Cheminformatics Identification and Validation of Dipeptidyl Peptidase-IV Modulators from Shikimate Pathway-Derived Phenolic Acids towards Interventive Type-2 Diabetes Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Methodology
2.2.1. In Silico Study
Molecular Docking
Molecular Dynamics Simulations
Pharmacokinetics Assessment
2.2.2. In Vitro Evaluation
DPP-IV Inhibitory Assay
Enzyme Kinetics Evaluation
2.3. Statistical Analysis
3. Results and Discussion
3.1. Computational Analysis
3.2. Pharmacokinetics Analysis
3.3. In Vitro Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, M.Y.; Jannat, S.; Rahman, M.M. Investigation of C-glycosylated apigenin and luteolin derivatives’ effects on protein tyrosine phosphatase 1B inhibition with molecular and cellular approaches. Comput. Toxicol. 2020, 17, 100141. [Google Scholar] [CrossRef]
- World Health Organization. Diabetes. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 13 December 2021).
- Singh, A.K.; Yadav, D.; Sharma, N.; Jin, J.-O. Dipeptidyl peptidase (DPP)-IV inhibitors with antioxidant potential isolated from natural sources: A novel approach for the management of diabetes. Pharmaceuticals 2021, 14, 586. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, L.; Jiang, B.; Li, X.; Guo, C.; Guo, S.; Shi, D. Recent progress of the development of dipeptidyl peptidase-4 inhibitors for the treatment of type-2 diabetes mellitus. Eur. J. Med. Chem. 2018, 151, 145–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhury, A.; Voor, C.; Dendi, R.; Sena, V.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; et al. Clinical review of antidiabetic drugs: Implications for type-2 diabetes mellitus management. Front. Endocrinol. 2017, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K.; Patel, P.K.; Choudhary, K.; Joshi, J.; Yadav, D.; Jin, J.-O. Quercetin and coumarin inhibit dipeptidyl peptidase-IV and exhibits antioxidant properties: In silico, in vitro, ex vivo. Biomolecules 2020, 10, 207. [Google Scholar] [CrossRef] [Green Version]
- Abbas, G.; Al-Harrasi, A.; Hussain, H.; Hamaed, A.; Supuran, C.T. The management of diabetes mellitus-imperative role of natural products against dipeptidyl peptidase-4, α-glucosidase and sodium-dependent glucose Co-transporter 2 (SGLT2). Bioorg. Chem. 2019, 86, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Dhameja, M.; Gupta, P. Synthetic heterocyclic candidates as promising α-glucosidase inhibitors: An overview. Eur. J. Med. Chem. 2019, 176, 343–377. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.; Finan, B.; Bloom, S.; D’Alessio, D.; Drucker, D.; Flatt, P.; Fritsche, A.; Gribble, F.; Grill, H.; Habener, J.; et al. Glucagon-like peptide 1 (glp-1). Mol. Metab. 2019, 30, 72–130. [Google Scholar] [CrossRef] [PubMed]
- Gribble, F.M.; Reimann, F. Metabolic messengers: Glucagon-like peptide 1. Nat. Metab. 2021, 3, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Iheagwam, F.N.; Ogunlana, O.O.; Chinedu, S.N. Model optimization and in silico analysis of potential dipeptidyl peptidase IV antagonists from GC-MS identified compounds in Nauclea latifolia leaf extracts. Int. J. Mol. Sci. 2019, 20, 5913. [Google Scholar] [CrossRef]
- Gallawitz, B. Clinical use of DPP-4 inhibitors. Front. Endocrinol. 2019, 10, 389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.F.; Johnson, M.H.; Lila, M.A.; Yousef, G.; Mejia, E.J. Berry and citrus phenolic compounds inhibit dipeptidyl peptidase IV: Implications in diabetes management. Evid. Based Complement. Altern. Med. 2013, 2013, 479505. [Google Scholar] [CrossRef] [Green Version]
- Kalhotra, P.; Chittepu, V.C.S.R.; Osorio-Revilla, G.; Gallardo-Velázquez, T. Structure-activity relationship and molecular docking of natural product library reveal chrysin as a novel dipeptidyl peptidase-4 (DPP-4) inhibitor: An integrated in silico and in vitro study. Molecules 2018, 23, 1368. [Google Scholar] [CrossRef] [Green Version]
