Substantial Fat Loss in Physique Competitors Is Characterized by Increased Levels of Bile Acids, Very-Long Chain Fatty Acids, and Oxylipins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants: The Physique Study
2.2. Anthropometric Measurements
2.3. Dietary Information and Physical Activity
2.4. Blood Samples
2.5. Metabolite Extraction and LC-MS METABOLOMICS
2.6. Quality Control and Statistical Analysis of the Metabolome
2.7. Enrichment Analysis of LC-MS Metabolome
3. Results
3.1. Overview of the Study
3.2. Overview of the LC-MS Metabolome Modulation following Substantial Fat Mass Loss and Voluntary Fat Regain
3.3. Substantial Fat Mass Loss Promotes Wide Increases in Plasma Bile Acid (BA) Derivatives
3.4. Substantial Fat Mass Loss Achieved through Low-Energy Availability and Physical Activity Promotes Accumulation of Very-Long-Chain Fatty Acids (VLCFAs)
3.5. Substantial Weight Loss Achieved by Combined Low-Energy Availability and Physical Activity Is Associated with Diminished Levels of Unsaturated FFAs
3.6. Increased Levels of Oxylipins and Eicosanoids Characterize Substantial Weight Loss Achieved by Combined Low-Energy Availability and Physical Activity
3.7. Android Fat Mass Most Strongly Mediates Changes in Free Fatty Acid (FFA), Oxylipin, and Bile Acid Profiles in Female Physique Athletes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin, C.B.; Herrick, K.A.; Sarafrazi, N.; Ogden, C.L. Attempts to Lose Weight Among Adults in the United States, 2013–2016. NCHS Data Brief. 2018, 313, 1–8. [Google Scholar]
- Ferraro, Z.M.; Patterson, S.; Chaput, J.-P. Unhealthy Weight Control Practices: Culprits and Clinical Recommendations. Clin. Med. Insights Endocrinol. Diabetes 2015, 8, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Huovinen, H.T.; Hulmi, J.J.; Isolehto, J.; Kyröläinen, H.; Puurtinen, R.; Karila, T.; Mackala, K.; Mero, A.A. Body Composition and Power Performance Improved after Weight Reduction in Male Athletes without Hampering Hormonal Balance. J. Strength Cond. Res. 2015, 29, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Hulmi, J.J.; Isola, V.; Suonpää, M.; Järvinen, N.J.; Kokkonen, M.; Wennerström, A.; Nyman, K.; Perola, M.; Ahtiainen, J.P.; Häkkinen, K. The Effects of Intensive Weight Reduction on Body Composition and Serum Hormones in Female Fitness Competitors. Front. Physiol. 2016, 7, 689. [Google Scholar] [CrossRef] [PubMed]
- Sarin, H.V.; Lee, J.H.; Jauhiainen, M.; Joensuu, A.; Borodulin, K.; Männistö, S.; Jin, Z.; Terwilliger, J.D.; Isola, V.; Ahtiainen, J.P.; et al. Substantial Fat Mass Loss Reduces Low-Grade Inflammation and Induces Positive Alteration in Cardiometabolic Factors in Normal-Weight Individuals. Sci. Rep. 2019, 9, 3450. [Google Scholar] [CrossRef] [PubMed]
- Shirley, M.K.; Longman, D.P.; Elliott-Sale, K.J.; Hackney, A.C.; Sale, C.; Dolan, E. A Life History Perspective on Athletes with Low Energy Availability. Sports Med. 2022, 52, 1223–1234. [Google Scholar] [CrossRef]
- Sarin, H.V.; Gudelj, I.; Honkanen, J.; Ihalainen, J.K.; Vuorela, A.; Lee, J.H.; Jin, Z.; Terwilliger, J.D.; Isola, V.; Ahtiainen, J.P.; et al. Molecular Pathways Mediating Immunosuppression in Response to Prolonged Intensive Physical Training, Low-Energy Availability, and Intensive Weight Loss. Front. Immunol. 2019, 10, 907. [Google Scholar] [CrossRef]
- Soininen, P.; Kangas, A.J.; Würtz, P.; Tukiainen, T.; Tynkkynen, T.; Laatikainen, R.; Järvelin, M.-R.; Kähönen, M.; Lehtimäki, T.; Viikari, J.; et al. High-Throughput Serum NMR Metabonomics for Cost-Effective Holistic Studies on Systemic Metabolism. Analyst 2009, 134, 1781–1785. [Google Scholar] [CrossRef]
- Palmu, J.; Watrous, J.D.; Mercader, K.; Havulinna, A.S.; Lagerborg, K.A.; Salosensaari, A.; Inouye, M.; Larson, M.G.; Rong, J.; Vasan, R.S.; et al. Eicosanoid Inflammatory Mediators Are Robustly Associated with Blood Pressure in the General Population. J. Am. Heart Assoc. 2020, 9, e017598. [Google Scholar] [CrossRef]
