.T.; Kirschner, A.S.; Cassidy, A.; Heubi, J.E. Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. J. Nutr. 2001, 131, 1362S–1375S. [Google Scholar] [CrossRef] [Green Version]
- Setchell, K.D.R.; Brown, N.M.; Zimmer-Nechemias, L.; Brashear, W.T.; Wolfe, B.E.; Kirschner, A.S.; Heubi, J.E. Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am. J. Clin. Nutr. 2002, 76, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Zubik, L.; Meydani, M. Bioavailability of soybean isoflavones from aglycone and glucoside forms in american women. Am. J. Clin. Nutr. 2003, 77, 1459–1465. [Google Scholar] [CrossRef]
- Rufer, C.E.; Bub, A.; Moseneder, J.; Winterhalter, P.; Sturtz, M.; Kulling, S.E. Pharmacokinetics of the soybean isoflavone daidzein in its aglycone and glucoside form: A randomized, double-blind, crossover study. Am. J. Clin. Nutr. 2008, 87, 1314–1323. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.W.; House, S.E.; Prior, R.L.; Fang, N.; Ronis, M.J.J.; Clarkson, T.B.; Wilson, M.E.; Badger, T.M. Metabolic phenotype of isoflavones differ among female rats, pigs, monkeys, and women. J. Nutr. 2006, 136, 1215–1221. [Google Scholar] [CrossRef]
- DNP. Dictionary of Natural Products on DVD (27.2); CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2019. [Google Scholar]
- Rutz, A.; Dounoue-Kubo, M.; Ollivier, S.; Bisson, J.; Bagheri, M.; Saesong, T.; Ebrahimi, S.N.; Ingkaninan, K.; Wolfender, J.-L.; Allard, P.-M. Taxonomically Informed Scoring Enhances Confidence in Natural Products Annotation. Front. Plant Sci. 2019, 10, 1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucena, R.; Cardenas, S.; Valcarcel, M. Evaporative light scattering detection: Trends in its analytical uses. Anal. Bioanal. Chem. 2007, 388, 1663–1672. [Google Scholar] [CrossRef] [PubMed]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis. Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [Green Version]
- ChemAxon. Chemicalize, ChemAxon Ltd. Available online: https://chemicalize.com/ (accessed on 10 May 2019).
- Kondo, S.; Miyake, M. Simultaneous Prediction of Intestinal Absorption and Metabolism Using the Mini-Ussing Chamber System. J. Pharm. Sci. 2019, 108, 763–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howes, J.; Waring, M.; Huang, L.; Howes Laurence, G. Long-term pharmacokinetics of an extract of isoflavones from red clover (Trifolium pratense). J. Altern. Complement. Med. 2002, 8, 135–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penetar, D.M.; Teter, C.J.; Ma, Z.Z.; Tracy, M.; Lee, D.Y.W.; Lukas, S.E. Pharmacokinetic profile of the isoflavone puerarin after acute and repeated administration of a novel kudzu extract to human volunteers. J. Altern. Complement. Med. 2006, 12, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.-R.; Kim, S.-J.; Ham, S.-H.; Cho, J.-H.; Lee, Y.-B.; Cho, H.-Y. Simultaneous determination of puerarin and its active metabolite in human plasma by UPLC-MS/MS: Application to a pharmacokinetic study. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 971, 64–71. [Google Scholar] [CrossRef]
- Amidon, G.L.; Lennernaes, H.; Shah, V.P.; Crison, J.R. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 1995, 12, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, T.; Kano, Y.; Saito, K.-I.; Ohsawa, K. Urinary and biliary metabolites of puerarin in rats. Biol. Pharm. Bull. 1995, 18, 300–303. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-H.; Yu, K.-U.; Bae, E.-A.; Han, M.J. Metabolism of Puerarin and Daidzin by Human Intestinal Bacteria and Their Relation to in Vitro Cytotoxicity. Biol. Pharm. Bull. 1998, 21, 628–630. [Google Scholar] [CrossRef] [Green Version]
