Mapping of Urinary Volatile Organic Compounds by a Rapid Analytical Method Using Gas Chromatography Coupled to Ion Mobility Spectrometry (GC–IMS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Analytical Method Validation
2.3. Sample Collection
2.4. Sample Preparation
2.5. GC–IMS Analysis
2.6. Data Analysis
- I, the Kovats retention index of the peak;
- n, the carbon number of the shorter alkane;
- N, the carbon number of the longer alkane;
- Rt, the retention time registered.
3. Results
3.1. Analytical Method Validation
3.2. VOCs Analysis in Urine Samples
3.3. VOCs Identification in a Sub-Population of Urine Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- da Costa, B.R.B.; De Martinis, B.S. Analysis of Urinary VOCs Using Mass Spectrometric Methods to Diagnose Cancer: A Review. Clin. Mass Spectrom. 2020, 18, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Behera, B.; Joshi, R.; Vishnu, G.A.; Bhalerao, S.; Pandya, H.J. Electronic Nose: A Non-Invasive Technology for Breath Analysis of Diabetes and Lung Cancer Patients. J. Breath Res. 2019, 13, 024001. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet, D.; Smolinska, A.; Jöbsis, Q.; Rosias, P.; Muris, J.; Dallinga, J.; Dompeling, E.; Van Schooten, F.J. Can Exhaled Volatile Organic Compounds Predict Asthma Exacerbations in Children? J. Breath Res. 2017, 11, 016016. [Google Scholar] [CrossRef] [PubMed]
- Shigeyama, H.; Wang, T.; Ichinose, M.; Ansai, T.; Lee, S.W. Identification of Volatile Metabolites in Human Saliva from Patients with Oral Squamous Cell Carcinoma via Zeolite-Based Thin-Film Microextraction Coupled with GC-MS. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2019, 1104, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Greco, V.; Piras, C.; Pieroni, L.; Ronci, M.; Putignani, L.; Roncada, P.; Urbani, A. Applications of MALDI-TOF Mass Spectrometry in Clinical Proteomics. Expert Rev. Proteom. 2018, 15, 683–696. [Google Scholar] [CrossRef]
- Schmidt, K.; Podmore, I. Current Challenges in Volatile Organic Compounds Analysis as Potential Biomarkers of Cancer. J. Biomark. 2015, 2015, 981458. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, H.; Daulton, E.; Bannaga, A.S.; Arasaradnam, R.P.; Covington, J.A. Urinary Volatiles and Chemical Characterisation for the Non-Invasive Detection of Prostate and Bladder Cancers. Biosensors 2021, 11, 437. [Google Scholar] [CrossRef]
- Tiele, A.; Wicaksono, A.; Kansara, J.; Arasaradnam, R.P.; Covington, J.A. Breath Analysis Using Enose and Ion Mobility Technology to Diagnose Inflammatory Bowel Disease—A Pilot Study. Biosensors 2019, 9, 55. [Google Scholar] [CrossRef] [Green Version]
- Westhoff, M.; Litterst, P.; Freitag, L.; Urfer, W.; Bader, S.; Baumbach, J.I. Ion Mobility Spectrometry for the Detection of Volatile Organic Compounds in Exhaled Breath of Patients with Lung Cancer: Results of a Pilot Study. Thorax 2009, 64, 744–748. [Google Scholar] [CrossRef] [Green Version]