- Demler, O.V.; Liu, Y.; Luttmann-Gibson, H.; Watrous, J.D.; Lagerborg, K.A.; Dashti, H.; Giulianini, F.; Heath, M.; Camargo, C.A.; Harris, W.S.; et al. One-Year Effects of Omega-3 Treatment on Fatty Acids, Oxylipins, and Related Bioactive Lipids and Their Associations with Clinical Lipid and Inflammatory Biomarkers: Findings from a Substudy of the Vitamin D and Omega-3 Trial (VITAL). Metabolites 2020, 10, 431. [Google Scholar] [CrossRef]
- Lagerborg, K.A.; Watrous, J.D.; Cheng, S.; Jain, M. High-Throughput Measure of Bioactive Lipids Using Non-Targeted Mass Spectrometry. In Metabolic Signaling; Methods in Molecular Biology Series; Springer: New York, NY, USA, 2019; Volume 1862, pp. 17–35. [Google Scholar] [CrossRef]
- Watrous, J.D.; Niiranen, T.J.; Lagerborg, K.A.; Henglin, M.; Xu, Y.-J.; Rong, J.; Sharma, S.; Vasan, R.S.; Larson, M.G.; Armando, A.; et al. Directed Non-Targeted Mass Spectrometry and Chemical Networking for Discovery of Eicosanoids and Related Oxylipins. Cell Chem. Biol. 2019, 26, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Kujala, U.M.; Mäkinen, V.-P.; Heinonen, I.; Soininen, P.; Kangas, A.J.; Leskinen, T.H.; Rahkila, P.; Würtz, P.; Kovanen, V.; Cheng, S.; et al. Long-Term Leisure-Time Physical Activity and Serum Metabolome. Circulation 2013, 127, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.; Warnakula, S.; Kunutsor, S.; Crowe, F.; Ward, H.A.; Johnson, L.; Franco, O.H.; Butterworth, A.S.; Forouhi, N.G.; Thompson, S.G.; et al. Association of Dietary, Circulating, and Supplement Fatty Acids with Coronary Risk: A Systematic Review and Meta-Analysis. Ann. Intern. Med. 2014, 160, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Möller, K.; Ostermann, A.I.; Rund, K.; Thoms, S.; Blume, C.; Stahl, F.; Hahn, A.; Schebb, N.H.; Schuchardt, J.P. Influence of Weight Reduction on Blood Levels of C-Reactive Protein, Tumor Necrosis Factor-α, Interleukin-6, and Oxylipins in Obese Subjects. Prostaglandins Leukot. Essent. Fatty Acids 2016, 106, 39–49. [Google Scholar] [CrossRef]
- Signini, É.F.; Nieman, D.C.; Silva, C.D.; Sakaguchi, C.A.; Catai, A.M. Oxylipin Response to Acute and Chronic Exercise: A Systematic Review. Metabolites 2020, 10, 264. [Google Scholar] [CrossRef]
- Troyanskaya, O.; Cantor, M.; Sherlock, G.; Brown, P.; Hastie, T.; Tibshirani, R.; Botstein, D.; Altman, R.B. Missing Value Estimation Methods for DNA Microarrays. Bioinform. Oxf. Engl. 2001, 17, 520–525. [Google Scholar] [CrossRef]
- Hanley, J.A.; Negassa, A.; Edwardes, M.D.d.; Forrester, J.E. Statistical Analysis of Correlated Data Using Generalized Estimating Equations: An Orientation. Am. J. Epidemiol. 2003, 157, 364–375. [Google Scholar] [CrossRef]
- Penney, N.C.; Kinross, J.; Newton, R.C.; Purkayastha, S. The Role of Bile Acids in Reducing the Metabolic Complications of Obesity after Bariatric Surgery: A Systematic Review. Int. J. Obes. 2015, 39, 1565–1574. [Google Scholar] [CrossRef]
- Steinert, R.E.; Peterli, R.; Keller, S.; Meyer-Gerspach, A.C.; Drewe, J.; Peters, T.; Beglinger, C. Bile Acids and Gut Peptide Secretion after Bariatric Surgery: A 1-Year Prospective Randomized Pilot Trial. Obesity 2013, 21, E660–E668. [Google Scholar] [CrossRef]
- Pournaras, D.J.; Glicksman, C.; Vincent, R.P.; Kuganolipava, S.; Alaghband-Zadeh, J.; Mahon, D.; Bekker, J.H.R.; Ghatei, M.A.; Bloom, S.R.; Walters, J.R.F.; et al. The Role of Bile After Roux-En-Y Gastric Bypass in Promoting Weight Loss and Improving Glycaemic Control. Endocrinology 2012, 153, 3613–3619. [Google Scholar] [CrossRef] [Green Version]
- Albaugh, V.L.; Flynn, C.R.; Cai, S.; Xiao, Y.; Tamboli, R.A.; Abumrad, N.N. Early Increases in Bile Acids Post Roux-En-Y Gastric Bypass Are Driven by Insulin-Sensitizing, Secondary Bile Acids. J. Clin. Endocrinol. Metab. 2015, 100, E1225–E1233. [Google Scholar] [CrossRef] [PubMed]