- Alexandra, Q.; Nur, K.K.; Pei, C.L.; Dai, C.T.; Muhammad Alif, M.A.; Amin, I.; Khozirah, S.; Khalijah, A. α-Amylase and dipeptidyl peptidase-4 (DPP-4) inhibitory effects of Melicope latifolia bark extracts and identification of bioactive constituents using in vitro and in silico approaches. Pharm. Biol. 2021, 59, 962–971. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Zhu, J.; Li, B.; Li, Z.; Zhu, W.; Li, Y. Recent progress in natural products as DPP-4 inhibitors. Future Med. Chem. 2015, 7, 1079–1089. [Google Scholar] [CrossRef]
- Zhang, L. Identification of Isoquercitrin as An Inhibitor Of DPPIV: Implications for Insulin Secretion and Hyperglycemic in Type 2 Diabetes Mice. Ph.D. Thesis, Jilin University, Jilin, China, 2013. [Google Scholar]
- Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe Jr, E.W. Computational methods in drug discovery. Pharm. Rev. 2014, 66, 334–395. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.A.; Serem, J.C.; Bester, M.J.; Neitz, A.W.; Gaspar, A.R. Multiple antidiabetic effects of three a-glucosidase inhibitory peptides, PFP, YPL and YPG: Dipeptidyl peptidase-IV inhibition, suppression of lipid accumulation in differentiated 3T3-L-1 adipocytes and scavenging activity on methylglyoxal. Int. J. Biol. Macromol. 2019, 122, 104–114. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Bryant, S.H. PubChem substance and compound databases. Nucleic. Acids Res. 2016, 44, 1202–1213. [Google Scholar] [CrossRef]
- Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 2016, 11, 905–919. [Google Scholar] [CrossRef] [Green Version]
- Aribisala, J.O.; Sabiu, S. Cheminformatics Identification of Phenolics as Modulators of Penicillin-Binding Protein 2a of Staphylococcus aureus: A Structure-Activity-Relationship-Based Study. Pharmaceutics 2022, 14, 1818. [Google Scholar] [CrossRef]
- Sabiu, S.; Balogun, F.O.; Amoo, S.O. Phenolics profiling of Carpobrotus edulis (L.) N.E.Br. and insights into molecular dynamics of their significance in type-2 diabetes therapy and its retinopathy complication. Molecules 2021, 26, 4867. [Google Scholar] [CrossRef] [PubMed]
- Gonnet, P. P-SHAKE: A quadratically convergent SHAKE. J. Comput. Phys. 2007, 220, 740–750. [Google Scholar] [CrossRef]
- Sabiu, S.; Idowu, K. An insight on the nature of biochemical interactions between glycyrrhizin, myricetin and CYP3A4 isoform. J. Food Biochem. 2022, 46, e13831. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, V.B.; Araujo, R.L.; Eidenberger, T.; Brandao, M.G. Chemical composition and inhibitory activities on dipeptidyl peptidase IV and pancreatic lipase of two underutilized species from the Brazilian Savannah: Oxalis cordata A.St-Hil. and Xylopia aromatica (Lam.) Mart. Food Res. Int. 2018, 105, 989–999. [Google Scholar] [CrossRef]
- Jung, H.; Cho, Y.; Oh, S.; Lee, S.; Min, B.; Moon, K.; Choi, J. Kinetics and molecular docking studies of pimarane-type diterpenes as protein tyrosine phosphatase (PTP1B) inhibitors from Aralia continentalis roots. Arch. Pharmacal. Res. 2013, 36, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Lineweaver, H.; Burke, D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 1934, 56, 658–666. [Google Scholar] [CrossRef]
- Seifert, E. Origin Pro 9.1: Scientific Data Analysis and Graphing Software-Software Review. J. Chem. Inf. Model. 2014, 54, 1552. [Google Scholar] [CrossRef]
- Hernández-Santoyo, A.; Yair, A.; Altuzar, V.; Vivanco-Cid, H.; Mendoza-Barrer, C. Protein-protein and protein-ligand docking. In Protein Engineering—Technology and Application; Ogawa, T., Ed.; IntechOpen Publishing: London, UK, 2013; Available online: https://www.intechopen.com/chapters/44790 (accessed on 10 January 2022).