- Gasparri, R.; Capuano, R.; Guaglio, A.; Caminiti, V.; Canini, F.; Catini, A.; Sedda, G.; Paolesse, R.; Di Natale, C.; Spaggiari, L. Volatolomic Urinary Profile Analysis for Diagnosis of the Early Stage of Lung Cancer. J. Breath Res. 2022, 16, 046008. [Google Scholar] [CrossRef]
- Porto-Figueira, P.; Pereira, J.A.M.; Câmara, J.S. Exploring the Potential of Needle Trap Microextraction Combined with Chromatographic and Statistical Data to Discriminate Different Types of Cancer Based on Urinary Volatomic Biosignature. Anal. Chim. Acta 2018, 1023, 53–63. [Google Scholar] [CrossRef]
- Aggarwal, P.; Baker, J.; Boyd, M.T.; Coyle, S.; Probert, C.; Chapman, E.A. Optimisation of Urine Sample Preparation for Headspace-Solid Phase Microextraction Gas Chromatography-Mass Spectrometry: Altering Sample PH, Sulphuric Acid Concentration and Phase Ratio. Metabolites 2020, 10, 482. [Google Scholar] [CrossRef] [PubMed]
- Aggio, R.B.M.; Mayor, A.; Coyle, S.; Reade, S.; Khalid, T.; Ratcliffe, N.M.; Probert, C.S.J. Freeze-Drying: An Alternative Method for the Analysis of Volatile Organic Compounds in the Headspace of Urine Samples Using Solid Phase Micro-Extraction Coupled to Gas Chromatography-Mass Spectrometry. Chem. Cent. J. 2016, 10, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, C.; Sun, Z.; Chen, D.; Su, X.; Jiang, J.; Li, G.; Lin, B.; Yan, J. Developing Urinary Metabolomic Signatures as Early Bladder Cancer Diagnostic Markers. Omics 2015, 19, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, S.W.; Moore, D.R.; Marzouk, E.B.; Glenn, F.R.; Hallock, R.M. Canine Olfaction and Electronic Nose Detection of Volatile Organic Compounds in the Detection of Cancer: A Review. Cancer Invest. 2015, 33, 411–419. [Google Scholar] [CrossRef]
- Silva, C.L.; Passos, M.; Cmara, J.S. Investigation of Urinary Volatile Organic Metabolites as Potential Cancer Biomarkers by Solid-Phase Microextraction in Combination with Gas Chromatography-Mass Spectrometry. Br. J. Cancer 2011, 105, 1894–1904. [Google Scholar] [CrossRef] [Green Version]
- Matin, A.A.; Maleki, R.; Farajzadeh, M.A.; Farhadi, K.; Hosseinzadeh, R.; Jouyban, A. Headspace SPME-GC Method for Acetone Analysis and its Biomedical Application. Chromatographia 2007, 66, 383–387. [Google Scholar] [CrossRef]
- Mochalski, P.; Unterkofler, K. Quantification of Selected Volatile Organic Compounds in Human Urine by Gas Chromatography Selective Reagent Ionization Time of Flight Mass Spectrometry (GC-SRI-TOF-MS) Coupled with Head-Space Solid-Phase Microextraction (HS-SPME). Analyst 2016, 141, 4796–4803. [Google Scholar] [CrossRef] [Green Version]
- Yamada, K.; Ohishi, K.; Gilbert, A.; Akasaka, M.; Yoshida, N.; Yoshimura, R. Measurement of Natural Carbon Isotopic Composition of Acetone in Human Urine. Anal. Bioanal. Chem. 2015, 408, 1597–1607. [Google Scholar] [CrossRef]
- Hanai, Y.; Shimono, K.; Matsumura, K.; Vachani, A.; Albelda, S.; Yamazaki, K.; Beauchamp, G.K.; Oka, H. Urinary Volatile Compounds as Biomarkers for Lung Cancer. Biosci. Biotechnol. Biochem. 2012, 76, 679–684. [Google Scholar] [CrossRef]