- Ferrannini, E.; Camastra, S.; Astiarraga, B.; Nannipieri, M.; Castro-Perez, J.; Xie, D.; Wang, L.; Chakravarthy, M.; Haeusler, R.A. Increased Bile Acid Synthesis and Deconjugation After Biliopancreatic Diversion. Diabetes 2015, 64, 3377. [Google Scholar] [CrossRef] [PubMed]
- Kohli, R.; Bradley, D.; Setchell, K.D.; Eagon, J.C.; Abumrad, N.; Klein, S. Weight Loss Induced by Roux-En-Y Gastric Bypass But Not Laparoscopic Adjustable Gastric Banding Increases Circulating Bile Acids. J. Clin. Endocrinol. Metab. 2013, 98, E708–E712. [Google Scholar] [CrossRef] [PubMed]
- Biemann, R.; Penner, M.; Borucki, K.; Westphal, S.; Luley, C.; Rönicke, R.; Biemann, K.; Weikert, C.; Lux, A.; Goncharenko, N.; et al. Serum Bile Acids and GLP-1 Decrease Following Telemetric Induced Weight Loss: Results of a Randomized Controlled Trial. Sci. Rep. 2016, 6, 30173. [Google Scholar] [CrossRef]
- Heianza, Y.; Zhou, T.; He, H.; Rood, J.; Clish, C.B.; Bray, G.A.; Sacks, F.M.; Qi, L. Changes in Bile Acid Subtypes and Long-Term Successful Weight-Loss in Response to Weight-Loss Diets: The POUNDS Lost Trial. Liver Int. 2022, 42, 363–373. [Google Scholar] [CrossRef]
- Mercer, K.E.; Maurer, A.; Pack, L.M.; Ono-Moore, K.; Spray, B.J.; Campbell, C.; Chandler, C.J.; Burnett, D.; Souza, E.; Casazza, G.; et al. Exercise Training and Diet-Induced Weight Loss Increase Markers of Hepatic Bile Acid (BA) Synthesis and Reduce Serum Total BA Concentrations in Obese Women. Am. J. Physiol. Endocrinol. Metab. 2021, 320, E864–E873. [Google Scholar] [CrossRef]
- Straniero, S.; Rosqvist, F.; Edholm, D.; Ahlström, H.; Kullberg, J.; Sundbom, M.; Risérus, U.; Rudling, M. Acute Caloric Restriction Counteracts Hepatic Bile Acid and Cholesterol Deficiency in Morbid Obesity. J. Intern. Med. 2017, 281, 507–517. [Google Scholar] [CrossRef]
- Prinz, P.; Hofmann, T.; Ahnis, A.; Elbelt, U.; Goebel-Stengel, M.; Klapp, B.F.; Rose, M.; Stengel, A. Plasma Bile Acids Show a Positive Correlation with Body Mass Index and Are Negatively Associated with Cognitive Restraint of Eating in Obese Patients. Front. Neurosci. 2015, 9, 199. [Google Scholar] [CrossRef]
- Xie, G.; Wang, Y.; Wang, X.; Zhao, A.; Chen, T.; Ni, Y.; Wong, L.; Zhang, H.; Zhang, J.; Liu, C.; et al. Profiling of Serum Bile Acids in a Healthy Chinese Population Using UPLC–MS/MS. J. Proteome Res. 2015, 14, 850–859. [Google Scholar] [CrossRef]
- Suzuki, T.; Aoyama, J.; Hashimoto, M.; Ohara, M.; Futami-Suda, S.; Suzuki, K.; Ouchi, M.; Igari, Y.; Watanabe, K.; Nakano, H. Correlation between Postprandial Bile Acids and Body Fat Mass in Healthy Normal-Weight Subjects. Clin. Biochem. 2014, 47, 1128–1131. [Google Scholar] [CrossRef]
- Maurer, A.; Ward, J.L.; Dean, K.; Billinger, S.A.; Lin, H.; Mercer, K.E.; Adams, S.H.; Thyfault, J.P. Divergence in Aerobic Capacity Impacts Bile Acid Metabolism in Young Women. J. Appl. Physiol. 2020, 129, 768–778. [Google Scholar] [CrossRef] [PubMed]
- Haeusler, R.A.; Astiarraga, B.; Camastra, S.; Accili, D.; Ferrannini, E. Human Insulin Resistance Is Associated With Increased Plasma Levels of 12α-Hydroxylated Bile Acids. Diabetes 2013, 62, 4184–4191. [Google Scholar] [CrossRef] [PubMed]
- Bishay, R.H.; Tonks, K.T.; George, J.; Samocha-Bonet, D.; Meyerowitz-Katz, G.; Chisholm, D.J.; James, D.E.; Greenfield, J.R. Plasma Bile Acids More Closely Align With Insulin Resistance, Visceral and Hepatic Adiposity Than Total Adiposity. J. Clin. Endocrinol. Metab. 2021, 106, e1131–e1139. [Google Scholar] [CrossRef]