- Lammi, C.; Bartolomei, M.; Bollati, C.; Cecchi, L.; Bellumori, M.; Sabato, E.; Giulio, V.; Mulinacci, A.; Arnoldi, A. Phenolic extracts from extract virgin olive oils inhibit dipeptidyl peptidase IV activity: In vitro, cellular, and in silico molecular modelling investigations. Antioxidants 2021, 10, 1133. [Google Scholar] [CrossRef]
- Jasmine, M.; Tunnicliffe, L.; Eller, K.; Dustin, S.H.; Shearer, J. Chlorogenic acid differentially affects postprandial glucose and glucose-dependent insulinotropic polypeptide response in rats. Appl Physiol. Nutr. Metab. 2011, 36, 650–659. [Google Scholar] [CrossRef]
- Oliveira, L.; Carvalho, M.; Melo, L. Health promoting and sensory properties of phenolic compounds in food. Rev. Ceres. 2014, 61, 764–779. [Google Scholar] [CrossRef] [Green Version]
- Vergara, R.; Romero-Romero, S.; Velázquez-López, I.; Espinoza-Pérez, G.; Rodríguez-Hernández, A.; Pulido, N.O.; Sosa-Peinado, A.; Rodríguez-Romero, A.; Fernández-Velasco, D.A. The interplay of protein-ligand and water-mediated interactions shape affinity and selectivity in the LAO binding protein. FEBS J. 2020, 287, 763–782. [Google Scholar] [CrossRef]
- Adinortey, C.A.; Kwarko, G.B.; Koranteng, R.; Boison, D.; Obuaba, I.; Wilson, M.D.; Kwofie, S.K. Molecular structure-based screening of the constituents of Calotropis procera identifies potential inhibitors of diabetes mellitus target alpha glucosidase. Curr. Issues Mol. Biol. 2022, 44, 963–987. [Google Scholar] [CrossRef]
- Tuersuntuoheti, T.; Pan, F.; Zhang, M.; Wang, Z.; Han, J.; Sun, Z.; Song, W. Prediction of DPP-IV inhibitory potentials of polyphenols existed in Qingke barley fresh noodles: In vitro and in silico analyses. J. Food Process. Preserv. 2022, e16808. [Google Scholar] [CrossRef]
- Chen, D.; Oezguen, N.; Urvil, P.; Ferguson, C.; Dann, S.M.; Savidge, T.C. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci. Adv. 2016, 2, e1501240. [Google Scholar] [CrossRef] [Green Version]
- Childers, M.C.; Daggett, V. Insights from molecular dynamics simulations for computational protein design. Mol. Syst. Des. Eng. 2017, 12, 9–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, L. Automatic Identification of Mobile and Rigid Substructures in Molecular Dynamics Simulations and Fractional Structural Fluctuation Analysis. PLoS ONE 2015, 10, e0119264. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, M.S. Sequence Alignment: Methods, Models, Concepts and Strategies; University of California Press: Berkeley, CA, USA, 2009. [Google Scholar] [CrossRef]
- Nath, V.; Manish, R.; Neeraj, K.; Agrawal, R.; Kumar, V. Computational identification of potential dipeptidyl peptidase (DPP)-IV inhibitors: Structure based virtual screening, molecular dynamics simulation and knowledge-based SAR studies. J. Mole. Struct. 2021, 1224, 129006. [Google Scholar] [CrossRef]
- Cherrak, S.A.; Merzouk, H.; Mokhtari-Soulimane, N. Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies. PLoS ONE 2020, 15, e0240653. [Google Scholar] [CrossRef]
- Shode, F.O.; Idowu, A.S.K.; Uhomoibhi, O.J.; Sabiu, S. Repurposing drugs and identification of inhibitors of integral proteins (spike protein and main protease) of SARS-CoV-2. J. Biomol. Struct. Dyn. 2022, 40, 6587–6602. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wu, S.; Zhang, Q.; Yin, Z.; Zhang, L. α-Glucosidase inhibitory effect of anthocyanins from Cinnamomum camphora fruit: Inhibition kinetics and mechanistic insights through in vitro and in silico studies. Int. J. Biol. Macromol. 2020, 143, 696–703. [Google Scholar] [CrossRef]