- Cauchi, M.; Weber, C.M.; Bolt, B.J.; Spratt, P.B.; Bessant, C.; Turner, D.C.; Willis, C.M.; Britton, L.E.; Turner, C.; Morgan, G. Evaluation of Gas Chromatography Mass Spectrometry and Pattern Recognition for the Identification of Bladder Cancer from Urine Headspace. Anal. Methods 2016, 8, 4037–4046. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Wang, C.; Pi, X.; Guo, L.; Wang, Y.; Li, M.; Feng, Y.; Lin, Z.; Hou, W.; Li, E. Urinary Volatile Organic Compounds as Potential Biomarkers for Renal Cell Carcinoma. Biomed. Rep. 2016, 5, 68–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, V.; Mills, G.A. Urine 4-Heptanone: A β-Oxidation Product of 2-Ethylhexanoic Acid from Plasticisers. Clin. Chim. Acta 2001, 306, 51–61. [Google Scholar] [CrossRef]
- Silva, C.L.; Perestrelo, R.; Silva, P.; Tomás, H.; Câmara, J.S. Implementing a Central Composite Design for the Optimization of Solid Phase Microextraction to Establish the Urinary Volatomic Expression: A First Approach for Breast Cancer. Metabolomics 2019, 15, 64. [Google Scholar] [CrossRef]
- Porto-Figueira, P.; Pereira, J.; Miekisch, W.; Câmara, J.S. Exploring the Potential of NTME/GC-MS, in the Establishment of Urinary Volatomic Profiles. Lung Cancer Patients as Case Study. Sci. Rep. 2018, 8, 13113. [Google Scholar] [CrossRef] [Green Version]
- Santos, P.M.; del Nogal Sánchez, M.; Pozas, Á.P.C.; Pavón, J.L.P.; Moreno-Cordero, B. Determination of Ketones and Ethyl Acetate—A Preliminary Study for the Discrimination of Patients with Lung Cancer. Anal. Bioanal. Chem. 2017, 409, 5689–5696. [Google Scholar] [CrossRef]
- Broza, Y.Y.; Mochalski, P.; Ruzsanyi, V.; Amann, A.; Haick, H. Hybrid Volatolomics and Disease Detection. Angew. Chem. Int. Ed. 2015, 54, 11036–11048. [Google Scholar] [CrossRef]
- Lima, A.R.; Pinto, J.; Azevedo, A.I.; Barros-Silva, D.; Jerónimo, C.; Henrique, R.; de Lourdes Bastos, M.; Guedes de Pinho, P.; Carvalho, M. Identification of a Biomarker Panel for Improvement of Prostate Cancer Diagnosis by Volatile Metabolic Profiling of Urine. Br. J. Cancer 2019, 121, 857–868. [Google Scholar] [CrossRef]
- Guadagni, R.; Miraglia, N.; Simonelli, A.; Silvestre, A.; Lamberti, M.; Feola, D.; Acampora, A.; Sannolo, N. Solid-Phase Microextraction–Gas Chromatography–Mass Spectrometry Method Validation for the Determination of Endogenous Substances: Urinary Hexanal and Heptanal as Lung Tumor Biomarkers. Anal. Chim. Acta 2011, 701, 29–36. [Google Scholar] [CrossRef]
- Opitz, P.; Herbarth, O. The Volatilome-Investigation of Volatile Organic Metabolites (VOM) as Potential Tumor Markers in Patients with Head and Neck Squamous Cell Carcinoma (HNSCC). J. Otolaryngol. Head Neck Surg. 2018, 47, 42. [Google Scholar] [CrossRef]