- Shimizu, H.; Hagio, M.; Iwaya, H.; Tsuneki, I.; Lee, J.-Y.; Fukiya, S.; Yokota, A.; Miyazaki, H.; Hara, H.; Ishizuka, S. Deoxycholic Acid Is Involved in the Proliferation and Migration of Vascular Smooth Muscle Cells. J. Nutr. Sci. Vitaminol. 2014, 60, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Jovanovich, A.; Isakova, T.; Block, G.; Stubbs, J.; Smits, G.; Chonchol, M.; Miyazaki, M. Deoxycholic Acid, a Metabolite of Circulating Bile Acids, and Coronary Artery Vascular Calcification in CKD. Am. J. Kidney Dis. 2018, 71, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Chong Nguyen, C.; Duboc, D.; Rainteau, D.; Sokol, H.; Humbert, L.; Seksik, P.; Bellino, A.; Abdoul, H.; Bouazza, N.; Treluyer, J.-M.; et al. Circulating Bile Acids Concentration Is Predictive of Coronary Artery Disease in Human. Sci. Rep. 2021, 11, 22661. [Google Scholar] [CrossRef]
- Frazier, R.; Cai, X.; Lee, J.; Bundy, J.D.; Jovanovich, A.; Chen, J.; Deo, R.; Lash, J.P.; Anderson, A.H.; Go, A.S.; et al. Deoxycholic Acid and Risks of Cardiovascular Events, ESKD, and Mortality in CKD: The CRIC Study. Kidney Med. 2022, 4, 100387. [Google Scholar] [CrossRef]
- Li, W.; Shu, S.; Cheng, L.; Hao, X.; Wang, L.; Wu, Y.; Yuan, Z.; Zhou, J. Fasting Serum Total Bile Acid Level Is Associated with Coronary Artery Disease, Myocardial Infarction and Severity of Coronary Lesions. Atherosclerosis 2020, 292, 193–200. [Google Scholar] [CrossRef]
- Guan, B.; Tong, J.; Hao, H.; Yang, Z.; Chen, K.; Xu, H.; Wang, A. Bile Acid Coordinates Microbiota Homeostasis and Systemic Immunometabolism in Cardiometabolic Diseases. Acta Pharm. Sin. B 2022, 12, 2129–2149. [Google Scholar] [CrossRef]
- Ni, Y.; Zhao, L.; Yu, H.; Ma, X.; Bao, Y.; Rajani, C.; Loo, L.W.M.; Shvetsov, Y.B.; Yu, H.; Chen, T.; et al. Circulating Unsaturated Fatty Acids Delineate the Metabolic Status of Obese Individuals. EBioMedicine 2015, 2, 1513–1522. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.J.; Lee, A.; Yoo, H.J.; Kim, M.; Kim, M.; Jee, S.H.; Shin, D.Y.; Lee, J.H. Effect of Weight Loss on Circulating Fatty Acid Profiles in Overweight Subjects with High Visceral Fat Area: A 12-Week Randomized Controlled Trial. Nutr. J. 2018, 17, 28. [Google Scholar] [CrossRef] [PubMed]
- Lemaitre, R.N.; McKnight, B.; Sotoodehnia, N.; Fretts, A.M.; Qureshi, W.T.; Song, X.; King, I.B.; Sitlani, C.M.; Siscovick, D.S.; Psaty, B.M.; et al. Circulating Very Long-Chain Saturated Fatty Acids and Heart Failure: The Cardiovascular Health Study. J. Am. Heart Assoc. 2018, 7, e010019. [Google Scholar] [CrossRef] [PubMed]
- Lemaitre, R.N.; King, I.B. Very Long-Chain Saturated Fatty Acids and Diabetes and Cardiovascular Disease. Curr. Opin. Lipidol. 2022, 33, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Chiuve, S.E.; Campos, H.; Rimm, E.B.; Mozaffarian, D.; Hu, F.B.; Sun, Q. Circulating Very-Long-Chain Saturated Fatty Acids and Incident Coronary Heart Disease in US Men and Women. Circulation 2015, 132, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, X.; Li, X.; Chu, Q.; Zhou, Y.; Li, Z.; Zhang, H.; Brenna, T.J.; Song, Y.; Gao, Y. Associations of Plasma Very-Long-Chain SFA and the Metabolic Syndrome in Adults. Br. J. Nutr. 2018, 120, 855–862. [Google Scholar] [CrossRef]
- Miyazaki, T.; Shimada, K.; Hiki, M.; Kume, A.; Kitamura, Y.; Oshida, K.; Yanagisawa, N.; Kiyanagi, T.; Matsumori, R.; Daida, H. High Hexacosanoic Acid Levels Are Associated with Coronary Artery Disease. Atherosclerosis 2014, 233, 429–433. [Google Scholar] [CrossRef]
- Fernández-Real, J.-M.; Broch, M.; Vendrell, J.; Ricart, W. Insulin Resistance, Inflammation, and Serum Fatty Acid Composition. Diabetes Care 2003, 26, 1362–1368. [Google Scholar] [CrossRef]
- Schmitz-Peiffer, C.; Craig, D.L.; Biden, T.J. Ceramide Generation Is Sufficient to Account for the Inhibition of the Insulin-Stimulated PKB Pathway in C2C12 Skeletal Muscle Cells Pretreated with Palmitate. J. Biol. Chem. 1999, 274, 24202–24210. [Google Scholar] [CrossRef]