- Khan, S.; Bjij, I.; Betz, R.M.; Soliman, M.E. Reversible versus irreversible inhibition modes of ERK2: A comparative analysis for ERK2 protein kinase in cancer therapy. Future Med. Chem. 2018, 10, 1003–1015. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Lazim, R. Application of conventional molecular dynamics simulation in evaluating the stability of apomyoglobin in urea solution. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.; Fakhar, Z.; Hussain, A.; Ahmad, A.; Jairajpuri, D.; Alajmi, M.; Hassan, M. Structure-based identification of potential SARS-CoV-2 main protease inhibitors. J. Biomolec. Struct Dyn. 2020, 40, 3595–3608. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Husain, F.M.; Alhumaydhi, F.A.; Alwashmi, A.S.S.; Rehman, M.T.; Alruwetei, A.M.; Hassan, M.I.; Islam, A.; Shamsi, A. Exploring the molecular interactions of Galantamine with human Transferrin: In-silico and in vitro insight. J. Molec. Liq. 2021, 335, 1–9. [Google Scholar]
- Hubbard, R.E.; Haider, M.K. Hydrogen Bonds in Proteins: Role and Strength; eLS John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Alhumaydhi, F.A.; Aljasir, M.A.; Abdullah, S.M.; Aljohani, S.A.A.; Alwashimi, A.S.S.; Shahwan, M.; Hassan, M.I.; Islam, A.; Shamsi, A. Probing the interaction of memantine, an important Alzheimer’s drug, with human serum albumin: In silico and in vitro approach. J. Molec. Liq. 2021, 340, 116888. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Price, G.; Patel, D.A. Drug Bioavailability; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Zhou, Y.; Zhou, T.; Pei, D.; Liu, S.; Yuan, H. Pharmacokinetics and tissue distribution study of chlorogenic acid from lonicerae japonicae flos following oral administrations in rats. Evid. Based Complement. Altern. Med. 2014, 2014, 979414. [Google Scholar] [CrossRef]
- Qi, W.; Zhao, T.; Yang, W.; Wang, G.; Yu, H.; Zhao, H.; Yang, C.; Sun, L. Comparative pharmacokinetics of chlorogenic acid after oral administration in rats. J. Pharm. Anal. 2011, 1, 270–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geldenhuys, W.J.; Mohammad, A.S.; Adkins, C.E.; Lockman, P.R. Molecular determinants of blood–brain barrier permeation. Ther. Deliv. 2015, 6, 961–971. [Google Scholar] [CrossRef]
- Ahern, K.; Rajagopal, I. Enzyme Inhibition. Available online: https://chem.libretexts.org/Courses/University_of_Arkansas_Little_Rock/CHEM_4320_5320%3A_Biochemistry_1/05%3A_MichaelisMenten_Enzyme_Kinetics/5.4%3A_Enzyme_Inhibition (accessed on 10 January 2022).
- Motoshima, K.; Sugita, K.; Hashimoto, Y.; Ishikawa, M. Non-competitive and selective dipeptidyl peptidase IV inhibitors with phenethylphenylphthalimide skeleton derived from thalidomide-related α-glucosidase inhibitors and liver X receptor antagonists. Bioorg. Med. Chem. Lett. 2011, 21, 3041–3045. [Google Scholar] [CrossRef]
- Nong, N.T.P.; Chen, Y.-K.; Shih, W.-L.; Hsu, J.-L. Characterization of novel dipeptidyl peptidase-IV inhibitory peptides from soft-shelled turtle yolk hydrolysate using orthogonal bioassay-guided fractionations coupled with in vitro and in silico study. Pharmaceuticals 2020, 13, 308. [Google Scholar] [CrossRef] [PubMed]