- Khalid, T.; Aggio, R.; White, P.; De Lacy Costello, B.; Persad, R.; Alkateb, H.; Jones, P.; Probert, C.S.; Ratcliffe, N. Urinary Volatile Organic Compounds for the Detection of Prostate Cancer. PLoS ONE 2015, 10, e0143283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garner, C.E.; Smith, S.; de Lacy Costello, B.; White, P.; Spencer, R.; Probert, C.S.J.; Ratcliffem, N.M. Volatile Organic Compounds from Feces and Their Potential for Diagnosis of Gastrointestinal Disease. FASEB J. 2007, 21, 1675–1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liebich, H.; Buelow, H.; Kallmayer, R. Quantification of Endogenous Aliphatic Alcohols in Serum and Urine. J. Chromatogr. A 1982, 239, 343–349. [Google Scholar] [CrossRef]
- Taunk, K.; Porto-Figueira, P.; Pereira, J.A.M.; Taware, R.; da Costa, N.L.; Barbosa, R.; Rapole, S.; Câmara, J.S. Urinary Volatomic Expression Pattern: Paving the Way for Identification of Potential Candidate Biosignatures for Lung Cancer. Metabolites 2022, 12, 36. [Google Scholar] [CrossRef] [PubMed]
- Pinto, J.; Amaro, F.; Lima, A.R.; Carvalho-Maia, C.; Jerónimo, C.; Henrique, R.; Bastos, M.D.L.; Carvalho, M.; de Pinho, P.G. Urinary Volatilomics Unveils a Candidate Biomarker Panel for Noninvasive Detection of Clear Cell Renal Cell Carcinoma. J. Proteome Res. 2021, 20, 3068–3077. [Google Scholar] [CrossRef] [PubMed]
- Guy, R.I.H.T. Guideline, Validation of Analytical Procedures: Text and Methodology Q2 (R1); International Conference on Harmonisation: Geneva, Switzerland, 2005; pp. 11–12. [Google Scholar]
- Bannaga, A.S.; Tyagi, H.; Daulton, E.; Covington, J.A.; Arasaradnam, R.P. Exploratory Study Using Urinary Volatile Organic Compounds for the Detection of Hepatocellular Carcinoma. Molecules 2021, 26, 2447. [Google Scholar] [CrossRef] [PubMed]
- Greco, V.; Piras, C.; Pieroni, L.; Urbani, A. Direct Assessment of Plasma/Serum Sample Quality for Proteomics Biomarker Investigation. Serum/Plasma Proteom. 2017, 1619, 3–21. [Google Scholar] [CrossRef]
- Greco, V.; Pieragostino, D.; Piras, C.; Aebersold, R.; Wiltfang, J.; Caltagirone, C.; Bernardini, S.; Urbani, A. Direct Analytical Sample Quality Assessment for Biomarker Investigation: Qualifying Cerebrospinal Fluid Samples. Proteomics 2014, 14, 1954–1962. [Google Scholar] [CrossRef]
- Stevens, V.L.; Hoover, E.; Wang, Y.; Zanetti, K.A. Pre-Analytical Factors that Affect Metabolite Stability in Human Urine, Plasma, and Serum: A Review. Metabolites 2019, 9, 156. [Google Scholar] [CrossRef]
Compound | S0 ppm (g/mL) | M1 ppb (µg/L) | M2 ppb (µg/L) | M3 ppb (µg/L) | M4 ppb (µg/L) | M5 ppb (µg/L) | M6 ppb (µg/L) | M7 ppb (µg/L) |
---|---|---|---|---|---|---|---|---|
2-Butanone | 0.135 | 216 | 162 | 108 | 70.2 | 54 | 27 | 10.8 |
2-Pentanone | 0.135 | 216 | 162 | 108 | 70.2 | 54 | 27 | 10.8 |
2-Hexanone | 0.135 | 216 | 162 | 108 | 70.2 | 54 | 27 | 10.8 |
2-Heptanone | 0.137 | 218.4 | 163.8 | 109.2 | 71 | 54 | 27.3 | 10.9 |
2-Octanone | 0.137 | 218.4 | 163.8 | 109.2 | 71 | 54 | 27.3 | 10.9 |
2-Nonanone | 0.137 | 218.4 | 163.8 | 109.2 | 71 | 54 | 27.3 | 10.9 |
GC-IMS Technical Parameters | |
---|---|
Gas Chromatograph | |
Column | Capillary, DB wax |
Carrier Gas | Air, CGFU Circular Gas Flow Unit |