- Chavez, J.A.; Summers, S.A. Characterizing the Effects of Saturated Fatty Acids on Insulin Signaling and Ceramide and Diacylglycerol Accumulation in 3T3-L1 Adipocytes and C2C12 Myotubes. Arch. Biochem. Biophys. 2003, 419, 101–109. [Google Scholar] [CrossRef]
- Sarin, H.V.; Pirinen, E.; Pietiläinen, K.H.; Isola, V.; Häkkinen, K.; Perola, M.; Hulmi, J.J. Mitochondrial Bioenergetic Pathways in Blood Leukocyte Transcriptome Decrease after Intensive Weight Loss but Are Rescued Following Weight Regain in Female Physique Athletes. FASEB J. 2021, 35, e21484. [Google Scholar] [CrossRef]
- Treasure, J.; Claudino, A.M.; Zucker, N. Eating Disorders. Lancet 2010, 375, 583–593. [Google Scholar] [CrossRef]
- Grapov, D.; Fiehn, O.; Campbell, C.; Chandler, C.J.; Burnett, D.J.; Souza, E.C.; Casazza, G.A.; Keim, N.L.; Hunter, G.R.; Fernandez, J.R.; et al. Impact of a Weight Loss and Fitness Intervention on Exercise-Associated Plasma Oxylipin Patterns in Obese, Insulin-Resistant, Sedentary Women. Physiol. Rep. 2020, 8, e14547. [Google Scholar] [CrossRef] [PubMed]
- Hardwick, J.P.; Eckman, K.; Lee, Y.K.; Abdelmegeed, M.A.; Esterle, A.; Chilian, W.M.; Chiang, J.Y.; Song, B.-J. Eicosanoids in Metabolic Syndrome. Adv. Pharmacol. 2013, 66, 157–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Annotation and Adduct Information | PRE-MID (Time × Group) | PRE-POST (Time × Group) | |||||
---|---|---|---|---|---|---|---|
Metabolite Subclass and ID | Matching ID | Estimate | Standard Error | FDR | Estimate | Standard Error | FDR |
Bile Acids | |||||||
Taurocholic Acid [M-H] | 121166 | 7.80 | 2.23 | 1.74 × 10−2 | 0.80 | 1.49 | 9.51 × 10−1 |
Chenodeoxycholic acid [M-H + Acetate] | 335959 | 10.73 | 3.70 | 4.72 × 10−2 | −6.81 | 3.58 | 6.77 × 10−1 |
Chenodeoxycholic acid [M-H] | 335887 | 11.36 | 3.80 | 4.05 × 10−2 | −7.06 | 3.71 | 6.77 × 10−1 |
β-Muricholic Acid [M-H + Acetate] | 235588 | 12.11 | 3.75 | 2.63 × 10−2 | −6.42 | 3.58 | 6.98 × 10−1 |
β-Muricholic Acid [M-H] | 235527 | 12.34 | 3.79 | 2.63 × 10−2 | −6.93 | 3.63 | 6.77 × 10−1 |
Free Fatty Acids (FFA) | |||||||
Nervonic Acid† [M-H] | 541517 | 2.21 | 0.61 | 1.43 × 10−2 | 1.54 | 0.60 | 6.77 × 10−1 |
Tricosenoic Acid [M-H] | 539371 | 4.15 | 0.92 | 2.53 × 10−3 | −0.88 | 0.53 | 7.27 × 10−1 |
Tricosenoic Acid [M-H] | 542617 | 3.95 | 1.05 | 1.14 × 10−2 | 0.35 | 0.61 | 9.51 × 10−1 |
Tricosanoic Acid [M-H + Acetate] | 542670 | 1.98 | 0.61 | 2.63 × 10−2 | −0.40 | 0.50 | 9.26 × 10−1 |
Tricosanoic Acid [M-H] | 544047 | 2.20 | 0.67 | 2.63 × 10−2 | −0.37 | 0.58 | 9.43 × 10−1 |
Tricosanoic Acid [M-H] | 542623 | 1.93 | 0.62 | 3.22 × 10−2 | −0.54 | 0.52 | 9.26 × 10−1 |
Lignoceric Acid [M-H + Acetate] | 546323 | 4.19 | 1.22 | 1.79 × 10−2 | 0.43 | 0.60 | 9.26 × 10−1 |
Lignoceric Acid [M-H] | 544841 | 3.19 | 0.92 | 1.79 × 10−2 | −0.43 | 0.72 | 9.51 × 10−1 |
Lignoceric Acid [M-H] | 546284 | 4.29 | 1.40 | 3.76 × 10−2 | 0.41 | 0.66 | 9.47 × 10−1 |
Behenic Acid [M-H + Acetate] | 542079 | 3.09 | 1.04 | 4.14 × 10−2 | −0.33 | 0.64 | 9.51 × 10−1 |
Behenic Acid [M-H] | 540593 | 2.17 | 0.56 | 1.01 × 10−2 | −0.41 | 0.49 | 9.26 × 10−1 |
Behenic Acid [M-H] | 542037 | 3.46 | 0.91 | 1.09 × 10−2 | 0.08 | 0.54 | 9.94 × 10−1 |
Known Eicosanoids | |||||||
14,15-DiHETE [M-H + Acetate] | 298878 | 3.56 | 1.12 | 2.77 × 10−2 | 0.01 | 0.72 | 9.98 × 10−1 |
13S-HpOTrE(γ) [M-H] | 387101 | 4.29 | 1.03 | 5.27 × 10−3 | −1.57 | 1.08 | 7.97 × 10−1 |
13,14-dihydro-15-keto-PGA2 [M-H + Acetate] | 253519 | 5.85 | 1.94 | 3.98 × 10−2 | −0.23 | 0.77 | 9.78 × 10−1 |
11,12-diHETrE [M-H + Acetate] | 350152 | 5.62 | 1.60 | 1.74 × 10−2 | 0.78 | 0.97 | 9.26 × 10−1 |
11,12-diHETrE [M-H] | 355943 | 2.21 | 0.73 | 3.96 × 10−2 | 0.63 | 0.60 | 9.26 × 10−1 |
Unknown Eicosanoids | |||||||
EIC_73 | 294423 | 4.10 | 1.37 | 3.98 × 10−2 | −0.60 | 0.80 | 9.26 × 10−1 |
EIC_71 | 312209 | 3.63 | 1.05 | 1.79 × 10−2 | 0.71 | 0.68 | 9.26 × 10−1 |
EIC_69 | 419015 | 6.04 | 1.82 | 2.32 × 10−2 | 1.16 | 1.35 | 9.26 × 10−1 |