Compounds | Score (kcal/mol) |
---|---|
Chlorogenic acid | −9.0 |
Diprotin A | −6.6 |
Ellagic acid | −7.8 |
Gallic acid | −6.4 |
Caffeic acid | −6.3 |
O-coumaric acid | −6.3 |
Olivetolic acid | −6.3 |
Umbellic acid | −6.3 |
Isoferulic acid | −6.2 |
M-coumaric acid | −6.2 |
P-coumaric acid | −6.1 |
Protocatechuic acid | −6.1 |
Orsellinic acid | −6.1 |
Ferulic acid | −6.0 |
Sinapic acid | −6.0 |
Hypogallic acid | −6.0 |
Vanillic acid | −5.9 |
Beta-resorcinolic acid | −5.7 |
Salicyclic acid | −5.8 |
Syringic acid | −5.7 |
Veratric acid | −5.7 |
Gentisic acid | −5.6 |
Benzoic acid | −5.4 |
Energy Components (kcal/mol) | |||||
---|---|---|---|---|---|
Complexes | ΔEvdW | ΔEelec | ΔGgas | ΔGsolv | ΔGbind |
DPP-IV + Chlorogenic acid | −28.64 ± 6.84 | −49.38 ± 21.85 | −78.03 ± 19.96 | 52.29 ± 15.63 | −25.74 ± 6.45 a |
DPP-IV + ellagic acid | −25.33 ± 4.74 | −58.51 ± 18.28 | −83.84 ± 16.51 | 69.30 ± 11.19 | −24.54 ± 6.31 a |
DPP-IV + Diprotin A | −20.32 ± 3.43 | −261.44 ± 40.36 | −281.76 ± 40.63 | 269.32 ± 36.75 | −12.44 ± 5.48 b |
Property | Chlorogenic Acid | Diprotin A |
---|---|---|
Lipinski’s rule of five | Yes; 1 violation: NH or OH > 5 | Yes; 0 violations |
Bioavailability score | 0.11 | 0.55 |
GI absorption | Low | High |
BBB permeant | No | No |
P-gp substrate | No | Yes |
CYP1A2 inhibitor | No | No |
CYP2C19 inhibitor | No | No |
CYP2C9 inhibitor | No | No |
CYP2D6 inhibitor | No | No |
CYP3A4 inhibitor | No | No |
Classification | Chlorogenic Acid | Diprotin A |
---|---|---|
Hepatotoxicity | Inactive | Inactive |
Carcinogenicity | Inactive | Inactive |
Immunotoxicity | Active | Inactive |
Mutagenicity | Inactive | Inactive |
Cytotoxicity | Inactive | Inactive |
LD50 (mg/kg) | 5000 | 3000 |
Inhibitor | IC50 (mg/mL) | Vmax (M/min) | Km (M) | Kcat (M/min) |
---|---|---|---|---|
Chlorogenic acid | 0.3 ± 0.02 a | 3.59 × 10−4 a | 1.54 × 10−4 a | 2.07 × 10−4 a |
Diprotin A | 0.5 ± 0.02 b | ND | ND | ND |
No inhibitor | ND | 1.09 × 10−3 b | 4.42 × 10−4 b | 6.29 × 10−4 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balogun, F.O.; Naidoo, K.; Aribisala, J.O.; Pillay, C.; Sabiu, S. Cheminformatics Identification and Validation of Dipeptidyl Peptidase-IV Modulators from Shikimate Pathway-Derived Phenolic Acids towards Interventive Type-2 Diabetes Therapy. Metabolites 2022, 12, 937. https://doi.org/10.3390/metabo12100937
Balogun FO, Naidoo K, Aribisala JO, Pillay C, Sabiu S. Cheminformatics Identification and Validation of Dipeptidyl Peptidase-IV Modulators from Shikimate Pathway-Derived Phenolic Acids towards Interventive Type-2 Diabetes Therapy. Metabolites. 2022; 12(10):937. https://doi.org/10.3390/metabo12100937
Chicago/Turabian StyleBalogun, Fatai Oladunni, Kaylene Naidoo, Jamiu Olaseni Aribisala, Charlene Pillay, and Saheed Sabiu. 2022. "Cheminformatics Identification and Validation of Dipeptidyl Peptidase-IV Modulators from Shikimate Pathway-Derived Phenolic Acids towards Interventive Type-2 Diabetes Therapy" Metabolites 12, no. 10: 937. https://doi.org/10.3390/metabo12100937
APA StyleBalogun, F. O., Naidoo, K., Aribisala, J. O., Pillay, C., & Sabiu, S. (2022). Cheminformatics Identification and Validation of Dipeptidyl Peptidase-IV Modulators from Shikimate Pathway-Derived Phenolic Acids towards Interventive Type-2 Diabetes Therapy. Metabolites, 12(10), 937. https://doi.org/10.3390/metabo12100937