- Braune, A.; Blaut, M. Deglycosylation of puerarin and other aromatic C-glucosides by a newly isolated human intestinal bacterium. Environ. Microbiol. 2011, 13, 482–494. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, Y.L.; Liu, X.M.; Han, W.; Yu, Z.G. Simultaneous determination of six isoflavonoids in rat plasma after administration of total flavonoid from Gegen by ultra-HPLC-MS/MS. J. Sep. Sci. 2012, 35, 984–993. [Google Scholar] [CrossRef]
- Day, A.J.; DuPont, M.S.; Ridley, S.; Rhodes, M.; Rhodes, M.J.C.; Morgan, M.R.A.; Williamson, G. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett. 1998, 436, 71–75. [Google Scholar] [CrossRef] [Green Version]
- Taneja, I.; Arora, S.; Raju, K.S.R.; Siddiqui, N. Disposition of Pharmacologically Active Dietary Isoflavones in Biological Systems. Curr. Drug Metab. 2013, 14, 369–380. [Google Scholar]
- Doerge, D.R.; Chang, H.C.; Churchwell, M.I.; Holder, C.L. Analysis of Soy Isoflavone Conjugation In Vitro and in Human Blood Using Liquid Chromatography-Mass Spectrometry. Drug Metab. Dispos. 2000, 28, 298. [Google Scholar] [PubMed]
- Tolleson, W.H.; Doerge, D.R.; Churchwell, M.I.; Marques, M.M.; Roberts, D.W. Metabolism of Biochanin A and Formononetin by Human Liver Microsomes in Vitro. J. Agric. Food Chem. 2002, 50, 4783–4790. [Google Scholar] [CrossRef]
- Drewe, J.; Narjes, H.; Heinzel, G.; Brickl, R.S.; Rohr, A.; Beglinger, C. Absorption of lefradafiban from different sites of the gastrointestinal tract. Br. J. Clin. Pharmacol. 2000, 50, 69–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuasa, H. Drug Absorption from the Colon In Situ. In Drug Absorption Studies: In Situ, In Vitro and In Silico Models; Ehrhardt, C., Kim, K.-J., Eds.; Springer: Boston, MA, USA, 2008; pp. 77–88. [Google Scholar]
- Dahlgren, D.; Roos, C.; Sjogren, E.; Lennernas, H. Direct In Vivo Human Intestinal Permeability (Peff) Determined with Different Clinical Perfusion and Intubation Methods. J. Pharm. Sci. 2015, 104, 2702–2726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemeth, K.; Plumb, G.W.; Berrin, J.-G.; Juge, N.; Jacob, R.; Naim, H.Y.; Williamson, G.; Swallow, D.M.; Kroon, P.A. Deglycosylation by small intestinal epithelial cell β-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur. J. Nutr. 2003, 42, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Tamura, A.; Shiomi, T.; Hachiya, S.; Shigematsu, N.; Hara, H. Low activities of intestinal lactase suppress the early phase absorption of soy isoflavones in Japanese adults. Clin. Nutr. 2008, 27, 248–253. [Google Scholar] [CrossRef]
- Yonemoto-Yano, H.; Maebuchi, M.; Fukui, K.; Tsuzaki, S.; Takamatsu, K.; Uehara, M. Malonyl Isoflavone Glucosides Are Chiefly Hydrolyzed and Absorbed in the Colon. J. Agric. Food Chem. 2014, 62, 2264–2270. [Google Scholar] [CrossRef]
- Kottra, G.; Daniel, H. Flavonoid glycosides are not transported by the human Na+/glucose transporter when expressed in Xenopus laevis oocytes, but effectively inhibit electrogenic glucose uptake. J. Pharmacol. Exp. Ther. 2007, 322, 829–835. [Google Scholar] [CrossRef] [Green Version]