EIC_69 | 413523 | 3.79 | 1.14 | 2.33 × 10−2 | 0.17 | 0.73 | 9.80 × 10−1 |
EIC_69 | 416464 | 5.06 | 1.57 | 2.63 × 10−2 | 0.86 | 1.02 | 9.26 × 10−1 |
EIC_64 | 296371 | 6.44 | 1.67 | 1.06 × 10−2 | 0.76 | 0.70 | 9.26 × 10−1 |
EIC_62 | 263579 | 4.27 | 1.33 | 2.76 × 10−2 | −0.10 | 0.68 | 9.94 × 10−1 |
EIC_62 | 253339 | 7.55 | 2.49 | 3.96 × 10−2 | −0.22 | 0.89 | 9.80 × 10−1 |
EIC_52 | 240462 | 3.17 | 1.08 | 4.32 × 10−2 | −0.28 | 0.54 | 9.51 × 10−1 |
EIC_51 | 336280 | 2.39 | 0.83 | 4.99 × 10−2 | −0.42 | 0.74 | 9.51 × 10−1 |
EIC_345 | 397350 | 3.17 | 1.02 | 3.27 × 10−2 | −1.06 | 0.95 | 9.26 × 10−1 |
EIC_271 | 281689 | 3.98 | 1.23 | 2.63 × 10−2 | 1.17 | 0.76 | 7.78 × 10−1 |
EIC_260 | 267578 | 2.39 | 0.55 | 3.23 × 10−3 | 0.09 | 0.59 | 9.94 × 10−1 |
EIC_233 | 167632 | 3.58 | 1.20 | 4.06 × 10−2 | 0.70 | 0.84 | 9.26 × 10−1 |
EIC_229 | 193228 | 1.68 | 0.55 | 3.76 × 10−2 | 0.33 | 0.59 | 9.51 × 10−1 |
EIC_184 | 334912 | 1.95 | 0.65 | 3.98 × 10−2 | 0.95 | 0.60 | 7.42 × 10−1 |
EIC_17 | 404135 | 3.22 | 0.87 | 1.14 × 10−2 | 0.42 | 0.72 | 9.51 × 10−1 |
EIC_16 | 399201 | 2.25 | 0.76 | 4.16 × 10−2 | 0.14 | 0.62 | 9.80 × 10−1 |
EIC_125 | 198399 | 5.09 | 1.51 | 2.11 × 10−2 | 1.22 | 1.81 | 9.43 × 10−1 |
EIC_125 | 185482 | 7.97 | 2.39 | 2.31 × 10−2 | −0.80 | 0.79 | 9.26 × 10−1 |
EIC_121 | 285160 | 3.62 | 1.03 | 1.74 × 10−2 | 0.24 | 0.63 | 9.68 × 10−1 |
Novel EIC_9 | 424299 | 4.64 | 1.25 | 1.14 × 10−2 | −1.43 | 0.67 | 6.77 × 10−1 |
Novel EIC_9 | 422540 | 3.53 | 1.19 | 4.14 × 10−2 | −1.62 | 0.69 | 6.77 × 10−1 |
Novel EIC_8 | 433376 | 3.72 | 1.29 | 4.78 × 10−2 | −0.05 | 0.69 | 9.96 × 10−1 |
Novel EIC_5 | 373373 | 2.41 | 0.58 | 5.27 × 10−3 | 0.39 | 0.58 | 9.43 × 10−1 |
Novel EIC_28 | 457606 | 11.54 | 3.37 | 1.87 × 10−2 | −0.43 | 0.65 | 9.43 × 10−1 |
Polar Molecules | |||||||
Tricosanoate [M-H] | 539374 | 4.66 | 0.98 | 1.29 × 10−3 | −0.87 | 0.62 | 8.11 × 10−1 |
Oleoyl-Glycerol [M-H] | 523301 | 5.39 | 1.45 | 1.14 × 10−2 | −0.98 | 1.12 | 9.26 × 10−1 |
Oleoyl-Glycerol [M-H] | 522767 | 4.26 | 1.36 | 3.27 × 10−2 | 0.45 | 1.02 | 9.61 × 10−1 |
γ -Linolenate [M-H] | 516521 | −2.07 | 0.56 | 1.14 × 10−2 | 0.08 | 0.73 | 9.96 × 10−1 |
Cortisone [M-H + Acetate] | 106542 | 2.42 | 0.62 | 1.01 × 10−2 | 0.84 | 0.61 | 8.11 × 10−1 |
Cortisone [M-H + Acetate] | 100714 | 2.49 | 0.77 | 2.63 × 10−2 | 1.12 | 0.61 | 6.78 × 10−1 |
Putative Molecules | |||||||
N-Oleoyl-L-serine | 524040 | 3.22 | 0.91 | 1.74 × 10−2 | −0.97 | 0.56 | 7.13 × 10−1 |
1-Oleoyl-sn-glycero-3-phosphoethanolamine | 463104 | 3.42 | 0.98 | 1.74 × 10−2 | −0.80 | 0.57 | 7.97 × 10−1 |
Annotation and Adduct Information | PRE-MID (Time) | PRE-POST (Time) | |||||
---|---|---|---|---|---|---|---|
Metabolite Subclass and ID | Matching ID | Estimate | Standard Error | FDR | Estimate | Standard Error | FDR |
Very-long-chain Saturated Fatty acids (VLCSFA) | |||||||
Lignoceric Acid [M-H + Acetate] | 546323 | 3.99 | 1.09 | 1.64 × 10−3 | 0.21 | 0.39 | 8.88 × 10−1 |
Lignoceric Acid [M-H] | 544841 | 3.33 | 0.72 | 9.39 × 10−5 | −0.1 | 0.28 | 9.22 × 10−1 |
Lignoceric Acid [M-H] | 546284 | 4.42 | 1.30 | 3.17 × 10−3 | 0.21 | 0.43 | 9.02 × 10−1 |
Tricosenoic Acid [M-H] | 539371 | 4.14 | 0.83 | 2.75 × 10−5 | −0.46 | 0.26 | 5.04 × 10−1 |
Tricosenoic Acid [M-H] | 542617 | 2.73 | 0.96 | 1.32 × 10−2 | −0.57 | 0.45 | 6.34 × 10−1 |
Tricosanoic Acid [M-H + Acetate] | 542670 | 2.19 | 0.47 | 9.23 × 10−5 | −0.23 | 0.31 | 8.40 × 10−1 |
Tricosanoic Acid [M-H] | 542623 | 2.27 | 0.48 | 6.24 × 10−5 | −0.17 | 0.34 | 9.00 × 10−1 |
Tricosanoic Acid [M-H] | 544047 | 2.15 | 0.53 | 6.18 × 10−4 | −0.10 | 0.34 | 9.38 × 10−1 |
Behenic Acid [M-H + Acetate] | 542079 | 3.02 | 0.88 | 2.84 × 10−3 | −0.60 | 0.41 | 5.74 × 10−1 |
Behenic Acid [M-H] | 540593 | 2.31 | 0.41 | 1.79 × 10−6 | 0.06 | 0.27 | 9.69 × 10−1 |
Behenic Acid [M-H] | 542037 | 3.2 | 0.79 | 6.18 × 10−4 | −0.28 | 0.39 | 8.40 × 10−1 |