Flow Control | Electronic pressure controller |
Injection Volume | 3 mL |
Sampling | Heated 6-port-valve incl. sample pump |
Ion Mobility Spectrometer | |
Ionisation | API, 3H-Tritium Source (<380 MBq) |
Model | Time-of-flight/10 cm tube, ±5000 V |
Drift Gas | Air, CGFU Circular Gas Flow Unit |
Detection | Faraday Plate |
Class (a) | VOCs (b) | Rt [s] (c) | Ri (d) | % (e) |
---|---|---|---|---|
Ketones | Acetone | 119 | 812 | 100 |
2-butanone | 141 | 897 | 100 | |
2-pentanone | 177 | 979 | 97 | |
4-heptanone | 334 | 1125 | 16 | |
2-hexanone | 256 | 1070 | 0.87 | |
Aldehydes | Propanal | 112 | 763 | 87 |
Pentanal | 176 | 977 | 44 | |
Hexanal | 255 | 1070 | 28 | |
3-methylbutanal | 159 | 945 | 13 | |
Heptanal | 385 | 1152 | 11 | |
Sulphur compounds | Dimethyl sulphide | 107 | 718 | 21 |
Diallyl sulphide | 405 | 1161 | 0.87 | |
Alcohols | Ethanol | 154 | 934 | 100 |
Propanol | 217 | 1033 | 16 | |
Pentanol | 574 | 1226 | 13 | |
2-methyl-1-propanol | 271 | 1083 | 13 | |
2-methyl-1-butanol | 527 | 1209 | 1.74 | |
2-hexanol | 528 | 1210 | 0.87 | |
Esters | Butyl acetate | 281 | 1091 | 72 |
Pentyl acetate | 338 | 1153 | 51 | |
Ethyl acetate | 141 | 901 | 16 | |
Aromatic Hydrocarbons | Toluene | 228 | 1045 | 13 |
Terpen | α-pinene | 175 | 974 | 16 |
Class (a) | VOCs (b) | Number of Samples (c) | Origin (d) [11] |
---|---|---|---|
Ketones | Acetone | 15 | Endo, M |
2-pentanone | 14 | Exo (Food) | |
2-butanone | 12 | Endo | |
4-Heptanone | 7 | Endo | |
2-hexanone | 1 | Endo | |
Aldehydes | 3-methylbutanal | 15 | Unknown |
Sulphur compounds | Dimethyl sulphide | 15 | Endo/Exo (D, M) |
Alcohols | Ethanol | 15 | Unknown |
Propanol | 15 | Unknown | |
Pentanol | 15 | Unknown | |
2-methyl-1-propanol | 15 | Unknown | |
2-hexanol | 1 | Unknown | |
Esters | Butyl acetate | 2 | Unknown |
Terpenes | α-pinene | 3 | Endo/Exo (Food) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riccio, G.; Baroni, S.; Urbani, A.; Greco, V. Mapping of Urinary Volatile Organic Compounds by a Rapid Analytical Method Using Gas Chromatography Coupled to Ion Mobility Spectrometry (GC–IMS). Metabolites 2022, 12, 1072. https://doi.org/10.3390/metabo12111072
Riccio G, Baroni S, Urbani A, Greco V. Mapping of Urinary Volatile Organic Compounds by a Rapid Analytical Method Using Gas Chromatography Coupled to Ion Mobility Spectrometry (GC–IMS). Metabolites. 2022; 12(11):1072. https://doi.org/10.3390/metabo12111072
Chicago/Turabian StyleRiccio, Giulia, Silvia Baroni, Andrea Urbani, and Viviana Greco. 2022. "Mapping of Urinary Volatile Organic Compounds by a Rapid Analytical Method Using Gas Chromatography Coupled to Ion Mobility Spectrometry (GC–IMS)" Metabolites 12, no. 11: 1072. https://doi.org/10.3390/metabo12111072
APA StyleRiccio, G., Baroni, S., Urbani, A., & Greco, V. (2022). Mapping of Urinary Volatile Organic Compounds by a Rapid Analytical Method Using Gas Chromatography Coupled to Ion Mobility Spectrometry (GC–IMS). Metabolites, 12(11), 1072. https://doi.org/10.3390/metabo12111072