- Shirazi-Beechey, S.P. Molecular Biology of Intestinal Glucose Transport. Nutr. Res. Rev. 1995, 8, 27–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.H.; Yang, Q.; Ren, M.; Qiao, S.Y.; He, P.L.; Li, D.F.; Zeng, X.F. Effects of isoleucine on glucose uptake through the enhancement of muscular membrane concentrations of GLUT1 and GLUT4 and intestinal membrane concentrations of Na+/glucose co-transporter 1 (SGLT-1) and GLUT2. Br. J. Nutr. 2016, 116, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Hogman, M.; Mork, A.C.; Roomans, G.M. Hypertonic saline increases tight junction permeability in airway epithelium. Eur. Respir. J. 2002, 20, 1444–1448. [Google Scholar] [CrossRef] [PubMed]
- Neirinckx, E.; Vervaet, C.; Michiels, J.; De Smet, S.; Van Den Broeck, W.; Remon, J.P.; De Backer, P.; Croubels, S. Feasibility of the Ussing chamber technique for the determination of in vitro jejunal permeability of passively absorbed compounds in different animal species. J. Vet. Pharmacol. Ther. 2011, 34, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Clarke, L.L. A guide to Ussing chamber studies of mouse intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 296, G1151–G1166. [Google Scholar] [CrossRef] [Green Version]
- Kessner, D.; Chambers, M.; Burke, R.; Agus, D.; Mallick, P. ProteoWizard: Open source software for rapid proteomics tools development. Bioinformatics 2008, 24, 2534–2536. [Google Scholar] [CrossRef]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Oresic, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 395. [Google Scholar] [CrossRef] [Green Version]
- Pluskal, T.; Uehara, T.; Yanagida, M. Highly Accurate Chemical Formula Prediction Tool Utilizing High-Resolution Mass Spectra, MS/MS Fragmentation, Heuristic Rules, and Isotope Pattern Matching. Anal. Chem. 2012, 84, 4396–4403. [Google Scholar] [CrossRef] [PubMed]
- Myers, O.D.; Sumner, S.J.; Li, S.; Barnes, S.; Du, X. One Step Forward for Reducing False Positive and False Negative Compound Identifications from Mass Spectrometry Metabolomics Data: New Algorithms for Constructing Extracted Ion Chromatograms and Detecting Chromatographic Peaks. Anal. Chem. 2017, 89, 8696–8703. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Houriet, J.; Arnold, Y.E.; Pellissier, L.; Kalia, Y.N.; Wolfender, J.-L. Using Porcine Jejunum Ex Vivo to Study Absorption and Biotransformation of Natural Products in Plant Extracts: Pueraria lobata as a Case Study. Metabolites 2021, 11, 541. https://doi.org/10.3390/metabo11080541
Houriet J, Arnold YE, Pellissier L, Kalia YN, Wolfender J-L. Using Porcine Jejunum Ex Vivo to Study Absorption and Biotransformation of Natural Products in Plant Extracts: Pueraria lobata as a Case Study. Metabolites. 2021; 11(8):541. https://doi.org/10.3390/metabo11080541
Chicago/Turabian StyleHouriet, Joëlle, Yvonne E. Arnold, Léonie Pellissier, Yogeshvar N. Kalia, and Jean-Luc Wolfender. 2021. "Using Porcine Jejunum Ex Vivo to Study Absorption and Biotransformation of Natural Products in Plant Extracts: Pueraria lobata as a Case Study" Metabolites 11, no. 8: 541. https://doi.org/10.3390/metabo11080541
APA StyleHouriet, J., Arnold, Y. E., Pellissier, L., Kalia, Y. N., & Wolfender, J. -L. (2021). Using Porcine Jejunum Ex Vivo to Study Absorption and Biotransformation of Natural Products in Plant Extracts: Pueraria lobata as a Case Study. Metabolites, 11(8), 541. https://doi.org/10.3390/metabo11080541