Behenic Acid [M-H] | 539090 | 1.51 | 0.49 | 7.22 × 10−3 | 0.85 | 0.80 | 7.02 × 10−1 |
Long-chain Saturated Fatty acids (LCSFA) | |||||||
Stearic Acid [M-H + Acetate] | 534421 | −1.14 | 0.35 | 4.95 × 10−3 | 0.46 | 0.59 | 8.40 × 10−1 |
Stearic Acid [M-H] | 533317 | −1.21 | 0.46 | 2.42 × 10−2 | −0.91 | 0.46 | 4.09 × 10−1 |
Heptadecanoic Acid† [M-H + Acetate] * | 534900 | −1.98 | 0.50 | 6.67 × 10−4 | −1.36 | 0.63 | 3.93 × 10−1 |
Heptadecanoic Acid† [M-H + Acetate] * | 534128 | −1.64 | 0.42 | 8.93 × 10−4 | 0.11 | 0.55 | 9.69 × 10−1 |
Heptadecanoic Acid† [M-H] | 532380 | −1.29 | 0.40 | 4.51 × 10−3 | −0.02 | 0.42 | 9.86 × 10−1 |
Heptadecanoic Acid† [M-H] * | 534537 | −1.44 | 0.47 | 7.30 × 10−3 | −0.61 | 0.49 | 6.34 × 10−1 |
Heptadecaenoic Acid† [M-H + Acetate] * | 529424 | −1.86 | 0.41 | 1.20 × 10−4 | −0.49 | 0.57 | 7.96 × 10−1 |
Heptadecaenoic Acid† [M-H + Acetate] * | 532672 | −1.54 | 0.50 | 6.57 × 10−3 | −0.34 | 0.66 | 8.90 × 10−1 |
Heptadecaenoic Acid† [M-H + Acetate] | 531646 | 6.21 | 2.72 | 4.80 × 10−2 | 0.73 | 0.59 | 6.34 × 10−1 |
Heptadecaenoic Acid† [M-H] | 529369 | −1.83 | 0.45 | 6.39 × 10−4 | −0.12 | 0.55 | 9.61 × 10−1 |
Heptadecaenoic Acid† [M-H] | 531845 | −1.16 | 0.37 | 6.36 × 10−3 | −0.10 | 0.45 | 9.61 × 10−1 |
Palmitic Acid [M-H + Acetate] | 531306 | −1.63 | 0.41 | 8.72 × 10−4 | −0.36 | 0.48 | 8.40 × 10−1 |
Palmitic Acid [M-H + Acetate] | 534889 | −0.72 | 0.30 | 3.87 × 10−2 | 0.09 | 0.34 | 9.46 × 10−1 |
Palmitic Acid† [M-H + Acetate] * | 531996 | −1.38 | 0.42 | 4.37 × 10−3 | −0.04 | 0.53 | 9.86 × 10−1 |
Palmitic Acid [M-H] | 533569 | −0.76 | 0.32 | 3.81 × 10−2 | 0.46 | 0.42 | 6.89 × 10−1 |
Pentadecanoic Acid [M-H] | 530326 | −1.45 | 0.45 | 5.19 × 10−3 | −0.33 | 0.47 | 8.48 × 10−1 |
Pentadecanoic Acid [M-H] | 528566 | −1.15 | 0.46 | 2.95 × 10−2 | −0.22 | 0.51 | 9.03 × 10−1 |
Pentadecanoic Acid† [M-H + Acetate] * | 531478 | −2.07 | 0.45 | 9.24 × 10−5 | −0.27 | 0.72 | 9.22 × 10−1 |
Myristic Acid [M-H + Acetate] | 524395 | −1.63 | 0.53 | 6.50 × 10−3 | −0.34 | 0.75 | 9.03 × 10−1 |
Myristic Acid [M-H + Acetate] | 522387 | −1.74 | 0.50 | 2.45 × 10−3 | −0.05 | 0.58 | 9.86 × 10−1 |
Myristic Acid [M-H] * | 524668 | −1.55 | 0.48 | 4.97 × 10−3 | −0.33 | 0.63 | 8.90 × 10−1 |
Myristic Acid [M-H] | 522346 | −1.64 | 0.50 | 4.48 × 10−3 | −0.2 | 0.56 | 9.22 × 10−1 |
Very-long-chain Monounsaturated Fatty acids | |||||||
Tricosenoic Acid [M-H] | 539371 | 4.14 | 0.83 | 2.75 × 10−5 | −0.46 | 0.26 | 5.04 × 10−1 |
Tricosenoic Acid [M-H] | 542617 | 2.73 | 0.96 | 1.32 × 10−2 | −0.57 | 0.45 | 6.34 × 10−1 |
Tricosanoic Acid [M-H + Acetate] | 542670 | 2.19 | 0.47 | 9.23 × 10−5 | −0.23 | 0.31 | 8.40 × 10−1 |
Omega-3 Fatty Acids | |||||||
Docosahexaenoic Acid (DHA) [M-H + Acetate] | 529467 | −1.01 | 0.40 | 2.71 × 10−2 | 0.02 | 0.38 | 9.86 × 10−1 |
Docosahexaenoic Acid (DHA) [M-H] | 525743 | −1.03 | 0.32 | 5.40 × 10−3 | 0.32 | 0.37 | 7.93 × 10−1 |
\ Docosatrienoic Acid [M-H] | 532415 | −1.5 | 0.37 | 5.70 × 10−4 | 0.35 | 0.46 | 8.40 × 10−1 |
Eicosapentaenoic Acid (EPA) [M-H + Acetate] | 523035 | 1.34 | 0.35 | 1.08 × 10−3 | 0.13 | 0.38 | 9.24 × 10−1 |
Eicosapentaenoic Acid (EPA) [M-H] | 523009 | 1.26 | 0.36 | 2.28 × 10−3 | 0.02 | 0.38 | 9.86 × 10−1 |
Stearidonic Acid [M-H] | 488156 | −3.39 | 1.35 | 2.84 × 10−2 | −2.48 | 1.28 | 4.09 × 10−1 |
α-Linolenic Acid [M-H] | 523928 | −1.15 | 0.33 | 2.50 × 10−3 | 0.49 | 0.53 | 7.76 × 10−1 |
α-Linolenic Acid [M-H] | 521670 | −1.71 | 0.52 | 4.51 × 10−3 | −0.42 | 0.59 | 8.48 × 10−1 |
Omega-6 Fatty Acids | |||||||
Docosadienoic Acid [M-H] | 534554 | −1.29 | 0.34 | 1.18 × 10−3 | 0.32 | 0.39 | 8.06 × 10−1 |
Docosadienoic Acid [M-H] | 536158 | −1.52 | 0.47 | 5.13 × 10−3 | −0.95 | 0.51 | 4.53 × 10−1 |
Eicosadienoic Acid [M-H] | 531992 | −1,50 | 0.32 | 9.39 × 10−5 | 0.23 | 0.37 | 8.69 × 10−1 |
Linoleic Acid [M-H] | 526174 | −1.39 | 0.38 | 1.64 × 10−3 | 0.04 | 0.45 | 9.86 × 10−1 |
Dihomo- γ -linolenic [M-H] | 530664 | −1.71 | 0.28 | 8.71× 10−8 | 0.43 | 0.38 | 6.79 × 10−1 |
Dihomo- γ -linolenic [M-H] | 529407 | −1.61 | 0.35 | 1.02 × 10−4 | 0.20 | 0.40 | 8.95 × 10−1 |
Arachidonic Acid [M-H] | 529143 | −1.42 | 0.29 | 4.21 × 10−5 | 0.25 | 0.49 | 9.00 × 10−1 |
Arachidonic Acid [M-H + Acetate] * | 531873 | −1.30 | 0.36 | 1.64 × 10−3 | 0.20 | 0.38 | 8.88 × 10−1 |
Adrenic Acid [M-H] | 528116 | −1.45 | 0.33 | 1.82 × 10−4 | 1.10 | 0.51 | 3.93 × 10−1 |
Adrenic Acid [M-H] | 532126 | −1.83 | 0.43 | 2.69 × 10−4 | −0.26 | 0.50 | 8.89 × 10−1 |
Adrenic Acid [M-H] | 530967 | −1.58 | 0.39 | 5.70 × 10−4 | 0.40 | 0.46 | 7.93 × 10−1 |
Omega-7 Fatty Acids | |||||||
Palmitoleic Acid [M-H + Acetate] | 526018 | −1.35 | 0.36 | 1.27 × 10−3 | 0.32 | 0.36 | 7.93 × 10−1 |
Palmitoleic Acid [M-H + Acetate] | 529152 | −1.64 | 0.62 | 2.09 × 10−2 | −1.13 | 0.63 | 4.96 × 10−1 |
Palmitoleic Acid [M-H] | 531843 | −2.12 | 0.39 | 3.23 × 10−6 | −0.18 | 0.43 | 9.10 × 10−1 |
Palmitoleic Acid [M-H] | 529701 | −2.21 | 0.41 | 5.66 × 10−6 | −0.31 | 0.36 | 7.96 × 10−1 |
Palmitoleic Acid [M-H] | 526135 | −1.37 | 0.34 | 6.18 × 10−4 | 0.25 | 0.32 | 8.40 × 10−1 |
Omega-9 Fatty Acids | |||||||
Nervonic Acid [M-H] | 544451 | 2.01 | 0.64 | 5.89 × 10−3 | −0.71 | 0.43 | 5.50 × 10−1 |
Nervonic Acid [M-H] | 539105 | 3.15 | 0.85 | 1.43 × 10−3 | −0.02 | 0.38 | 9.86 × 10−1 |
Docosaenoic Acid† (Erucic Acid) [M-H] * | 535834 | 3.17 | 0.76 | 3.80 × 10−4 | 0.21 | 0.50 | 9.10 × 10−1 |
Eicosatrienoic Acid† [M-H + Acetate] * | 534431 | −1.54 | 0.44 | 2.29 × 10−3 | 0.30 | 0.56 | 8.88 × 10−1 |
Eicosenoic Acid [M-H] | 534395 | −1.36 | 0.38 | 1.87 × 10−3 | −0.16 | 0.38 | 9.03 × 10−1 |
Eicosenoic Acid [M-H] | 531994 | −1.35 | 0.38 | 2.30 × 10−3 | 0.35 | 0.55 | 8.69 × 10−1 |
Eicosenoic Acid [M-H] | 539066 | −1.46 | 0.45 | 4.51 × 10−3 | −0.12 | 0.44 | 9.46 × 10−1 |
Oleic Acid [M-H + Acetate] | 531868 | −0.94 | 0.36 | 2.42 × 10−2 | 0.57 | 0.36 | 5.50 × 10−1 |
Oleic Acid [M-H] | 535786 | −1.37 | 0.39 | 2.44 × 10−3 | 0.09 | 0.47 | 9.69 × 10−1 |
Oleic Acid [M-H] | 534665 | −1.4 | 0.44 | 5.48 × 10−3 | 0.4 | 0.59 | 8.54 × 10−1 |
Oleic Acid [M-H] | 531847 | −0.96 | 0.39 | 3.00 × 10−2 | 0.19 | 0.34 | 8.88 × 10−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarin, H.V.; Hulmi, J.J.; Qin, Y.; Inouye, M.; Ritchie, S.C.; Cheng, S.; Watrous, J.D.; Nguyen, T.-T.C.; Lee, J.H.; Jin, Z.; et al. Substantial Fat Loss in Physique Competitors Is Characterized by Increased Levels of Bile Acids, Very-Long Chain Fatty Acids, and Oxylipins. Metabolites 2022, 12, 928. https://doi.org/10.3390/metabo12100928
Sarin HV, Hulmi JJ, Qin Y, Inouye M, Ritchie SC, Cheng S, Watrous JD, Nguyen T-TC, Lee JH, Jin Z, et al. Substantial Fat Loss in Physique Competitors Is Characterized by Increased Levels of Bile Acids, Very-Long Chain Fatty Acids, and Oxylipins. Metabolites. 2022; 12(10):928. https://doi.org/10.3390/metabo12100928
Chicago/Turabian StyleSarin, Heikki V., Juha J. Hulmi, Youwen Qin, Michael Inouye, Scott C. Ritchie, Susan Cheng, Jeramie D. Watrous, Thien-Tu C. Nguyen, Joseph H. Lee, Zhezhen Jin, and et al. 2022. "Substantial Fat Loss in Physique Competitors Is Characterized by Increased Levels of Bile Acids, Very-Long Chain Fatty Acids, and Oxylipins" Metabolites 12, no. 10: 928. https://doi.org/10.3390/metabo12100928
APA StyleSarin, H. V., Hulmi, J. J., Qin, Y., Inouye, M., Ritchie, S. C., Cheng, S., Watrous, J. D., Nguyen, T. -T. C., Lee, J. H., Jin, Z., Terwilliger, J. D., Niiranen, T., Havulinna, A., Salomaa, V., Pietiläinen, K. H., Isola, V., Ahtiainen, J. P., Häkkinen, K., Jain, M., & Perola, M. (2022). Substantial Fat Loss in Physique Competitors Is Characterized by Increased Levels of Bile Acids, Very-Long Chain Fatty Acids, and Oxylipins. Metabolites, 12(10), 928. https://doi.org/10.3390/metabo12100928